@article{CescaHeimannKriegerowskietal.2017, author = {Cesca, Simone and Heimann, Sebastian and Kriegerowski, Marius and Saul, Joachim and Dahm, Torsten}, title = {Moment tensor inversion for nuclear explosions}, series = {Seismological research letters}, volume = {88}, journal = {Seismological research letters}, number = {2A}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0895-0695}, doi = {10.1785/0220160139}, pages = {300 -- 310}, year = {2017}, abstract = {Two nuclear explosions were carried out by the Democratic People's Republic of North Korea in January and September 2016. Epicenters were located close to those of the 2006, 2009, and 2013 previous explosions. We perform a seismological analysis of the 2016 events combining the analysis of full waveforms at regional distances and seismic array beams at teleseismic distances. We estimate the most relevant source parameters, such as source depth, moment release, and full moment tensor (MT). The best MT solution can be decomposed into an isotropic source, directly related with the explosion and an additional deviatoric term, likely due to near-source interactions with topographic and/or underground facilities features. We additionally perform an accurate resolution test to assess source parameters uncertainties and trade-offs. This analysis sheds light on source parameters inconsistencies among studies on previous shallow explosive sources. The resolution of the true MT is hindered by strong source parameters trade-offs, so that a broad range of well-fitting MT solutions can be found, spanning from a dominant positive isotropic term to a dominant negative vertical compensated linear vector dipole. The true mechanism can be discriminated by additionally modeling first-motion polarities at seismic arrays at teleseismic distances. A comparative assessment of the 2016 explosion with earlier nuclear tests documents similar vertical waveforms but a significant increase of amplitude for the 2016 explosions, which proves that the 9 September 2016 was the largest nuclear explosion ever performed in North Korea with a magnitude Mw 4.9 and a shallow depth of less than 2 km, although there are no proofs of a fusion explosion. Modeling transversal component waveforms suggests variable size and orientation of the double-couple components of the 2009, 2013, and 2016 sources.}, language = {en} } @article{KaramzadehKuehnKriegerowskietal.2019, author = {Karamzadeh, Nasim Toularoud and K{\"u}hn, Daniela and Kriegerowski, Marius and L{\´o}pez-Comino, Jos{\´e} {\´A}ngel and Cesca, Simone and Dahm, Torsten}, title = {Small-aperture array as a tool to monitor fluid injection- and extraction-induced microseismicity}, series = {Acta Geophysica}, volume = {67}, journal = {Acta Geophysica}, number = {1}, publisher = {Springer}, address = {Cham}, issn = {1895-6572}, doi = {10.1007/s11600-018-0231-1}, pages = {311 -- 326}, year = {2019}, abstract = {The monitoring of microseismicity during temporary human activities such as fluid injections for hydrofracturing, hydrothermal stimulations or wastewater disposal is a difficult task. The seismic stations often cannot be installed on hard rock, and at quiet places, noise is strongly increased during the operation itself and the installation of sensors in deep wells is costly and often not feasible. The combination of small-aperture seismic arrays with shallow borehole sensors offers a solution. We tested this monitoring approach at two different sites: (1) accompanying a fracking experiment in sedimentary shale at 4km depth and (2) above a gas field under depletion. The small-aperture arrays were planned according to theoretical wavenumber studies combined with simulations considering the local noise conditions. We compared array recordings with recordings available from shallow borehole sensors and give examples of detection and location performance. Although the high-frequency noise on the 50-m-deep borehole sensors was smaller compared to the surface noise before the injection experiment, the signals were highly contaminated during injection by the pumping activities. Therefore, a set of three small-aperture arrays at different azimuths was more suited to detect small events, since noise recorded on these arrays is uncorrelated with each other. Further, we developed recommendations for the adaptation of the monitoring concept to other sites experiencing induced seismicity.}, language = {en} } @article{MaghsoudiCescaHainzletal.2013, author = {Maghsoudi, Samira and Cesca, Simone and Hainzl, Sebastian and Kaiser, Diethelm and Becker, Dirk and Dahm, Torsten}, title = {Improving the estimation of detection probability and magnitude of completeness in strongly heterogeneous media, an application to acoustic emission (AE)}, series = {Geophysical journal international}, volume = {193}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt049}, pages = {1556 -- 1569}, year = {2013}, abstract = {Reliable estimations of magnitude of completeness (M-c) are essential for a correct interpretation of seismic catalogues. The spatial distribution of M-c may be strongly variable and difficult to assess in mining environments, owing to the presence of galleries, cavities, fractured regions, porous media and different mineralogical bodies, as