@article{LippoldEidnerKumkeetal.2017, author = {Lippold, Holger and Eidner, Sascha and Kumke, Michael Uwe and Lippmann-Pipke, Johanna}, title = {Dynamics of metal-humate complexation equilibria as revealed by isotope exchange studies - a matter of concentration and time}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {197}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2016.10.019}, pages = {62 -- 70}, year = {2017}, abstract = {Complexation with dissolved humic matter can be crucial in controlling the mobility of toxic or radioactive contaminant metals. For speciation and transport modelling, a dynamic equilibrium process is commonly assumed, where association and dissociation run permanently. This is, however, questionable in view of reported observations of a growing resistance to dissociation over time. In this study, the isotope exchange principle was employed to gain direct insight into the dynamics of the complexation equilibrium, including kinetic inertisation phenomena. Terbium(III), an analogue of trivalent actinides, was used as a representative of higher-valent metals. Isotherms of binding to (flocculated) humic acid, determined by means of Tb-160 as a radiotracer, were found to be identical regardless of whether the radioisotope was introduced together with the bulk of stable Tb-159 or subsequently after pre-equilibration for up to 3 months. Consequently, there is a permanent exchange of free and humic-bound Tb since all available binding sites are occupied in the plateau region of the isotherm. The existence of a dynamic equilibrium was thus evidenced. There was no indication of an inertisation under these experimental conditions. If the small amount of Tb-160 was introduced prior to saturation with Tb-159, the expected partial desorption of Tb-160 occurred at much lower rates than observed for the equilibration process in the reverse procedure. In addition, the rates decreased with time of pre-equilibration. Inertisation phenomena are thus confined to the stronger sites of humic molecules (occupied at low metal concentrations). Analysing the time-dependent course of isotope exchange according to first-order kinetics indicated that up to 3 years are needed to attain equilibrium. Since, however, metal-humic interaction remains reversible, exchange of metals between humic carriers and mineral surfaces cannot be neglected on the long time scale to be considered in predictive transport models.}, language = {en} } @article{LippoldEidnerKumkeetal.2012, author = {Lippold, Holger and Eidner, Sascha and Kumke, Michael Uwe and Lippmann-Pipke, Johanna}, title = {Diffusion, degradation or on-site stabilisation - identifying causes of kinetic processes involved in metal-humate complexation}, series = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, volume = {27}, journal = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0883-2927}, doi = {10.1016/j.apgeochem.2011.11.001}, pages = {250 -- 256}, year = {2012}, abstract = {The applicability of equilibrium models for humic-bound transport of toxic or radioactive metals is affected by kinetic processes leading to an increasing inertness of metal-humic complexes. The chemical background is not yet understood. It is widely believed that bound metals undergo an in-diffusion process within the humic colloids, changing from weaker to stronger binding sites. This work is focussed on the competition effect of Al(III) on complexation of Tb(III) or Eu(III) as analogues of trivalent actinides. By using ion exchange and spectroscopic methods, their bound fractions were determined for solutions of Al and humic acid that had been pre-equilibrated for different periods of time. Whilst the amount of bound Al remained unchanged, its blocking effect was found to increase over a time frame of 2 days, which corresponds to the kinetics of the increase in complex inertness reported in most pertinent studies. Thus, the derived "diffusion theory'' turned out to be inapplicable, since it cannot explain an increase in competition for the "initial'' sites. A delayed degradation of polynuclear species (as found for Fe) does not occur. Consequently, the temporal changes must be based on structural rearrangements in the vicinity of bound Al, complicating the exchange or access. Time-dependent studies by laser fluorescence spectroscopy (steady-state and time-resolved) yielded evidence of substantial alterations, which were, however, immediately induced and did not show any significant trend on the time scale of interest, suggesting that the stabilisation process is based on comparatively moderate changes.}, language = {en} } @article{LippoldEidnerLippmannPipke2009, author = {Lippold, Holger and Eidner, Sascha and Lippmann-Pipke, Johanna}, title = {Kinetic effects in the complexation of radionuclides with humic substances in the presence of Fe(III) and Al(III)}, issn = {0016-7037}, doi = {10.1016/j.gca.2009.05.010}, year = {2009}, language = {en} }