@article{JelicicGarciaBeuermann2009, author = {Jelicic, Aleksandra and Garcia, Nuria and Beuermann, Sabine}, title = {Influence of ionic liquid structure on the propagation kinetics of methyl methacrylate}, issn = {0024-9297}, doi = {10.1021/ma900774e}, year = {2009}, language = {en} } @article{JelicicGarciaLoehmannsroebenetal.2009, author = {Jelicic, Aleksandra and Garcia, Nuria and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Beuermann, Sabine}, title = {Prediction of the ionic liquid influence on propagation rate coefficients in methyl methacrylate radical polymerizations based on Kamlet-Taft solvatochromic parameters}, issn = {0024-9297}, doi = {10.1021/ma9017907}, year = {2009}, language = {en} } @article{BreiningerImranulhaqTuerketal.2009, author = {Breininger, Eugenia and Imran-ul-haq, Muhammad and Tuerk, Michael and Beuermann, Sabine}, title = {Effect of polymer properties on poly(vinylidene fluoride) particles produced by rapid expansion of CO2 + polymer mixtures}, issn = {0896-8446}, doi = {10.1016/j.supflu.2008.09.016}, year = {2009}, abstract = {The generation of nanoscale primary poly(vinylidene fluoride) (PVDF) particles by rapid expansion of supercritical solutions (RESS) is reported. The experimental results show that RESS enables the formation of PVDF particles with median particle diameters ranging from 56 to 226 nm and that the size of PVDF particles can be influenced by polymer properties. The particle size can be decreased either by increasing molar mass, in case of identical polymer end groups, or by increasing the degree of crystallinity, in case of similar molar mass and different end groups.}, language = {en} } @article{Beuermann2009, author = {Beuermann, Sabine}, title = {Solvent influence on propagation kinetics in radical polymerizations studied by pulsed laser initiated polymerizations}, issn = {1022-1336}, doi = {10.1002/marc.200900131}, year = {2009}, abstract = {The influence of the reaction medium (organic solvents, water, ionic liquids, supercritical CO2) on the propagation rate in radical polymerizations has very different causes, e.g., hindered rotational modes, hydrogen bonding or electron pair donor/acceptor interactions. Depending on the origin of the solvent influence propagation rate coefficients, k(P), may be enhanced by up to an order of magnitude associated with changes in the pre-exponential or the activation energy of k(P). In contrast, non-specific interactions, size and steric effects lead to rather small changes in the vicinity of the radical chain end and are reflected by modest variations in k(P).}, language = {en} } @article{Beuermann2009, author = {Beuermann, Sabine}, title = {Solvent influence on propagation kinetics in radical polymerizations studied by pulsed laser initiated polymerizations}, issn = {1022-1336}, year = {2009}, abstract = {The influence of the reaction medium (organic solvents, water, ionic liquids, supercritical CO2) on the propagation rate in radical polymerizations has very different causes, e.g., hindered rotational modes, hydrogen bonding, or electron pair donor / acceptor interactions. Depending on the origin of the solvent influence propagation rate coefficients, kp, may be enhanced by up to an order of magnitude associated with changes in the pre-exponential or the activation energy of kp. Contrary, non-specific interactions, size and steric effects lead to rather small changes in the vicinity of the radical chain end and are reflected by modest variations in kp.}, language = {en} } @article{GoebelHesemannWeberetal.2009, author = {Goebel, Ronald and Hesemann, Peter and Weber, Jens and Moeller, El{\´e}onore and Friedrich, Alwin and Beuermann, Sabine and Taubert, Andreas}, title = {Surprisingly high, bulk liquid-like mobility of silica-confined ionic liquids}, issn = {1463-9076}, doi = {10.1039/B821833a}, year = {2009}, abstract = {Mesoporous silica monoliths were prepared by the sol - gel technique and. lled with 1-ethyl-3-methyl imidazolium [Emim]-X (X = dicyanamide [N(CN)(2)], ethyl sulfate [EtSO4], thiocyanate [SCN], and triflate [TfO]) ionic liquids (ILs) using a methanol-IL exchange technique. The structure and behavior of the ILs inside the silica monoliths were studied using X-ray scattering, nitrogen sorption, IR spectroscopy, solid-state NMR, and thermal analysis. DSC finds shifts in both the glass transition temperature and melting points (where applicable) of the ILs. Glass transition and melting occur well below room temperature. There is thus no conflict with the NMR and IR data, which show that the ILs are as mobile at room temperature as the bulk (not confined) ILs. The very narrow line widths of the NMR spectra suggest that the ILs in our materials have the highest mobility reported for confined ILs so far. As a result, our data suggest that it is possible to generate IL/silica hybrid materials (ionogels) with bulk-like properties of the IL. This could be interesting for applications in, e.g., the solar cell or membrane fields.}, language = {en} }