@article{DongGuptaSieversetal.2019, author = {Dong, Yanni and Gupta, Saurabh and Sievers, Rixta and Wargent, Jason J. and Wheeler, David and Putterill, Joanna and Macknight, Richard and Gechev, Tsanko S. and M{\"u}ller-R{\"o}ber, Bernd and Dijkwel, Paul P.}, title = {Genome draft of the Arabidopsis relative Pachycladon cheesemanii reveals environment}, series = {BMC genomics}, volume = {20}, journal = {BMC genomics}, number = {1}, publisher = {BMC}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-019-6084-4}, pages = {14}, year = {2019}, abstract = {BackgroundPachycladon cheesemanii is a close relative of Arabidopsis thaliana and is an allotetraploid perennial herb which is widespread in the South Island of New Zealand. It grows at altitudes of up to 1000m where it is subject to relatively high levels of ultraviolet (UV)-B radiation. To gain first insights into how Pachycladon copes with UV-B stress, we sequenced its genome and compared the UV-B tolerance of two Pachycladon accessions with those of two A. thaliana accessions from different altitudes.ResultsA high-quality draft genome of P. cheesemanii was assembled with a high percentage of conserved single-copy plant orthologs. Synteny analysis with genomes from other species of the Brassicaceae family found a close phylogenetic relationship of P. cheesemanii with Boechera stricta from Brassicaceae lineage I. While UV-B radiation caused a greater growth reduction in the A. thaliana accessions than in the P. cheesemanii accessions, growth was not reduced in one P. cheesemanii accession. The homologues of A. thaliana UV-B radiation response genes were duplicated in P. cheesemanii, and an expression analysis of those genes indicated that the tolerance mechanism in P. cheesemanii appears to differ from that in A. thaliana.ConclusionAlthough the P. cheesemanii genome shows close similarity with that of A. thaliana, it appears to have evolved novel strategies allowing the plant to tolerate relatively high UV-B radiation.}, language = {en} } @misc{GuptaDongDijkweletal.2019, author = {Gupta, Saurabh and Dong, Yanni and Dijkwel, Paul P. and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Systems during Desiccation}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {763}, issn = {1866-8372}, doi = {10.25932/publishup-43729}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437299}, pages = {22}, year = {2019}, abstract = {Abiotic stress is one of the major threats to plant crop yield and productivity. When plants are exposed to stress, production of reactive oxygen species (ROS) increases, which could lead to extensive cellular damage and hence crop loss. During evolution, plants have acquired antioxidant defense systems which can not only detoxify ROS but also adjust ROS levels required for proper cell signaling. Ascorbate peroxidase (APX), glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) are crucial enzymes involved in ROS detoxification. In this study, 40 putative APX, 28 GPX, 16 CAT, and 41 SOD genes were identified from genomes of the resurrection species Boea hygrometrica, Selaginella lepidophylla, Xerophyta viscosa, and Oropetium thomaeum, and the mesophile Selaginella moellendorffi. Phylogenetic analyses classified the APX, GPX, and SOD proteins into five clades each, and CAT proteins into three clades. Using co-expression network analysis, various regulatory modules were discovered, mainly involving glutathione, that likely work together to maintain ROS homeostasis upon desiccation stress in resurrection species. These regulatory modules also support the existence of species-specific ROS detoxification systems. The results suggest molecular pathways that regulate ROS in resurrection species and the role of APX, GPX, CAT and SOD genes in resurrection species during stress.}, language = {en} } @article{GuptaDongDijkweletal.2019, author = {Gupta, Saurabh and Dong, Yanni and Dijkwel, Paul P. and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Systems during Desiccation}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {12}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms20123101}, pages = {22}, year = {2019}, abstract = {Abiotic stress is one of the major threats to plant crop yield and productivity. When plants are exposed to stress, production of reactive oxygen species (ROS) increases, which could lead to extensive cellular damage and hence crop loss. During evolution, plants have acquired antioxidant defense systems which can not only detoxify ROS but also adjust ROS levels required for proper cell signaling. Ascorbate peroxidase (APX), glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) are crucial enzymes involved in ROS detoxification. In this study, 40 putative APX, 28 GPX, 16 CAT, and 41 SOD genes were identified from genomes of the resurrection species Boea hygrometrica, Selaginella lepidophylla, Xerophyta viscosa, and Oropetium thomaeum, and the mesophile Selaginella moellendorffi. Phylogenetic analyses classified the APX, GPX, and SOD proteins into five clades each, and CAT proteins into three clades. Using co-expression network analysis, various regulatory modules were discovered, mainly involving glutathione, that likely work together to maintain ROS homeostasis upon desiccation stress in resurrection species. These regulatory modules also support the existence of species-specific ROS detoxification systems. The results suggest molecular pathways that regulate ROS in resurrection species and the role of APX, GPX, CAT and SOD genes in resurrection species during stress.}, language = {en} }