@incollection{Bookhagen2017, author = {Bookhagen, Bodo}, title = {The influence of hydrology and glaciology on wetlands in the Himalayas}, series = {Bird migration across the Himalayas : wetland functioning amidst mountains and glaciers}, booktitle = {Bird migration across the Himalayas : wetland functioning amidst mountains and glaciers}, editor = {Prins, Herbert H.T. and Namgail, Tsewang}, publisher = {Cambridge University Press}, address = {Cambridge}, isbn = {978-1-107-11471-5}, doi = {10.1017/9781316335420}, pages = {175 -- 188}, year = {2017}, abstract = {Birds migrating across the Himalayan region fly over the highest peaks in the world, facing immense physiological and climatic challenges. The authors show the different strategies used by birds to cope with these challenges. Many wetland avian species are seen in the high-altitude lakes of the Himalayas and the adjoining Tibetan Plateau, such as Bar-Headed Geese. Ringing programmes have generated information about origins and destinations, and this book is the first to present information on the bird's exact migratory paths. Capitalising on knowledge generated through satellite telemetry, the authors describe the migratory routes of a multitude of birds flying over or skirting the Himalayas. The myriad of threats to migratory birds and the wetland system in the Central Asian Flyway are discussed, with ways to mitigate them. This volume will inform and persuade policy-makers and conservation practitioners to take appropriate measures for the long-term survival of this unique migration}, language = {en} } @article{BrellSeglGuanteretal.2017, author = {Brell, Maximilian and Segl, Karl and Guanter, Luis and Bookhagen, Bodo}, title = {Hyperspectral and Lidar Intensity Data Fusion: A Framework for the Rigorous Correction of Illumination, Anisotropic Effects, and Cross Calibration}, series = {IEEE transactions on geoscience and remote sensing}, volume = {55}, journal = {IEEE transactions on geoscience and remote sensing}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {0196-2892}, doi = {10.1109/TGRS.2017.2654516}, pages = {2799 -- 2810}, year = {2017}, abstract = {The fusion of hyperspectral imaging (HSI) sensor and airborne lidar scanner (ALS) data provides promising potential for applications in environmental sciences. Standard fusion approaches use reflectance information from the HSI and distance measurements from the ALS to increase data dimen-sionality and geometric accuracy. However, the potential for data fusion based on the respective intensity information of the complementary active and passive sensor systems is high and not yet fully exploited. Here, an approach for the rigorous illumination correction of HSI data, based on the radiometric cross-calibrated return intensity information of ALS data, is presented. The cross calibration utilizes a ray tracing-based fusion of both sensor measurements by intersecting their particular beam shapes. The developed method is capable of compensating for the drawbacks of passive HSI systems, such as cast and cloud shadowing effects, illumination changes over time, across track illumination, and partly anisotropy effects. During processing, spatial and temporal differences in illumination patterns are detected and corrected over the entire HSI wavelength domain. The improvement in the classification accuracy of urban and vegetation surfaces demonstrates the benefit and potential of the proposed HSI illumination correction. The presented approach is the first step toward the rigorous in-flight fusion of passive and active system characteristics, enabling new capabilities for a variety of applications.}, language = {en} } @article{BufeBekaertHussainetal.2017, author = {Bufe, Aaron and Bekaert, David P. S. and Hussain, Ekbal and Bookhagen, Bodo and Burbank, Douglas W. and Jobe, Jessica Ann Thompson and Chen, Jie and Li, Tao and Liu, Langtao and Gan, Weijun}, title = {Temporal changes in rock uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2017GL073627}, pages = {10977 -- 10987}, year = {2017}, abstract = {Understanding the evolution of continental deformation zones relies on quantifying spatial and temporal changes in deformation rates of tectonic structures. Along the eastern boundary of the Pamir-Tian Shan collision zone, we constrain secular variations of rock uplift rates for a series of five Quaternary detachment- and fault-related folds from their initiation to the modern day. When combined with GPS data, decomposition of interferometric synthetic aperture radar time series constrains the spatial pattern of surface and rock uplift on the folds deforming at decadal rates of 1-5mm/yr. These data confirm the previously proposed basinward propagation of structures during the Quaternary. By fitting our geodetic rates and previously published geologic uplift rates with piecewise linear functions, we find that gradual rate changes over >100kyr can explain the interferometric synthetic aperture radar observations where changes in average uplift rates are greater than similar to 1 mm/yr among different time intervals (similar to 10(1), 10(4-5), and 10(5-6) years).