@phdthesis{Desanois2019, author = {Desanois, Louis}, title = {On the origin of epithermal Sn-Ag-Zn mineralization at the Pirquitas mine, NW Argentina}, doi = {10.25932/publishup-43082}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430822}, school = {Universit{\"a}t Potsdam}, pages = {104}, year = {2019}, abstract = {The Central Andes host large reserves of base and precious metals. The region represented, in 2017, an important part of the worldwide mining activity. Three principal types of deposits have been identified and studied: 1) porphyry type deposits extending from central Chile and Argentina to Bolivia, and Northern Peru, 2) iron oxide-copper-gold (IOCG) deposits, extending from central Peru to central Chile, and 3) epithermal tin polymetallic deposits extending from Southern Peru to Northern Argentina, which compose a large part of the deposits of the Bolivian Tin Belt (BTB). Deposits in the BTB can be divided into two major types: (1) tin-tungsten-zinc pluton-related polymetallic deposits, and (2) tin-silver-lead-zinc epithermal polymetallic vein deposits. Mina Pirquitas is a tin-silver-lead-zinc epithermal polymetallic vein deposit, located in north-west Argentina, that used to be one of the most important tin-silver producing mine of the country. It was interpreted to be part of the BTB and it shares similar mineral associations with southern pluton related BTB epithermal deposits. Two major mineralization events related to three pulses of magmatic fluids mixed with meteoric water have been identified. The first event can be divided in two stages: 1) stage I-1 with quartz, pyrite, and cassiterite precipitating from fluids between 233 and 370 °C and salinity between 0 and 7.5 wt\%, corresponding to a first pulse of fluids, and 2) stage I-2 with sphalerite and tin-silver-lead-antimony sulfosalts precipitating from fluids between 213 and 274 °C with salinity up to 10.6 wt\%, corresponding to a new pulse of magmatic fluids in the hydrothermal system. The mineralization event II deposited the richest silver ores at Pirquitas. Event II fluids temperatures and salinities range between 190 and 252 °C and between 0.9 and 4.3 wt\% respectively. This corresponds to the waning supply of magmatic fluids. Noble gas isotopic compositions and concentrations in ore-hosted fluid inclusions demonstrate a significant contribution of magmatic fluids to the Pirquitas mineralization although no intrusive rocks are exposed in the mine area. Lead and sulfur isotopic measurements on ore minerals show that Pirquitas shares a similar signature with southern pluton related polymetallic deposits in the BTB. Furthermore, the major part of the sulfur isotopic values of sulfide and sulfosalt minerals from Pirquitas ranges in the field for sulfur derived from igneous rocks. This suggests that the main contribution of sulfur to the hydrothermal system at Pirquitas is likely to be magma-derived. The precise age of the deposit is still unknown but the results of wolframite dating of 2.9 ± 9.1 Ma and local structural observations suggest that the late mineralization event is younger than 12 Ma.}, language = {en} } @article{DesanoisLuedersNiedermannetal.2018, author = {Desanois, Louis and L{\"u}ders, Volker and Niedermann, Samuel and Trumbull, Robert B.}, title = {Formation of epithermal Sn-Ag-(Zn) vein-type mineralization at the Pirquitas deposit, NW Argentina}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {508}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2018.04.024}, pages = {78 -- 91}, year = {2018}, abstract = {The Pirquitas Sn-Ag-(Zn) deposit in northwestern Argentina is thought to be an analogue to the Miocene polymetallic epithermal Sn-Ag deposits of the southern Bolivian Tin Belt, but little is known in detail about the origin and evolution of ore-forming fluids at Pirquitas. This paper reports on a microthermometric study of fluid inclusions in quartz, sphalerite, Ag-Sn sulfides, and Ag-rich sulfosalts using transmitted near infrared and visible light, combined with noble gas isotope analyses of fluids released from mineral separates. The study focused on the vein-hosted mineralization, which formed during two major mineralization events, whereby the first event I comprises two stages (I-1 and I-2). All studied minerals exclusively contain aqueous two-phase inclusions, indicating that the ore-forming fluids did not undergo two-phase phase separation (boiling). Salinity of fluid inclusions in I-1 quartz that precipitated along with pyrite and pyrrhotite ranges between 0 and 7.5 wt\% NaCl equiv. and homogenization temperatures (Th) are between 233 and 370 degrees C. Stage I-2 is characterized by abundant Sn-Ag-Pb-Zn-sulfides and a variety of Ag-rich sulfosalts. Fluid inclusions in stage I-2 Ag-Sn sulfides have salinities up to 10.6 wt\% NaCl equiv. and Th between 213 and 274 degrees C. The deposition of stage I-2 ore is likely related to a new pulse of saline magmatic fluids to the hydrothermal system. The mineralization event II deposited the richest Ag ores at Pirquitas. Colloform sphalerite and pyrargyrite deposited during event II contain two-phase aqueous fluid inclusions with homogenization temperatures between 190 and 252 degrees C and salinities between 0.9 and 4.3 wt\% NaCl equiv. Noble gas concentrations and isotopic compositions of ore-hosted fluid inclusions were determined from crushing hand-picked ore minerals from both mineralization events. With one exception, all samples yielded He-3/He-4 ratios between 1.9 and 4.1 Ra, which is within the range of published data from the volcanic arc and somewhat higher than typical values of meteoric water-derived hot-springs in the region. This demonstrates a significant contribution of magmatic fluids to the Pirquitas mineralization although no intrusive rocks are exposed in the mine region. Taking the noble gas evidence for a magmatic fluid source, we interpret the trends of decreasing Th and salinity values in fluid inclusions from events I and II to represent waning of the magmatic-hydrothermal system and/or increased admixing of meteoric water to the magmatic fluids.}, language = {en} }