well as in consequence of inhomogeneous spatial distribution of the seismicity. We apply a 3-D modification of the probabilistic magnitude of completeness (PMC) method, which relies on the analysis of network detection capabilities. In our approach, the probability to detect an event depends on its magnitude, source receiver Euclidian distance and source receiver direction. The suggested method is proposed for study of the spatial distribution of the magnitude of completeness in a mining environment and here is applied to a 2-months acoustic emission (AE) data set recorded at the Morsleben salt mine, Germany. The dense seismic network and the large data set, which includes more than one million events, enable a detailed testing of the method. This method is proposed specifically for strongly heterogeneous media. Besides, it can also be used for specific network installations, with sensors with a sensitivity, dependent on the direction of the incoming wave (e.g. some piezoelectric sensors). In absence of strong heterogeneities, the standards PMC approach should be used. We show that the PMC estimations in mines strongly depend on the source receiver direction, and cannot be correctly accounted using a standard PMC approach. However, results can be improved, when adopting the proposed 3-D modification of the PMC method. Our analysis of one central horizontal and vertical section yields a magnitude of completeness of about M-c approximate to 1 (AE magnitude) at the centre of the network, which increases up to M-c approximate to 4 at further distances outside the network; the best detection performance is estimated for a NNE-SSE elongated region, which corresponds to the strike direction of the low-attenuating salt body. Our approach provides us with small-scale details about the capability of sensors to detect an earthquake, which can be linked to the presence of heterogeneities in specific directions. Reduced detection performance in presence of strong structural heterogeneities (cavities) is confirmed by synthetic waveform modelling in heterogeneous media.}, language = {en} } @article{CescaBraunMaccaferrietal.2013, author = {Cesca, Simone and Braun, Thomas and Maccaferri, Francesco and Passarelli, Luigi and Rivalta, Eleonora and Dahm, Torsten}, title = {Source modelling of the M5-6 Emilia-Romagna, Italy, earthquakes (2012 May 20-29)}, series = {Geophysical journal international}, volume = {193}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt069}, pages = {1658 -- 1672}, year = {2013}, abstract = {On 2012 May 20 and 29, two damaging earthquakes with magnitudes M-w 6.1 and 5.9, respectively, struck the Emilia-Romagna region in the sedimentary Po Plain, Northern Italy, causing 26 fatalities, significant damage to historical buildings and substantial impact to the economy of the region. The earthquake sequence included four more aftershocks with M-w, >= 5.0, all at shallow depths (about 7-9 km), with similar WNW-ESE striking reverse mechanism. The timeline of the sequence suggests significant static stress interaction between the largest events. We perform here a detailed source inversion, first adopting a point source approximation and considering pure double couple and full moment tensor source models. We compare different extended source inversion approaches for the two largest events, and find that the rupture occurred in both cases along a subhorizontal plane, dipping towards SSW Directivity is well detected for the May 20 main shock, indicating that the rupture propagated unilaterally towards SE. Based on the focal mechanism solution, we further estimate the co-seismic static stress change induced by the May 20 event. By using the rate-and-state model and a Poissonian earthquake occurrence, we infer that the second largest event of May 29 was induced with a probability in the range 0.2-0.4. This suggests that the segment of fault was already prone to rupture. Finally, we estimate peak ground accelerations for the two main events as occurred separately or simultaneously. For the scenario involving hypothetical rupture areas of both main events, we estimate M-w = 6.3 and an increase of ground acceleration by 50 per cent. The approach we propose may help to quantify rapidly which regions are invested by a significant increase of the hazard, bearing the potential for large aftershocks or even a second main shock.}, language = {en} } @article{SenCescaBischoffetal.2013, author = {Sen, Ali Tolga and Cesca, Simone and Bischoff, Monika and Meier, Thomas and Dahm, Torsten}, title = {Automated full moment tensor inversion of coal mining-induced seismicity}, series = {Geophysical journal international}, volume = {195}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt300}, pages = {1267 -- 1281}, year = {2013}, abstract = {Seismicity induced by coal mining in the Ruhr region, Germany, has been monitored continuously over the last 25 yr. In 2006, a dense temporary network (HAMNET) was deployed to locally monitor seismicity induced by longwall mining close to the town of Hamm. Between 2006 July and 2007 July, more than 7000 events with magnitudes M-L from -1.7 to 2.0 were detected. The spatiotemporal distribution of seismicity shows high correlation with the mining activity. In order to monitor rupture