@misc{PapeWessigBrunner2015, author = {Pape, Simon and Wessig, Pablo and Brunner, Heiko}, title = {A new and environmentally benign synthesis of aroylguanidines using iron trichloride}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102720}, pages = {101408 -- 101411}, year = {2015}, abstract = {A new synthetic approach for the guanylation of aroylthioureas using iron trichloride is presented. Our synthetic method distinguishes itself by benign reaction conditions, low costs and a broad product spectrum. The scope of the reaction and calorimetric studies are described.}, language = {en} } @article{PapeWessigBrunner2015, author = {Pape, Simon and Wessig, Pablo and Brunner, Heiko}, title = {A new and environmentally benign synthesis of aroylguanidines using iron trichloride}, series = {RSC Advances}, volume = {5}, journal = {RSC Advances}, number = {123}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c5ra20869f}, pages = {101408 -- 101411}, year = {2015}, abstract = {A new synthetic approach for the guanylation of aroylthioureas using iron trichloride is presented. Our synthetic method distinguishes itself by benign reaction conditions, low costs and a broad product spectrum. The scope of the reaction and calorimetric studies are described.}, language = {en} } @article{PapeWessigBrunner2016, author = {Pape, Simon and Wessig, Pablo and Brunner, Heiko}, title = {Iron Trichloride and Air Mediated Guanylation of Acylthioureas. An Ecological Route to Acylguanidines: Scope and Mechanistic Insights}, series = {The journal of organic chemistry}, volume = {81}, journal = {The journal of organic chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.6b00600}, pages = {4701 -- 4712}, year = {2016}, abstract = {Recently we introduced iron trichloride as an environmentally benign and cost-efficient reagent for the synthesis of N-benzoylguanidines. This highly attractive synthetic approach grants access to a broad spectrum of N-benzoylguanidines under mild conditions in short reaction times. In this work we present an extended scope of Our methodology along with the results obtained from mechanistic studies via in situ IR spectroscopy in combination with LC (liquid chromatography)-MS analyses. On the basis of these new mechanistic insights we were able to optimize the synthetic protocol and to develop an alternative mechanistic proposal. In this context the symbiotic roles of iron trithloride and oxygen in the guanylation process are highlighted.}, language = {en} } @article{SchmidtWolfBrunner2016, author = {Schmidt, Bernd and Wolf, Felix and Brunner, Heiko}, title = {Styrylsulfonates and -Sulfonamides through Pd-Catalysed Matsuda-Heck Reactions of Vinylsulfonic Acid Derivatives and Arenediazonium Salts}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201600469}, pages = {2972 -- 2982}, year = {2016}, abstract = {Arene diazonium salts undergo Matsuda-Heck reactions with vinylsulfonates and -sulfonamides to give styrylsulfonic acid derivatives in high to excellent yields and with high to excellent selectivities. By quantifying the evolution of nitrogen over time in a gas-meter apparatus, the reactivities of ethylvinylsulfonate and the benchmark olefin methyl acrylate were compared for an electron-rich and an -deficient arene diazonium salt. Tertiary sulfonamides react in Matsuda-Heck couplings with high conversions, but require long reaction times, which prevents the determination of kinetic data through the measurement of nitrogen evolution. Secondary sulfonamides were found to be unreactive. From these results, the following order of reactivity could be deduced: H2C=CHCO2Me > H2C=CHSO2OEt > H2C=CHSO2N(Me)Bn >> H2C=CHSO2NHBn. Through the Matsuda-Heck coupling of 5-indolyldiazonium salt and a tertiary vinylsulfonamide, the synthesis of the C-5-substituted indole part of the antimigraine drug naratriptan was accomplished in high yield.}, language = {en} }