@phdthesis{Baumann2013, author = {Baumann, Tobias}, title = {Stability and Interconnected protein properties studied with TEM ß-lactamase}, address = {Potsdam}, pages = {155 S.}, year = {2013}, language = {en} } @misc{BaumannArndtMueller2013, author = {Baumann, Tobias and Arndt, Katja Maren and M{\"u}ller, Kristian M.}, title = {Directional cloning of DNA fragments using deoxyinosine-containing oligonucleotides and endonuclease V}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {983}, issn = {1866-8372}, doi = {10.25932/publishup-43108}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431085}, pages = {13}, year = {2013}, abstract = {Background: DNA fragments carrying internal recognition sites for the restriction endonucleases intended for cloning into a target plasmid pose a challenge for conventional cloning. Results: A method for directional insertion of DNA fragments into plasmid vectors has been developed. The target sequence is amplified from a template DNA sample by PCR using two oligonucleotides each containing a single deoxyinosine base at the third position from the 5' end. Treatment of such PCR products with endonuclease V generates 3' protruding ends suitable for ligation with vector fragments created by conventional restriction endonuclease reactions. Conclusions: The developed approach generates terminal cohesive ends without the use of Type II restriction endonucleases, and is thus independent from the DNA sequence. Due to PCR amplification, minimal amounts of template DNA are required. Using the robust Taq enzyme or a proofreading Pfu DNA polymerase mutant, the method is applicable to a broad range of insert sequences. Appropriate primer design enables direct incorporation of terminal DNA sequence modifications such as tag addition, insertions, deletions and mutations into the cloning strategy. Further, the restriction sites of the target plasmid can be either retained or removed.}, language = {en} } @article{BaumannArndtMueller2013, author = {Baumann, Tobias and Arndt, Katja Maren and M{\"u}ller, Kristian M.}, title = {Directional cloning of DNA fragments using deoxyinosine-containing oligonucleotides and endonuclease V}, series = {BMC biotechnology}, volume = {13}, journal = {BMC biotechnology}, number = {10}, publisher = {BioMed Central}, address = {London}, issn = {1472-6750}, doi = {10.1186/1472-6750-13-81}, pages = {11}, year = {2013}, abstract = {Background: DNA fragments carrying internal recognition sites for the restriction endonucleases intended for cloning into a target plasmid pose a challenge for conventional cloning. Results: A method for directional insertion of DNA fragments into plasmid vectors has been developed. The target sequence is amplified from a template DNA sample by PCR using two oligonucleotides each containing a single deoxyinosine base at the third position from the 5' end. Treatment of such PCR products with endonuclease V generates 3' protruding ends suitable for ligation with vector fragments created by conventional restriction endonuclease reactions. Conclusions: The developed approach generates terminal cohesive ends without the use of Type II restriction endonucleases, and is thus independent from the DNA sequence. Due to PCR amplification, minimal amounts of template DNA are required. Using the robust Taq enzyme or a proofreading Pfu DNA polymerase mutant, the method is applicable to a broad range of insert sequences. Appropriate primer design enables direct incorporation of terminal DNA sequence modifications such as tag addition, insertions, deletions and mutations into the cloning strategy. Further, the restriction sites of the target plasmid can be either retained or removed.}, language = {en} } @article{JedrusikBodeStudenckaSmolkaetal.2013, author = {Jedrusik-Bode, Monika and Studencka, Maja and Smolka, Christian and Baumann, Tobias and Schmidt, Henning and Kampf, Jan and Paap, Franziska and Martin, Sophie and Tazi, Jamal and M{\"u}ller, Kristian M. and Kr{\"u}ger, Marcus and Braun, Thomas and Bober, Eva}, title = {The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals}, series = {Journal of cell science}, volume = {126}, journal = {Journal of cell science}, number = {22}, publisher = {Company of Biologists Limited}, address = {Cambridge}, issn = {0021-9533}, doi = {10.1242/jcs.130708}, pages = {5166 -- +}, year = {2013}, abstract = {SIRT6 is a NAD(+)-dependent deacetylase that modulates chromatin structure and safeguards genomic stability. Until now, SIRT6 has been assigned to the nucleus and only nuclear targets of SIRT6 are known. Here, we demonstrate that in response to stress, C. elegans SIR-2.4 and its mammalian orthologue SIRT6 localize to cytoplasmic stress granules, interact with various stress granule components and induce their assembly. Loss of SIRT6 or inhibition of its catalytic activity in mouse embryonic fibroblasts impairs stress granule formation and delays disassembly during recovery, whereas deficiency of SIR-2.4 diminishes maintenance of P granules and decreases survival of C. elegans under stress conditions. Our findings uncover a novel, evolutionary conserved function of SIRT6 in the maintenance of stress granules in response to stress.}, language = {en} }