@article{CaronDeFrenneBrunetetal.2014, author = {Caron, Maria Mercedes and De Frenne, P. and Brunet, J. and Chabrerie, Olivier and Cousins, S. A. O. and De Backer, L. and Diekmann, M. and Graae, B. J. and Heinken, Thilo and Kolb, A. and Naaf, T. and Plue, J. and Selvi, F. and Strimbeck, G. R. and Wulf, Monika and Verheyen, Kris}, title = {Latitudinal variation in seeds characteristics of Acer platanoides and A. pseudoplatanus}, series = {Plant ecology : an international journal}, volume = {215}, journal = {Plant ecology : an international journal}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-014-0343-x}, pages = {911 -- 925}, year = {2014}, abstract = {Climate change will likely affect population dynamics of numerous plant species by modifying several aspects of the life cycle. Because plant regeneration from seeds may be particularly vulnerable, here we assess the possible effects of climate change on seed characteristics and present an integrated analysis of seven seed traits (nutrient concentrations, samara mass, seed mass, wing length, seed viability, germination percentage, and seedling biomass) of Acer platanoides and A. pseudoplatanus seeds collected along a wide latitudinal gradient from Italy to Norway. Seed traits were analyzed in relation to the environmental conditions experienced by the mother trees along the latitudinal gradient. We found that seed traits of A. platanoides were more influenced by the climatic conditions than those of A. pseudoplatanus. Additionally, seed viability, germination percentage, and seedling biomass of A. platanoides were strongly related to the seed mass and nutrient concentration. While A. platanoides seeds were more influenced by the environmental conditions (generally negatively affected by rising temperatures), compared to A. pseudoplatanus, A. platanoides still showed higher germination percentage and seedling biomass than A. pseudoplatanus. Thus, further research on subsequent life-history stages of both species is needed. The variation in seed quality observed along the climatic gradient highlights the importance of studying the possible impact of climate change on seed production and species demography.}, language = {en} } @article{CaronDeFrenneBrunetetal.2015, author = {Caron, Maria Mercedes and De Frenne, Pieter and Brunet, J. and Chabrerie, Olivier and Cousins, S. A. O. and De Backer, L. and Decocq, G. and Diekmann, M. and Heinken, Thilo and Kolb, A. and Naaf, T. and Plue, J. and Selvi, Federico and Strimbeck, G. R. and Wulf, Monika and Verheyen, Kris}, title = {Interacting effects of warming and drought on regeneration and early growth of Acer pseudoplatanus and A. platanoides}, series = {Plant biology}, volume = {17}, journal = {Plant biology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1435-8603}, doi = {10.1111/plb.12177}, pages = {52 -- 62}, year = {2015}, abstract = {Climate change is acting on several aspects of plant life cycles, including the sexual reproductive stage, which is considered amongst the most sensitive life-cycle phases. In temperate forests, it is expected that climate change will lead to a compositional change in community structure due to changes in the dominance of currently more abundant forest tree species. Increasing our understanding of the effects of climate change on currently secondary tree species recruitment is therefore important to better understand and forecast population and community dynamics in forests. Here, we analyse the interactive effects of rising temperatures and soil moisture reduction on germination, seedling survival and early growth of two important secondary European tree species, Acer pseudoplatanus and A.platanoides. Additionally, we analyse the effect of the temperature experienced by the mother tree during seed production by collecting seeds of both species along a 2200-km long latitudinal gradient. For most of the responses, A.platanoides showed higher sensitivity to the treatments applied, and especially to its joint manipulation, which for some variables resulted in additive effects while for others only partial compensation. In both species, germination and survival decreased with rising temperatures and/or soil moisture reduction while early growth decreased with declining soil moisture content. We conclude that although A.platanoides germination and survival were more affected after the applied treatments, its initial higher germination and larger seedlings might allow this species to be relatively more successful than A.pseudoplatanus in the face of climate change.}, language = {en} }