}, language = {en} } @article{BufeBurbankLiuetal.2017, author = {Bufe, Aaron and Burbank, Douglas W. and Liu, Langtao and Bookhagen, Bodo and Qin, Jintang and Chen, Jie and Li, Tao and Jobe, Jessica Ann Thompson and Yang, Huili}, title = {Variations of Lateral Bedrock Erosion Rates Control Planation of Uplifting Folds in the Foreland of the Tian Shan, NW China}, series = {Journal of geophysical research : Earth surface}, volume = {122}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2016JF004099}, pages = {2431 -- 2467}, year = {2017}, abstract = {Fluvial planation surfaces, such as straths, commonly serve as recorders of climatic and tectonic changes and are formed by the lateral erosion of rivers, a process that remains poorly understood. Here we present a study of kilometer-wide, fluvially eroded, low-relief surfaces on rapidly uplifting folds in the foreland of the southwestern Tian Shan. A combination of field work, digital elevation model analysis, and dating of fluvial deposits reveals that despite an arid climate and rapid average rock-uplift rates of 1-3mm/yr, rivers cut extensive (>1-2km wide) surfaces with typical height variations of <6m over periods of >2-6kyr. The extent of this beveling varies in space and time, such that different beveling episodes affect individual structures. Between times of planation, beveled surfaces are abandoned, incised, and deformed across the folds. In a challenge to models that link strath cutting and abandonment primarily to changes in river incision rates, we demonstrate that lateral erosion rates of antecedent streams crossing the folds have to vary by more than 1 order of magnitude to explain the creation of beveled platforms in the past and their incision at the present day. These variations do not appear to covary with climate variability and might be caused by relatively small (much less than an order of magnitude) changes in sediment or water fluxes. It remains uncertain in which settings variations in lateral bedrock erosion rates predominate over changes in vertical erosion rates. Therefore, when studying fluvial planation and strath terraces, variability of both lateral and vertical erosion rates should be considered.}, language = {en} } @article{CannonCarvalhoJonesetal.2017, author = {Cannon, Forest and Carvalho, Leila M. V. and Jones, Charles and Norris, Jesse and Bookhagen, Bodo and Kiladis, George N.}, title = {Effects of topographic smoothing on the simulation of winter precipitation in High Mountain Asia}, series = {Journal of Geophysical Research: Atmospheres}, volume = {122}, journal = {Journal of Geophysical Research: Atmospheres}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-897X}, doi = {10.1002/2016JD026038}, pages = {1456 -- 1474}, year = {2017}, abstract = {Numerous studies have projected future changes in High Mountain Asia water resources based on temperature and precipitation from global circulation models (GCMs) under future climate scenarios. Although the potential benefit of such studies is immense, coarse grid-scale GCMs are unable to resolve High Mountain Asia's complex topography and thus have a biased representation of regional weather and climate. This study investigates biases in the simulation of physical mechanisms that generate snowfall and contribute to snowpack in High Mountain Asia in coarse topography experiments using the Weather Research and Forecasting model. Regional snowpack is event driven, thus 33 extreme winter orographic precipitation events are simulated at fine atmospheric resolution with 6.67 km resolution topography and smoothed 1.85° × 1.25° GCM topography. As with many modified topography experiments performed in other regions, the distribution of precipitation is highly dependent on first-order orographic effects, which dominate regional meteorology. However, we demonstrate that topographic smoothing enhances circulation in simulated extratropical cyclones, with significant impacts on orographic precipitation. Despite precipitation reductions of 28\% over the highest ranges, due to reduced ascent on windward slopes, total precipitation over the study domain increased by an average of 9\% in smoothed topography experiments on account of intensified extratropical cyclone dynamics and cross-barrier moisture flux. These findings identify an important source of bias in coarse-resolution simulated precipitation in High Mountain Asia, with important implications for the application of GCMs toward projecting future hydroclimate in the region.}, language = {en} } @article{CastinoBookhagenStrecker2017, author = {Castino, Fabiana and Bookhagen, Bodo and Strecker, Manfred}, title = {Rainfall variability and trends of the past six decades (1950-2014) in the subtropical NW Argentine Andes}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {48}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-016-3127-2}, pages = {1049 -- 1067}, year = {2017}, abstract = {The eastern flanks of the Central Andes are characterized by deep convection, exposing them to hydrometeorological extreme events, often resulting in floods and a variety of mass movements. We assessed the spatiotemporal pattern of rainfall trends and the changes in the magnitude and frequency of extreme events (ae95th percentile) along an E-W traverse across the southern Central Andes using rain-gauge and high-resolution gridded datasets (CPC-uni and TRMM 3B42 V7). We generated different climate indices and made three key observations: (1) an increase of the annual rainfall has occurred at the transition