@article{LippoldEidnerLippmannPipke2009, author = {Lippold, Holger and Eidner, Sascha and Lippmann-Pipke, Johanna}, title = {Kinetic effects in the complexation of radionuclides with humic substances in the presence of Fe(III) and Al(III)}, issn = {0016-7037}, doi = {10.1016/j.gca.2009.05.010}, year = {2009}, language = {en} } @article{MarangEidnerKumkeetal.2009, author = {Marang, Laura and Eidner, Sascha and Kumke, Michael Uwe and Benedetti, Marc F. and Reiller, Pascal E.}, title = {Characterization of competitive binding of Eu(III)/Cu(II) and Eu(III)/Ca(II) to Gorleben humic acid}, issn = {0016-7037}, doi = {10.1016/j.gca.2009.05.011}, year = {2009}, language = {en} } @article{MarangEidnerKumkeetal.2009, author = {Marang, Laura and Eidner, Sascha and Kumke, Michael Uwe and Benedetti, Marc F. and Reiller, Pascal E.}, title = {Spectroscopic characterization of the competitive binding of Eu(III), Ca(II) and Cu(II) to a sedimentary originated humic acid}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2009.03.003}, year = {2009}, abstract = {The competition between REE, alkaline earth and d-transition metals for organic matter binding sites is still an open field of research; particularly, the mechanisms governing these phenomena need to be characterized in more detail. In this study, we examine spectroscopically the mechanisms of competitive binding of Eu(III)/Cu(II) and Eu(III)/ Ca(II) pair to Gorleben humic acid (HA), as previously proposed in the framework of the NICA-Donnan model. The evolution of time-resolved laser induced luminescence spectra of humic-complexed Eu(Ill) showed two strikingly different environments for a comparable bound proportion for Cu(II) and Ca(II). Cu(II) seems to compete more effectively with Eu(III) inducing its release into the Donnan phase, and into the bulk solution as free Eu3+. This is evidenced both by the shapes of the spectra and by the decrease in the luminescence decay times. In contrast with that, Ca(II) induces a modification of the HA structure, which enhances the luminescence of humic-bound Eu(III), and causes a minor modification of the chemical environment of the complexed rare earth ion.}, language = {en} }