@article{AlterMeyerPostetal.2015, author = {Alter, S. Elizabeth and Meyer, Matthias and Post, Klaas and Czechowski, Paul and Gravlund, Peter and Gaines, Cork and Rosenbaum, Howard C. and Kaschner, Kristin and Turvey, Samuel T. and van der Plicht, Johannes and Shapiro, Beth and Hofreiter, Michael}, title = {Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100}, series = {Molecular ecology}, volume = {24}, journal = {Molecular ecology}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.13121}, pages = {1510 -- 1522}, year = {2015}, abstract = {Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range.}, language = {en} } @misc{WarrenSimberloffRicklefsetal.2015, author = {Warren, Ben H. and Simberloff, Daniel and Ricklefs, Robert E. and Aguilee, Robin and Condamine, Fabien L. and Gravel, Dominique and Morlon, Helene and Mouquet, Nicolas and Rosindell, James and Casquet, Juliane and Conti, Elena and Cornuault, Josselin and Maria Fernandez-Palacios, Jose and Hengl, Tomislav and Norder, Sietze J. and Rijsdijk, Kenneth F. and Sanmartin, Isabel and Strasberg, Dominique and Triantis, Kostas A. and Valente, Luis M. and Whittaker, Robert J. and Gillespie, Rosemary G. and Emerson, Brent C. and Thebaud, Christophe}, title = {Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson}, series = {Ecology letters}, volume = {18}, journal = {Ecology letters}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.12398}, pages = {200 -- 217}, year = {2015}, abstract = {The study of islands as model systems has played an important role in the development of evolutionary and ecological theory. The 50th anniversary of MacArthur and Wilson's (December 1963) article, An equilibrium theory of insular zoogeography', was a recent milestone for this theme. Since 1963, island systems have provided new insights into the formation of ecological communities. Here, building on such developments, we highlight prospects for research on islands to improve our understanding of the ecology and evolution of communities in general. Throughout, we emphasise how attributes of islands combine to provide unusual research opportunities, the implications of which stretch far beyond islands. Molecular tools and increasing data acquisition now permit re-assessment of some fundamental issues that interested MacArthur and Wilson. These include the formation of ecological networks, species abundance distributions, and the contribution of evolution to community assembly. We also extend our prospects to other fields of ecology and evolution - understanding ecosystem functioning, speciation and diversification - frequently employing assets of oceanic islands in inferring the geographic area within which evolution has occurred, and potential barriers to gene flow. Although island-based theory is continually being enriched, incorporating non-equilibrium dynamics is identified as a major challenge for the future.}, language = {en} } @article{MakowerSchuurmansGrothetal.2015, author = {Makower, A. Katharina and Schuurmans, J. Merijn and Groth, Detlef and Zilliges, Yvonne and Matthijs, Hans C. P. and Dittmann-Th{\"u}nemann, Elke}, title = {Transcriptomics-Aided dissection of the intracellular and extracellular roles of microcystin in microcystis aeruginosa PCC 7806}, series = {Applied and environmental microbiology}, volume = {81}, journal = {Applied and environmental microbiology}, number = {2}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0099-2240}, doi = {10.1128/AEM.02601-14}, pages = {544 -- 554}, year = {2015}, abstract = {Recent studies have provided evidence for both intracellular and extracellular roles of the potent hepatotoxin microcystin (MC) in the bloom-forming cyanobacterium Microcystis. Here, we surveyed transcriptomes of the wild-type strain M. aeruginosa PCC 7806 and the microcystin-deficient Delta mcyB mutant under low light conditions with and without the addition of external MC of the LR variant (MC-LR). Transcriptomic data acquired by microarray and quantitative PCR revealed substantial differences in the relative expression of genes of the central intermediary metabolism, photosynthesis, and energy metabolism. In particular, the data provide evidence for a lower photosystem I (PSI)-to-photosystem II (PSII) ratio and a more pronounced carbon limitation in the microcystin-deficient mutant. Interestingly, only 6\% of the transcriptional differences could be complemented by external microcystin-LR addition. This MC signaling effect was seen exclusively for genes of the secondary metabolism category. The orphan polyketide synthase gene cluster IPF38-51 was specifically downregulated in response to external MC-LR under low light. Our data suggest a hierarchical and light-dependent cross talk of secondary metabolites and support both an intracellular and an extracellular role of MC in Microcystis.