between low (< 0.5 km) and intermediate (0.5-3 km) elevations between 1950 and 2014. Also, rainfall increases during the wet season and, to a lesser degree, decreases during the dry season. Increasing trends in annual total amounts characterize the period 1979-2014 in the arid, high-elevation southern Andean Plateau, whereas trend reversals with decreasing annual total amounts were found at low elevations. (2) For all analyzed periods, we observed small or no changes in the median values of the rainfall-frequency distribution, but significant trends with intensification or attenuation in the 95th percentile. (3) In the southern Andean Plateau, extreme rainfall events exhibit trends towards increasing magnitude and, to a lesser degree, frequency during the wet season, at least since 1979. Our analysis revealed that low (< 0.5 km), intermediate (0.5-3 km), and high-elevation (> 3 km) areas respond differently to changing climate conditions, and the transition zone between low and intermediate elevations is characterized by the most significant changes.}, language = {en} } @article{CastinoBookhagenStrecker2017, author = {Castino, Fabiana and Bookhagen, Bodo and Strecker, Manfred}, title = {Oscillations and trends of river discharge in the southern Central Andes and linkages with climate variability}, series = {Journal of hydrology}, volume = {555}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2017.10.001}, pages = {108 -- 124}, year = {2017}, abstract = {This study analyzes the discharge variability of small to medium drainage basins (10(2)-10(4) km(2)) in the southern Central Andes of NW Argentina. The Hilbert-Huang Transform (HHT) was applied to evaluate non-stationary oscillatory modes of variability and trends, based on four time series of monthly normalized discharge anomaly between 1940 and 2015. Statistically significant trends reveal increasing discharge during the past decades and document an intensification of the hydrological cycle during this period. An Ensemble Empirical Mode Decomposition (EEMD) analysis revealed that discharge variability in this region can be best described by five quasi-periodic statistically significant oscillatory modes, with mean periods varying from 1 to 20 y. Moreover, we show that discharge variability is most likely linked to the phases of the Pacific Decadal Oscillation (PDO) at multi-decadal timescales (similar to 20 y) and, to a lesser degree, to the Tropical South Atlantic SST anomaly (TSA) variability at shorter timescales (similar to 2-5 y). Previous studies highlighted a rapid increase in discharge in the southern Central Andes during the 1970s, inferred to have been associated with the global 1976-77 climate shift. Our results suggest that the rapid discharge increase in the NW Argentine Andes coincides with the periodic enhancement of discharge, which is mainly linked to a negative to positive transition of the PDO phase and TSA variability associated with a long-term increasing trend. We therefore suggest that variations in discharge in this region are largely driven by both natural variability and the effects of global climate change. We furthermore posit that the links between atmospheric and hydrologic processes result from a combination of forcings that operate on different spatiotemporal scales. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @misc{HussBookhagenHuggeletal.2017, author = {Huss, Matthias and Bookhagen, Bodo and Huggel, C. and Jacobsen, Dean and Bradley, Raymond S. and Clague, J. J. and Vuille, Mathias and Buytaert, Wouter and Cayan, D. R. and Greenwood, G. and Mark, B. G. and Milner, A. M. and Weingartner, Rolf and Winder, M.}, title = {Toward mountains without permanent snow and ice}, series = {Earths future}, volume = {5}, journal = {Earths future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2016EF000514}, pages = {418 -- 435}, year = {2017}, abstract = {The cryosphere in mountain regions is rapidly declining, a trend that is expected to accelerate over the next several decades due to anthropogenic climate change. A cascade of effects will result, extending from mountains to lowlands with associated impacts on human livelihood, economy, and ecosystems. With rising air temperatures and increased radiative forcing, glaciers will become smaller and, in some cases, disappear, the area of frozen ground will diminish, the ratio of snow to rainfall will decrease, and the timing and magnitude of both maximum and minimum streamflow will change. These changes will affect erosion rates, sediment, and nutrient flux, and the biogeochemistry of rivers and proglacial lakes, all of which influence water quality, aquatic habitat, and biotic communities. Changes in the length of the growing season will allow low-elevation plants and animals to expand their ranges upward. Slope failures due to thawing alpine permafrost, and outburst floods from glacier-and moraine-dammed lakes will threaten downstream populations.Societies even well beyond the mountains depend on meltwater from glaciers and snow for drinking water supplies, irrigation, mining, hydropower, agriculture, and recreation. Here, we review and, where possible, quantify the impacts of anticipated climate change on the alpine cryosphere, hydrosphere, and biosphere, and consider the implications for adaptation to a future of mountains without permanent snow and ice.