@article{LoveChouHuangetal.2016, author = {Love, John A. and Chou, Shu-Hua and Huang, Ye and Bazan, Guillermo C. and Thuc-Quyen Nguyen,}, title = {Effects of solvent additive on "s-shaped" curves in solution-processed small molecule solar cells}, series = {Beilstein journal of organic chemistry}, volume = {12}, journal = {Beilstein journal of organic chemistry}, publisher = {Beilstein-Institut zur F{\~A}\Prderung der Chemischen Wissenschaften}, address = {Frankfurt, Main}, issn = {1860-5397}, doi = {10.3762/bjoc.12.249}, pages = {2543 -- 2555}, year = {2016}, abstract = {A novel molecular chromophore, p-SIDT(FBTThCA8)(2), is introduced as an electron-donor material for bulk heterojunction (BHJ) solar cells with broad absorption and near ideal energy levels for the use in combination with common acceptor materials. It is found that films cast from chlorobenzene yield devices with strongly s-shaped current-voltage curves, drastically limiting performance. We find that addition of the common solvent additive diiodooctane, in addition to facilitating crystallization, leads to improved vertical phase separation. This yields much better performing devices, with improved curve shape, demonstrating the importance of morphology control in BHJ devices and improving the understanding of the role of solvent additives.}, language = {en} } @article{NikolisBenduhnHolzmuelleretal.2017, author = {Nikolis, Vasileios C. and Benduhn, Johannes and Holzmueller, Felix and Piersimoni, Fortunato and Lau, Matthias and Zeika, Olaf and Neher, Dieter and Koerner, Christian and Spoltore, Donato and Vandewal, Koen}, title = {Reducing Voltage Losses in Cascade Organic Solar Cells while Maintaining High External Quantum Efficiencies}, series = {dvanced energy materials}, volume = {7}, journal = {dvanced energy materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201700855}, pages = {122 -- 136}, year = {2017}, abstract = {High photon energy losses limit the open-circuit voltage (V-OC) and power conversion efficiency of organic solar cells (OSCs). In this work, an optimization route is presented which increases the V-OC by reducing the interfacial area between donor (D) and acceptor (A). This optimization route concerns a cascade device architecture in which the introduction of discontinuous interlayers between alpha-sexithiophene (alpha-6T) (D) and chloroboron subnaphthalocyanine (SubNc) (A) increases the V-OC of an alpha-6T/SubNc/SubPc fullerene-free cascade OSC from 0.98 V to 1.16 V. This increase of 0.18 V is attributed solely to the suppression of nonradiative recombination at the D-A interface. By accurately measuring the optical gap (E-opt) and the energy of the charge-transfer state (E-CT) of the studied OSC, a detailed analysis of the overall voltage losses is performed. E-opt - qV(OC) losses of 0.58 eV, which are among the lowest observed for OSCs, are obtained. Most importantly, for the V-OC-optimized devices, the low-energy (700 nm) external quantum efficiency (EQE) peak remains high at 79\%, despite a minimal driving force for charge separation of less than 10 meV. This work shows that low-voltage losses can be combined with a high EQE in organic photovoltaic devices.}, language = {en} } @article{RanLoveHeiberetal.2018, author = {Ran, Niva A. and Love, John A. and Heiber, Michael C. and Jiao, Xuechen and Hughes, Michael P. and Karki, Akchheta and Wang, Ming and Brus, Viktor V. and Wang, Hengbin and Neher, Dieter and Ade, Harald and Bazan, Guillermo C. and Thuc-Quyen Nguyen,}, title = {Charge generation and recombination in an organic solar cell with low energetic offsets}, series = {dvanced energy materials}, volume = {8}, journal = {dvanced energy materials}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201701073}, pages = {12}, year = {2018}, abstract = {Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short-circuit currents (J(SC)) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open-circuit voltages (V-OC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl-C61-butyric acid methyl ester (PC61BM), that achieves a high V-OC (0.9 V) with very low energy losses (E-loss = 0.52 eV) from the energy of absorbed photons, a respectable J(SC) (13 mA cm(-2)), but a limited FF (54\%) is reported. Despite the low energetic offset, the system does not suffer from field-dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge-carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the J(SC), V-OC, and FF can all be improved, even with very low energetic offsets.}, language = {en} }