processes, we set up an automated source inversion routine and successfully perform double couple and full moment tensor (MT) inversions for more than 1000 events with magnitudes above M-L -0.5. The source inversion is based on a full waveform approach, both in the frequency and in the time domain, providing information about the centroid location, focal mechanism, scalar moment and full MT. Inversion results indicate a strong dominance of normal faulting focal mechanisms, with a steeper plane and a subhorizontal one. Fault planes are oriented parallel to the mining stopes. We classify the focal mechanisms based on their orientation and observe different frequency-magnitude distributions for families of events with different focal mechanisms; the overall frequency-magnitude distribution is not fitting the Gutenberg-Richter relation. Full MTs indicate that non-negligible opening tensile components accompanied normal faulting source mechanisms. Finally, extended source models are investigated for largest events. Results suggest that the rupture processes mostly occurred along the subvertical planes.}, language = {en} } @article{HeimannGonzalezWangetal.2013, author = {Heimann, Sebastian and Gonzalez, Alvaro and Wang, Rongjiang and Cesca, Simone and Dahm, Torsten}, title = {Seismic characterization of the Chelyabinsk Meteor's terminal explosion}, series = {Seismological research letters}, volume = {84}, journal = {Seismological research letters}, number = {6}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0895-0695}, doi = {10.1785/0220130042}, pages = {1021 -- 1025}, year = {2013}, language = {en} } @article{MaghsoudiHainzlCescaetal.2014, author = {Maghsoudi, Samira and Hainzl, Sebastian and Cesca, Simone and Dahm, Torsten and Kaiser, Diethelm}, title = {Identification and characterization of growing large-scale en-echelon fractures in a salt mine}, series = {Geophysical journal international}, volume = {196}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt443}, pages = {1092 -- 1105}, year = {2014}, abstract = {The spatiotemporal seismicity of acoustic emission (AE) events recorded in the Morsleben salt mine is investigated. Almost a year after backfilling of the cavities from 2003, microevents are distributed with distinctive stripe shapes above cavities at different depth levels. The physical forces driving the creation of these stripes are still unknown. This study aims to find the active stripes and track fracture developments over time by combining two different temporal and spatial clustering techniques into a single methodological approach. Anomalous seismicity parameters values like sharp b-value changes for two active stripes are good indicators to explain possible stress accumulation at the stripe tips. We identify the formation of two new seismicity stripes and show that the AE activities in active clusters are migrated mostly unidirectional to eastward and upward. This indicates that the growth of underlying macrofractures is controlled by the gradient of extensional stress. Studying size distribution characteristic in terms of frequency-magnitude distribution and b-value in active phase and phase with constant seismicity rate show that deviations from the Gutenberg-Richter power law can be explained by the inclusion of different activity phases: (1) the inactive period before the formation of macrofractures, which is characterized by a deficit of larger events (higher b-values) and (2) the period of fracture growth characterized by the occurrence of larger events (smaller b-values).}, language = {en} } @article{PassarelliHainzlCescaetal.2015, author = {Passarelli, Luigi and Hainzl, Sebastian and Cesca, Simone and Maccaferri, Francesco and Mucciarelli, Marco and R{\"o}ßler, Dirk and Corbi, Fabio and Dahm, Torsten and Rivalta, Eleonora}, title = {Aseismic transient driving the swarm-like seismic sequence in the Pollino range, Southern Italy}, series = {Geophysical journal international}, volume = {201}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggv111}, pages = {1553 -- 1567}, year = {2015}, abstract = {Tectonic earthquake swarms challenge our understanding of earthquake processes since it is difficult to link observations to the underlying physical mechanisms and to assess the hazard they pose. Transient forcing is thought to initiate and drive the spatio-temporal release of energy during swarms. The nature of the transient forcing may vary across sequences and range from aseismic creeping or transient slip to diffusion of pore pressure pulses to fluid redistribution and migration within the seismogenic crust. Distinguishing between such forcing mechanisms may be critical to reduce epistemic uncertainties in the assessment of hazard due to seismic swarms, because it can provide information on the frequency-magnitude distribution of the earthquakes (often deviating from the assumed Gutenberg-Richter relation) and on the expected source parameters influencing the ground motion (for example the stress drop). Here we study the ongoing Pollino range (Southern Italy) seismic swarm, a long-lasting seismic sequence with more than five thousand events recorded and located since October 2010. The two largest shocks (magnitude M-w = 4.2 and M-w = 5.1) are among the largest