}, language = {en} } @article{NeelmeijerMotaghBookhagen2017, author = {Neelmeijer, Julia and Motagh, Mandi and Bookhagen, Bodo}, title = {High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: A case study of Inylchek Glacier, Central Asia}, series = {ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing}, volume = {130}, journal = {ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-2716}, doi = {10.1016/j.isprsjprs.2017.05.011}, pages = {108 -- 121}, year = {2017}, abstract = {This study demonstrates the potential of using single-pass TanDEM-X (TDX) radar imagery to analyse inter- and intra-annual glacier changes in mountainous terrain. Based on SAR images acquired in February 2012, March 2013 and November 2013 over the Inylchek Glacier, Kyrgyzstan, we discuss in detail the processing steps required to generate three reliable digital elevation models (DEMs) with a spatial resolution of 10 m that can be used for glacial mass balance studies. We describe the interferometric processing steps and the influence of a priori elevation information that is required to model long wavelength topographic effects. We also focus on DEM alignment to allow optimal DEM comparisons and on the effects of radar signal penetration on ice and snow surface elevations. We finally compare glacier elevation changes between the three TDX DEMs and the C-band shuttle radar topography mission (SRTM) DEM from February 2000. We introduce a new approach for glacier elevation change calculations that depends on the elevation and slope of the terrain. We highlight the superior quality of the TDX DEMs compared to the SRTM DEM, describe remaining DEM uncertainties and discuss the limitations that arise due to the side-looking nature of the radar sensor. (C) 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{NeelyBookhagenBurbank2017, author = {Neely, Alexander B. and Bookhagen, Bodo and Burbank, Douglas W.}, title = {An automated knickzone selection algorithm (KZ-Picker) to analyze transient landscapes: Calibration and validation}, series = {Journal of geophysical research : Earth surface}, volume = {122}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2017JF004250}, pages = {1236 -- 1261}, year = {2017}, abstract = {Streams commonly respond to base-level fall by localizing erosion within steepened, convex knickzone reaches. Localized incision causes knickzone reaches to migrate upstream. Such migrating knickzones dictate the pace of landscape response to changes in tectonics or erosional efficiency and can help quantify the timing and source of base-level fall. Identification of knickzones typically requires individual selection of steepened reaches: a process that is tedious and subjective and has no efficient means to measure knickzone size. We construct an algorithm to automate this procedure by selecting the bounds of knickzone reaches in a -space (drainage-area normalized) framework. An automated feature calibrates algorithm parameters to a subset of knickzones handpicked by the user. The algorithm uses these parameters as consistent criteria to identify knickzones objectively, and then the algorithm measures the height, length, and slope of each knickzone reach. We test the algorithm on 1, 10, and 30m resolution digital elevation models (DEMs) of six catchments (trunk-stream lengths: 2.1-5.4km) on Santa Cruz Island, southern California. On the 1m DEM, algorithm-selected knickzones confirm 93\% of handpicked knickzone positions (n=178) to a spatial accuracy of 100m, 88\% to an accuracy within 50m, and 46\% to an accuracy within 10m. Using 10 and 30m DEMs, accuracy is similar: 88-86\% to 100m and 82\% to 50m (n=38 and 36, respectively). The algorithm enables efficient regional comparison of the size and location of knickzones with geologic structures, mapped landforms, and hillslope morphology, thereby facilitating approaches to characterize the dynamics of transient landscapes. Plain Language Summary The shape of rivers reflects the environments that they flow through and the environments that they link together: mountains and oceans. Anywhere along the length of a river, changes in environmental conditions are propagated upstream and downstream as the river changes its morphology to match the new environmental conditions. Commonly, rivers steepen as land uplifts faster in regions of high tectonic convergence. The steepening of river gradients is propagated upstream and can be mapped to trace zones of high tectonic activity across landscapes and estimate the source and timing of environmental change. Such insights may indicate regions where earthquakes have become more frequent in the recent past and how rivers respond to these changes. In this submission, we detail an algorithm that can use digital topographic data (similar to google earth), to automatically map and measure anomalously steep river reaches across continental scales. This technology can highlight areas that have experienced recent sustained changes in environmental conditions, evident by changes in the morphology of rivers. Such environmental conditions could be changes in tectonic uplift and earthquake activity, changes in sea level, changes in land-use, or changes in climate, all factors that can produce measurable differences in river morphology over time.}, language = {en} }