@article{GhylinGarciaMoyaetal.2014, author = {Ghylin, Trevor W. and Garcia, Sarahi L. and Moya, Francisco and Oyserman, Ben O. and Schwientek, Patrick and Forest, Katrina T. and Mutschler, James and Dwulit-Smith, Jeffrey and Chan, Leong-Keat and Martinez-Garcia, Manuel and Sczyrba, Alexander and Stepanauskas, Ramunas and Grossart, Hans-Peter and Woyke, Tanja and Warnecke, Falk and Malmstrom, Rex and Bertilsson, Stefan and McMahon, Katherine D.}, title = {Comparative single-cell genomics reveals potential ecological niches for the freshwater acl Actinobacteria lineage}, series = {The ISME journal : multidisciplinary journal of microbial ecology}, volume = {8}, journal = {The ISME journal : multidisciplinary journal of microbial ecology}, number = {12}, publisher = {Nature Publ. Group}, address = {London}, issn = {1751-7362}, doi = {10.1038/ismej.2014.135}, pages = {2503 -- 2516}, year = {2014}, abstract = {Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di-and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits.}, language = {en} } @misc{KrauseLeRouxNiklausetal.2014, author = {Krause, Sascha and Le Roux, Xavier and Niklaus, Pascal A. and Van Bodegom, Peter M. and Lennon, Jay T. and Bertilsson, Stefan and Grossart, Hans-Peter and Philippot, Laurent and Bodelier, Paul L. E.}, title = {Trait-based approaches for understanding microbial biodiversity and ecosystem functioning}, series = {Frontiers in microbiology}, volume = {5}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2014.00251}, pages = {10}, year = {2014}, abstract = {In ecology, biodiversity-ecosystem functioning (BEE) research has seen a shift in perspective from taxonomy to function in the last two decades, with successful application of trait-based approaches. This shift offers opportunities for a deeper mechanistic understanding of the role of biodiversity in maintaining multiple ecosystem processes and services. In this paper, we highlight studies that have focused on BEE of microbial communities with an emphasis on integrating trait-based approaches to microbial ecology. In doing so, we explore some of the inherent challenges and opportunities of understanding BEE using microbial systems. For example, microbial biologists characterize communities using gene phylogenies that are often unable to resolve functional traits. Additionally, experimental designs of existing microbial BEE studies are often inadequate to unravel BEE relationships. We argue that combining eco-physiological studies with contemporary molecular tools in a trait-based framework can reinforce our ability to link microbial diversity to ecosystem processes. We conclude that such trait-based approaches are a promising framework to increase the understanding of microbial BEE relationships and thus generating systematic principles in microbial ecology and more generally ecology.}, language = {en} } @misc{BertilssonBurginCareyetal.2013, author = {Bertilsson, Stefan and Burgin, Amy and Carey, Cayelan C. and Fey, Samuel B. and Grossart, Hans-Peter and Grubisic, Lorena M. and Jones, Ian D. and Kirillin, Georgiy and Lennon, Jay T. and Shade, Ashley and Smyth, Robyn L.}, title = {The under-ice microbiome of seasonally frozen lakes}, series = {Limnology and oceanography}, volume = {58}, journal = {Limnology and oceanography}, number = {6}, publisher = {Wiley}, address = {Waco}, issn = {0024-3590}, doi = {10.4319/lo.2013.58.6.1998}, pages = {1998 -- 2012}, year = {2013}, abstract = {Compared to the well-studied open water of the "growing" season, under-ice conditions in lakes are characterized by low and rather constant temperature, slow water movements, limited light availability, and reduced exchange with the surrounding landscape. These conditions interact with ice-cover duration to shape microbial processes in temperate lakes and ultimately influence the phenology of community and ecosystem processes. We review the current knowledge on microorganisms in seasonally frozen lakes. Specifically, we highlight how under-ice conditions alter lake physics and the ways that this can affect the distribution and metabolism of auto-and heterotrophic microorganisms. We identify functional traits that we hypothesize are important for understanding under-ice dynamics and discuss how these traits influence species interactions. As ice coverage duration has already been seen to reduce as air temperatures have warmed, the dynamics of the under-ice microbiome are important for understanding and predicting the dynamics and functioning of seasonally frozen lakes in the near future.}, language = {en} }