@article{CywinskiIdzikCranfieldetal.2010, author = {Cywinski, Piotr J. and Idzik, Krzysztof R. and Cranfield, Charles G. and Beckert, Rainer and Mohr, Gerhard J.}, title = {Synthesis and sensing properties of a new carbazole fluorosensor for detection of abacavir}, issn = {1061-0278}, doi = {10.1080/10610278.2010.506541}, year = {2010}, abstract = {An abacavir-targeted fluorosensor based on the carbazole moiety has been synthesised and characterised. Recognition of abacavir is by base pairing between a uracil moiety present in the fluorosensor and the guanine moiety of abacavir. The fluorosensor exhibits five-fold quenching in the presence of 50M abacavir. Its sensitivity to abacavir is superior to that of other reverse transcriptase inhibitors: zidovudine, lamivudine and didanosine. Due to its high sensitivity, this fluorosensor has the potential to be used in multi-analyte array-based detection platforms as well as in microfluidics systems.}, language = {en} } @article{CywinskiPietraszkiewiczMaciejczyketal.2016, author = {Cywinski, Piotr J. and Pietraszkiewicz, Marek and Maciejczyk, Michal and Gorski, Krzysztof and Hammann, Tommy and Liermann, Konstanze and Paulke, Bernd-Reiner and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Total protein concentration quantification using nanobeads with a new highly luminescent terbium(III) complex}, series = {RSC Advances}, volume = {6}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c6ra23207h}, pages = {115068 -- 115073}, year = {2016}, abstract = {Total protein concentration (TPC) is a key parameter in many biochemical experiments and its quantification is often necessary for isolation, separation, and analysis of proteins. A sensitive and rapid nanobead-based TPC quantification assay based on Forster Resonance Energy Transfer (FRET) has been developed. A new, highly luminescent Tb(III) complex has been synthesised and applied as donor in this FRET assay with an organic dye (Cy5) as acceptor. FRET-induced changes in luminescence have been investigated both at donor and acceptor emission wavelength using time-resolved luminescence spectroscopy with time-gated detection. In the assay, the Tb(III) complex and fine-tuned polyglycidyl methacrylate (PGMA) nanobeads ensure that an improvement in sensitivity and background reduction is achieved. Using 40 nm large PGMA nanobeads loaded with the Tb(III) complex, it is possible to determine TPC down to 50 ng mL(-1) in just 10 minutes. Through specific assay components the sensitivity has been improved when compared to existing nanobead-based assays and to currently known commercial methods. Additionally, the assay is relatively insensitive to the presence of contaminants, such as non-ionic detergents commonly found in biological samples. Due to no need for any centrifugal steps, this mix-and-measure bioassay can easily be implemented into routine TPC quantification protocols in biochemical laboratories.}, language = {en} } @article{MeilingCywinskiLoehmannsroeben2018, author = {Meiling, Till Thomas and Cywinski, Piotr J. and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Two-Photon excitation fluorescence spectroscopy of quantum dots}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.7b12345}, pages = {9641 -- 9647}, year = {2018}, abstract = {The applications of quantum dots (QDs) in two-photon (2P) excitation applications demand reliable data about their 2P absorption (2PA) cross sections (sigma(2PA)). In the present study, sigma(2PA) values have been determined for a series of commercial colloidal CdSe/ZnS QDs and CdSeTe/ZnS QDs in aqueous media. For the first time for these QDs, the sigma(2PA) values have been determined over a wide spectral range, that is, between 720 and 900 nm, and are compared to the extinction coefficient (epsilon) values obtained under one-photon (1P) excitation. Furthermore, we present a QD in combination with an organic dye in a biotin-streptavidin Forster resonance energy transfer bioassay under 1P and 2P excitation. The results for the bioassay under 2P excitation are compared to those obtained under 1P excitation. The results demonstrate that in the case of the 2P excitation, higher sensitivity can be achieved because of an improved signal-to-noise ratio.}, language = {en} } @misc{CiuciuCywiński2014, author = {Ciuciu, Adina I. and Cywiński, Piotr J.}, title = {Two-photon polymerization of hydrogels - versatile solutions to fabricate well-defined 3D structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99450}, year = {2014}, abstract = {Hydrogels are cross-linked water-containing polymer networks that are formed by physical, ionic or covalent interactions. In recent years, they have attracted significant attention because of their unique physical properties, which make them promising materials for numerous applications in food and cosmetic processing, as well as in drug delivery and tissue engineering. Hydrogels are highly water-swellable materials, which can considerably increase in volume without losing cohesion, are biocompatible and possess excellent tissue-like physical properties, which can mimic in vivo conditions. When combined with highly precise manufacturing technologies, such as two-photon polymerization (2PP), well-defined three-dimensional structures can be obtained. These structures can become scaffolds for selective cell-entrapping, cell/drug delivery, sensing and prosthetic implants in regenerative medicine. 2PP has been distinguished from other rapid prototyping methods because it is a non-invasive and efficient approach for hydrogel cross-linking. This review discusses the 2PP-based fabrication of 3D hydrogel structures and their potential applications in biotechnology. A brief overview regarding the 2PP methodology and hydrogel properties relevant to biomedical applications is given together with a review of the most important recent achievements in the field.}, language = {en} } @misc{MeilingCywińskiBald2016, author = {Meiling, Till Thomas and Cywiński, Piotr J. and Bald, Ilko}, title = {White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-97087}, year = {2016}, abstract = {In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1\% up to 28\% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst.}, language = {en} } @article{MeilingCywinskiBald2016, author = {Meiling, Till T. and Cywinski, Piotr J. and Bald, Ilko}, title = {White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep28557}, pages = {9}, year = {2016}, abstract = {In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (> 1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1\% up to 28\% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst.}, language = {en} } @article{MeilingCywińskiBald2016, author = {Meiling, Till Thomas and Cywiński, Piotr J. and Bald, Ilko}, title = {White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, doi = {10.1038/srep28557}, pages = {9}, year = {2016}, abstract = {In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1\% up to 28\% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst.}, language = {en} }