@article{QuintanaArimBadosaetal.2015, author = {Quintana, Xavier D. and Arim, Matias and Badosa, Anna and Maria Blanco, Jose and Boix, Dani and Brucet, Sandra and Compte, Jordi and Egozcue, Juan J. and de Eyto, Elvira and Gaedke, Ursula and Gascon, Stephanie and Gil de Sola, Luis and Irvine, Kenneth and Jeppesen, Erik and Lauridsen, Torben L. and Lopez-Flores, Rocio and Mehner, Thomas and Romo, Susana and Sondergaard, Martin}, title = {Predation and competition effects on the size diversity of aquatic communities}, series = {Aquatic sciences : research across boundaries}, volume = {77}, journal = {Aquatic sciences : research across boundaries}, number = {1}, publisher = {Springer}, address = {Basel}, issn = {1015-1621}, doi = {10.1007/s00027-014-0368-1}, pages = {45 -- 57}, year = {2015}, abstract = {Body size has been widely recognised as a key factor determining community structure in ecosystems. We analysed size diversity patterns of phytoplankton, zooplankton and fish assemblages in 13 data sets from freshwater and marine sites with the aim to assess whether there is a general trend in the effect of predation and resource competition on body size distribution across a wide range of aquatic ecosystems. We used size diversity as a measure of the shape of size distribution. Size diversity was computed based on the Shannon-Wiener diversity expression, adapted to a continuous variable, i.e. as body size. Our results show that greater predation pressure was associated with reduced size diversity of prey at all trophic levels. In contrast, competition effects depended on the trophic level considered. At upper trophic levels (zooplankton and fish), size distributions were more diverse when potential resource availability was low, suggesting that competitive interactions for resources promote diversification of aquatic communities by size. This pattern was not found for phytoplankton size distributions where size diversity mostly increased with low zooplankton grazing and increasing nutrient availability. Relationships we found were weak, indicating that predation and competition are not the only determinants of size distribution. Our results suggest that predation pressure leads to accumulation of organisms in the less predated sizes, while resource competition tends to favour a wider size distribution.}, language = {en} }