earthquakes ever recorded in an area which represents a seismic gap in the Italian historical earthquake catalogue. We investigate the geometrical, mechanical and statistical characteristics of the largest earthquakes and of the entire swarm. We calculate the focal mechanisms of the M-l > 3 events in the sequence and the transfer of Coulomb stress on nearby known faults and analyse the statistics of the earthquake catalogue. We find that only 25 per cent of the earthquakes in the sequence can be explained as aftershocks, and the remaining 75 per cent may be attributed to a transient forcing. The b-values change in time throughout the sequence, with low b-values correlated with the period of highest rate of activity and with the occurrence of the largest shock. In the light of recent studies on the palaeoseismic and historical activity in the Pollino area, we identify two scenarios consistent with the observations and our analysis: This and past seismic swarms may have been 'passive' features, with small fault patches failing on largely locked faults, or may have been accompanied by an 'active', largely aseismic, release of a large portion of the accumulated tectonic strain. Those scenarios have very different implications for the seismic hazard of the area.}, language = {en} } @article{MaghsoudiCescaHainzletal.2015, author = {Maghsoudi, Samira and Cesca, Simone and Hainzl, Sebastian and Dahm, Torsten and Z{\"o}ller, Gert and Kaiser, Diethelm}, title = {Maximum Magnitude of Completeness in a Salt Mine}, series = {Bulletin of the Seismological Society of America}, volume = {105}, journal = {Bulletin of the Seismological Society of America}, number = {3}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120140039}, pages = {1491 -- 1501}, year = {2015}, abstract = {In this study, we analyze acoustic emission (AE) data recorded at the Morsleben salt mine, Germany, to assess the catalog completeness, which plays an important role in any seismicity analysis. We introduce the new concept of a magnitude completeness interval consisting of a maximum magnitude of completeness (M-c(max)) in addition to the well-known minimum magnitude of completeness. This is required to describe the completeness of the catalog, both for the smallest events (for which the detection performance may be low) and for the largest ones (which may be missed because of sensors saturation). We suggest a method to compute the maximum magnitude of completeness and calculate it for a spatial grid based on (1) the prior estimation of saturation magnitude at each sensor, (2) the correction of the detection probability function at each sensor, including a drop in the detection performance when it saturates, and (3) the combination of detection probabilities of all sensors to obtain the network detection performance. The method is tested using about 130,000 AE events recorded in a period of five weeks, with sources confined within a small depth interval, and an example of the spatial distribution of M-c(max) is derived. The comparison between the spatial distribution of M-c(max) and of the maximum possible magnitude (M-max), which is here derived using a recently introduced Bayesian approach, indicates that M-max exceeds M-c(max) in some parts of the mine. This suggests that some large and important events may be missed in the catalog, which could lead to a bias in the hazard evaluation.}, language = {en} } @article{CescaSenDahm2014, author = {Cesca, Simone and Sen, Ali Tolga and Dahm, Torsten}, title = {Seismicity monitoring by cluster analysis of moment tensors}, series = {Geophysical journal international}, volume = {196}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt492}, pages = {1813 -- 1826}, year = {2014}, abstract = {We suggest a new clustering approach to classify focal mechanisms from large moment tensor catalogues, with the purpose of automatically identify families of earthquakes with similar source geometry, recognize the orientation of most active faults, and detect temporal variations of the rupture processes. The approach differs in comparison to waveform similarity methods since clusters are detected even if they occur in large spatial distances. This approach is particularly helpful to analyse large moment tensor catalogues, as in microseismicity applications, where a manual analysis and classification is not feasible. A flexible algorithm is here proposed: it can handle different metrics, norms, and focal mechanism representations. In particular, the method can handle full moment tensor or constrained source model catalogues, for which different metrics are suggested. The method can account for variable uncertainties of different moment tensor components. We verify the method with synthetic catalogues. An application to real data from mining induced seismicity illustrates possible applications of the method and demonstrate the cluster detection and event classification performance with different moment tensor catalogues. Results proof that main earthquake source types occur on spatially separated faults, and that temporal changes in the number and characterization of focal mechanism clusters are detected. We suggest that moment tensor clustering can help assessing time dependent hazard in mines.}, language = {en} }