@article{BrechunArndtWoolley2018, author = {Brechun, Katherine Emily and Arndt, Katja Maren and Woolley, G. Andrew}, title = {Selection of protein-protein interactions of desired affinities with a bandpass circuit}, series = {Journal of molecular biology : JMB}, volume = {431}, journal = {Journal of molecular biology : JMB}, number = {2}, publisher = {Elsevier}, address = {London}, issn = {0022-2836}, doi = {10.1016/j.jmb.2018.11.011}, pages = {391 -- 400}, year = {2018}, abstract = {We have developed a genetic circuit in Escherichia coli that can be used to select for protein-protein interactions of different strengths by changing antibiotic concentrations in the media. The genetic circuit links protein-protein interaction strength to beta-lactamase activity while simultaneously imposing tuneable positive and negative selection pressure for beta-lactamase activity. Cells only survive if they express interacting proteins with affinities that fall within set high- and low-pass thresholds; i.e. the circuit therefore acts as a bandpass filter for protein-protein interactions. We show that the circuit can be used to recover protein-protein interactions of desired affinity from a mixed population with a range of affinities. The circuit can also be used to select for inhibitors of protein-protein interactions of defined strength. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BrechunArndtWoolley2017, author = {Brechun, Katherine E. and Arndt, Katja Maren and Woolley, G. Andrew}, title = {Strategies for the photo-control of endogenous protein activity}, series = {Current opinion in structural biology : review of all advances ; evaluation of key references ; comprehensive listing of papers}, volume = {45}, journal = {Current opinion in structural biology : review of all advances ; evaluation of key references ; comprehensive listing of papers}, publisher = {Elsevier}, address = {London}, issn = {0959-440X}, doi = {10.1016/j.sbi.2016.11.014}, pages = {53 -- 58}, year = {2017}, language = {en} } @article{BrechunZhenJaikaranetal.2019, author = {Brechun, Katherine E. and Zhen, Danlin and Jaikaran, Anna and Borisenko, Vitali and Kumauchi, Masato and Hoff, Wouter D. and Arndt, Katja Maren and Woolley, Andrew G}, title = {Detection of Incorporation of p-Coumaric Acid into Photoactive Yellow Protein Variants in Vivo}, series = {Biochemistry}, volume = {58}, journal = {Biochemistry}, number = {23}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.9b00279}, pages = {2682 -- 2694}, year = {2019}, abstract = {We report the design and characterization of photoactive yellow protein (PYP)-blue fluorescent protein (mTagBFP) fusion constructs that permit the direct assay of reconstitution and function of the PYP domain. These constructs allow for in vivo testing of co-expression systems for enzymatic production of the p-coumaric acid-based PYP chromophore, via the action of tyrosine ammonia lyase and p-coumaroyl-CoA ligase (pCL or 4CL). We find that different 4CL enzymes can function to reconstitute PYP, including 4CL from Arabidopsis thaliana that can produce similar to 100\% holo-PYP protein under optimal conditions. mTagBFP fusion constructs additionally enable rapid analysis of effects of mutations on PYP photocycles. We use this mTagBFP fusion strategy to demonstrate in vivo reconstitution of several PYP-based optogenetic tools in Escherichia coli via a biosynthesized chromophore, an important step for the use of these optogenetic tools in vivo in diverse hosts.}, language = {en} } @article{MazumderBrechunKimetal.2015, author = {Mazumder, Mostafizur and Brechun, Katherine E. and Kim, Yongjoo B. and Hoffmann, Stefan A. and Chen, Yih Yang and Keiski, Carrie-Lynn and Arndt, Katja Maren and McMillen, David R. and Woolley, G. Andrew}, title = {An Escherichia coli system for evolving improved light-controlled DNA-binding proteins}, series = {Protein engineering design \& selection}, volume = {28}, journal = {Protein engineering design \& selection}, number = {9}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1741-0126}, doi = {10.1093/protein/gzv033}, pages = {293 -- 302}, year = {2015}, abstract = {Light-switchable proteins offer numerous opportunities as tools for manipulating biological systems with exceptional degrees of spatiotemporal control. Most designed light-switchable proteins currently in use have not been optimised using the randomisation and selection/screening approaches that are widely used in other areas of protein engineering. Here we report an approach for screening light-switchable DNA-binding proteins that relies on light-dependent repression of the transcription of a fluorescent reporter. We demonstrate that the method can be used to recover a known light-switchable DNA-binding protein from a random library.}, language = {en} }