}, language = {en} } @article{SchopperMuhlenbockSorenssonetal.2015, author = {Schopper, S. and Muhlenbock, P. and Sorensson, C. and Hellborg, L. and Lenman, M. and Widell, S. and Fettke, J{\"o}rg and Andreasson, Erik}, title = {Arabidopsis cytosolic alpha-glycan phosphorylase, PHS2, is important during carbohydrate imbalanced conditions}, series = {Plant biology}, volume = {17}, journal = {Plant biology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1435-8603}, doi = {10.1111/plb.12190}, pages = {74 -- 80}, year = {2015}, abstract = {Arabidopsis thaliana has two isoforms of alpha-glycan phosphorylase (EC 2.4.1.1), one residing in the plastid and the other in the cytosol. The cytosolic phosphorylase, PHS2, acts on soluble heteroglycans that constitute a part of the carbohydrate pool in a plant. This study aimed to define a physiological role for PHS2. Under standard growth conditions phs2 knock-out mutants do not show any clear growth phenotype, and we hypothesised that during low-light conditions where carbohydrate imbalance is perturbed, this enzyme is important. Soil-grown phs2 mutant plants developed leaf lesions when placed in very low light. Analysis of soluble heteroglycan (SHG) levels showed that the amount of glucose residues in SHG was higher in the phs2 mutant compared to wild-type plants. Furthermore, a standard senescence assay from soil-grown phs2 mutant plants showed that leaves senesced significantly faster in darkness than the wild-type leaves. We also found decreased hypocotyl extension in in vitro-grown phs2 mutant seedlings when grown for long time in darkness at 6 degrees C. We conclude that PHS2 activity is important in the adult stage during low-light conditions and senescence, as well as during prolonged seedling development when carbohydrate levels are unbalanced.}, language = {en} } @article{HeinzeBergmannRilligetal.2015, author = {Heinze, Johannes and Bergmann, Joana and Rillig, Matthias C. and Joshi, Jasmin Radha}, title = {Negative biotic soil-effects enhance biodiversity by restricting potentially dominant plant species in grasslands}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {17}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {3}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2015.03.002}, pages = {227 -- 235}, year = {2015}, abstract = {Interactions between soil microorganisms and plants can play a vital role for plant fitness and therefore also for plant community composition and biodiversity. However, little is known about how biotic plant soil interactions influence the local dominance and abundance of plant species and whether specific taxonomic or functional groups of plants are differentially affected by such biotic soil-effects. In two greenhouse experiments, we tested the biotic soil-effects of 33 grassland species differing in individual size and local abundance. We hypothesized that large plants that are not locally dominant (despite their size-related competitive advantage enabling them to potentially outshade competitors) are most strongly limited by negative biotic soil-effects. We sampled soils at the opposite ends of a gradient in land-use intensity in temperate grasslands to account for putative modulating effects of land-use intensity on biotic soil-effects. As hypothesized, large, but non-dominant species (especially grasses) experienced more negative biotic soil-effects compared with small and abundant plant species. Land-use intensity had contrasting effects on grasses and herbs resulting in more negative biotic soil-effects for grasses in less intensively managed grasslands. We conclude that biotic soil-effects contribute to the control of potentially dominant plants and hence enable species coexistence and biodiversity especially in species-rich less intensively managed grasslands.}, language = {en} } @article{GuhaWarsinkeTientcheuetal.2015, author = {Guha, S. and Warsinke, Axel and Tientcheu, Charles Merlin and Schmalz, K. and Meliani, C. and Wenger, Ch.}, title = {Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor}, series = {The analyst : the analytical journal of the Royal Society of Chemistry}, volume = {140}, journal = {The analyst : the analytical journal of the Royal Society of Chemistry}, number = {9}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0003-2654}, doi = {10.1039/c4an02194k}, pages = {3019 -- 3027}, year = {2015}, abstract = {In this work we present a CMOS high frequency direct immunosensor operating at 6 GHz (C-band) for label free determination of creatinine. The sensor is fabricated in standard 0.13 mu m SiGe:C BiCMOS process. The report also demonstrates the ability to immobilize creatinine molecules on a Si3N4 passivation layer of the standard BiCMOS/CMOS process, therefore, evading any further need of cumbersome post processing of the fabricated sensor chip. The sensor is based on capacitive detection of the amount of non-creatinine bound antibodies binding to an immobilized creatinine layer on the passivated sensor. The chip bound antibody amount in turn corresponds indirectly to the creatinine concentration used in the incubation phase. The determination of creatinine in the concentration range of 0.88-880 mu M is successfully demonstrated in this work. A sensitivity of 35 MHz/10 fold increase in creatinine concentration (during incubation) at the centre frequency of 6 GHz is gained by the immunosensor. The results are compared with a standard optical measurement technique and the dynamic range and sensitivity is of the order of the established optical indication technique. The C-band immunosensor chip comprising an area of 0.3 mm(2) reduces the sensing area considerably, therefore, requiring a sample volume as low as 2 mu l. The small analyte sample volume and label free approach also reduce the experimental costs in addition to the low fabrication costs offered by the batch fabrication technique of CMOS/BiCMOS process.