@article{BouaklineLuederMartinazzoetal.2012, author = {Bouakline, Foudhil and L{\"u}der, Franziska and Martinazzo, Rocco and Saalfrank, Peter}, title = {Reduced and exact quantum dynamics of the vibrational relaxation of a molecular system interacting with a finite-dimensional bath}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {116}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/jp304466u}, pages = {11118 -- 11127}, year = {2012}, abstract = {We investigate the vibrational relaxation of a Morse oscillator, nonlinearly coupled to a finite-dimensional bath of harmonic oscillators at zero temperature, using two different approaches: Reduced dynamics with the help of the Lindblad formalism of reduced density matrix theory in combination with Fermi's Golden Rule, and exact dynamics (within the chosen model). with the multiconfiguration time-dependent Hartree (MCTDH) method. Two different models have been constructed, the situation where the bath spectrum is exactly resonant with the anharmonic oscillator transition frequencies, and the case for which the subsystem is slightly off-resonant with the environment. At short times, reduced dynamics calculations describe the relaxation process qualitatively well but fail to reproduce recurrences observed with MCTDH for longer times. Lifetimes of all the vibrational levels of the Morse oscillator have been calculated, and both Lindblad and MCTDH. results show the same dependence of the lifetimes on the initial vibrational state quantum number. A prediction, which should be generic for adsorbate systems is a striking, sharp increase of lifetimes of the subsystem vibrational levels close to the dissociation This is contradictory with harmonic/linear extrapolation laws, which predict a monotonic decrease of the lifetime with initial vibrational quantum number.}, language = {en} } @article{JankunasZareBouaklineetal.2012, author = {Jankunas, Justin and Zare, Richard N. and Bouakline, Foudhil and Althorpe, Stuart C. and Herraez-Aguilar, Diego and Aoiz, F. Javier}, title = {Seemingly anomalous angular distributions in H+D-2 reactive scattering}, series = {Science}, volume = {336}, journal = {Science}, number = {6089}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1221329}, pages = {1687 -- 1690}, year = {2012}, abstract = {When a hydrogen (H) atom approaches a deuterium (D-2) molecule, the minimum-energy path is for the three nuclei to line up. Consequently, nearly collinear collisions cause HD reaction products to be backscattered with low rotational excitation, whereas more glancing collisions yield sideways-scattered HD products with higher rotational excitation. Here we report that measured cross sections for the H + D-2 -> HD(v' = 4, j') + D reaction at a collision energy of 1.97 electron volts contradict this behavior. The anomalous angular distributions match closely fully quantum mechanical calculations, and for the most part quasiclassical trajectory calculations. As the energy available in product recoil is reduced, a rotational barrier to reaction cuts off contributions from glancing collisions, causing high-j' HD products to become backward scattered.}, language = {en} }