@misc{CabralValenteHartig2017, author = {Cabral, Juliano Sarmento and Valente, Luis and Hartig, Florian}, title = {Mechanistic simulation models in macroecology and biogeography}, series = {Ecography : pattern and diversity in ecology}, volume = {40}, journal = {Ecography : pattern and diversity in ecology}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/ecog.02480}, pages = {267 -- 280}, year = {2017}, abstract = {Macroecology and biogeography are concerned with understanding biodiversity patterns across space and time. In the past, the two disciplines have addressed this question mainly with correlative approaches, despite frequent calls for more mechanistic explanations. Recent advances in computational power, theoretical understanding, and statistical tools are, however, currently facilitating the development of more system-oriented, mechanistic models. We review these models, identify different model types and theoretical frameworks, compare their processes and properties, and summarize emergent findings. We show that ecological (physiology, demographics, dispersal, biotic interactions) and evolutionary processes, as well as environmental and human-induced drivers, are increasingly modelled mechanistically; and that new insights into biodiversity dynamics emerge from these models. Yet, substantial challenges still lie ahead for this young research field. Among these, we identify scaling, calibration, validation, and balancing complexity as pressing issues. Moreover, particular process combinations are still understudied, and so far models tend to be developed for specific applications. Future work should aim at developing more flexible and modular models that not only allow different ecological theories to be expressed and contrasted, but which are also built for tight integration with all macroecological data sources. Moving the field towards such a 'systems macroecology' will test and improve our understanding of the causal pathways through which eco-evolutionary processes create diversity patterns across spatial and temporal scales.}, language = {en} } @misc{BorregaardAmorimBorgesetal.2017, author = {Borregaard, Michael K. and Amorim, Isabel R. and Borges, Paulo A. V. and Cabral, Juliano Sarmento and Fernandez-Palacios, Jose M. and Field, Richard and Heaney, Lawrence R. and Kreft, Holger and Matthews, Thomas J. and Olesen, Jens M. and Price, Jonathan and Rigal, Francois and Steinbauer, Manuel J. and Triantis, Konstantinos A. and Valente, Luis and Weigelt, Patrick and Whittaker, Robert J.}, title = {Oceanic island biogeography through the lens of the general dynamic model: assessment and prospect}, series = {Biological reviews}, volume = {92}, journal = {Biological reviews}, publisher = {Wiley}, address = {Hoboken}, issn = {1464-7931}, doi = {10.1111/brv.12256}, pages = {830 -- 853}, year = {2017}, language = {en} } @article{RadchukDeLaenderCabraletal.2019, author = {Radchuk, Viktoriia and De Laender, Frederik and Cabral, Juliano Sarmento and Boulangeat, Isabelle and Crawford, Michael Scott and Bohn, Friedrich and De Raedt, Jonathan and Scherer, Cedric and Svenning, Jens-Christian and Thonicke, Kirsten and Schurr, Frank M. and Grimm, Volker and Kramer-Schadt, Stephanie}, title = {The dimensionality of stability depends on disturbance type}, series = {Ecology letters}, volume = {22}, journal = {Ecology letters}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.13226}, pages = {674 -- 684}, year = {2019}, abstract = {Ecosystems respond in various ways to disturbances. Quantifying ecological stability therefore requires inspecting multiple stability properties, such as resistance, recovery, persistence and invariability. Correlations among these properties can reduce the dimensionality of stability, simplifying the study of environmental effects on ecosystems. A key question is how the kind of disturbance affects these correlations. We here investigated the effect of three disturbance types (random, species-specific, local) applied at four intensity levels, on the dimensionality of stability at the population and community level. We used previously parameterized models that represent five natural communities, varying in species richness and the number of trophic levels. We found that disturbance type but not intensity affected the dimensionality of stability and only at the population level. The dimensionality of stability also varied greatly among species and communities. Therefore, studying stability cannot be simplified to using a single metric and multi-dimensional assessments are still to be recommended.}, language = {en} } @misc{KalinkatCabralDarwalletal.2017, author = {Kalinkat, Gregor and Cabral, Juliano Sarmento and Darwall, William and Ficetola, G. Francesco and Fisher, Judith L. and Giling, Darren P. and Gosselin, Marie-Pierre and Grossart, Hans-Peter and Jaehnig, Sonja C. and Jeschke, Jonathan M. and Knopf, Klaus and Larsen, Stefano and Onandia, Gabriela and Paetzig, Marlene and Saul, Wolf-Christian and Singer, Gabriel and Sperfeld, Erik and Jaric, Ivan}, title = {Flagship umbrella species needed for the conservation of overlooked aquatic biodiversity}, series = {Conservation biology : the journal of the Society for Conservation Biology}, volume = {31}, journal = {Conservation biology : the journal of the Society for Conservation Biology}, publisher = {Wiley}, address = {Hoboken}, issn = {0888-8892}, doi = {10.1111/cobi.12813}, pages = {481 -- 485}, year = {2017}, language = {en} }