}, language = {en} } @article{ThieleGrimm2015, author = {Thiele, Jan C. and Grimm, Volker}, title = {Replicating and breaking models: good for you and good for ecology}, series = {Oikos}, volume = {124}, journal = {Oikos}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.02170}, pages = {691 -- 696}, year = {2015}, abstract = {There are two major limitations to the potential of computational models in ecology for producing general insights: their design is path-dependent, reflecting different underlying questions, assumptions, and data, and there is too little robustness analysis exploring where the model mechanisms explaining certain observations break down. We here argue that both limitations could be overcome if modellers in ecology would more often replicate existing models, try to break the models, and explore modifications. Replication comprises the re-implementation of an existing model and the replication of its results. Breaking models means to identify under what conditions the mechanisms represented in a model can no longer explain observed phenomena. The benefits of replication include less effort being spent to enter the iterative stage of model development and having more time for systematic robustness analysis. A culture of replication would lead to increased credibility, coherence and efficiency of computational modelling and thereby facilitate theory development.}, language = {en} } @article{ManningGossnerBossdorfetal.2015, author = {Manning, Pete and Gossner, Martin M. and Bossdorf, Oliver and Allan, Eric and Zhang, Yuan-Ye and Prati, Daniel and Bl{\"u}thgen, Nico and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Klein, Alexandra-Maria and Kleinebecker, Till and Krauss, Jochen and Lange, Markus and M{\"u}ller, J{\"o}rg and Pasalic, Esther and Socher, Stephanie A. and Tschapka, Marco and T{\"u}rke, Manfred and Weiner, Christiane and Werner, Michael and Gockel, Sonja and Hemp, Andreas and Renner, Swen C. and Wells, Konstans and Buscot, Francois and Kalko, Elisabeth K. V. and Linsenmair, Karl Eduard and Weisser, Wolfgang W. and Fischer, Markus}, title = {Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa}, series = {Ecology : a publication of the Ecological Society of America}, volume = {96}, journal = {Ecology : a publication of the Ecological Society of America}, number = {6}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, doi = {10.1890/14-1307.1}, pages = {1492 -- 1501}, year = {2015}, abstract = {Land-use intensification is a key driver of biodiversity change. However, little is known about how it alters relationships between the diversities of different taxonomic groups, which are often correlated due to shared environmental drivers and trophic interactions. Using data from 150 grassland sites, we examined how land-use intensification (increased fertilization, higher livestock densities, and increased mowing frequency) altered correlations between the species richness of 15 plant, invertebrate, and vertebrate taxa. We found that 54\% of pairwise correlations between taxonomic groups were significant and positive among all grasslands, while only one was negative. Higher land-use intensity substantially weakened these correlations(35\% decrease in rand 43\% fewer significant pairwise correlations at high intensity), a pattern which may emerge as a result of biodiversity declines and the breakdown of specialized relationships in these conditions. Nevertheless, some groups (Coleoptera, Heteroptera, Hymenoptera and Orthoptera) were consistently correlated with multidiversity, an aggregate measure of total biodiversity comprised of the standardized diversities of multiple taxa, at both high and lowland-use intensity. The form of intensification was also important; increased fertilization and mowing frequency typically weakened plant-plant and plant-primary consumer correlations, whereas grazing intensification did not. This may reflect decreased habitat heterogeneity under mowing and fertilization and increased habitat heterogeneity under grazing. While these results urge caution in using certain taxonomic groups to monitor impacts of agricultural management on biodiversity, they also suggest that the diversities of some groups are reasonably robust indicators of total biodiversity across a range of conditions.}, language = {en} }