@article{WeissQiuBarbotetal.2019, author = {Weiss, Jonathan R. and Qiu, Qiang and Barbot, Sylvain and Wright, Tim J. and Foster, James H. and Saunders, Alexander and Brooks, Benjamin A. and Bevis, Michael and Kendrick, Eric and Ericksen, Todd L. and Avery, Jonathan and Smalley, Robert and Cimbaro, Sergio R. and Lenzano, Luis Eduardo and Baron, Jorge and Carlos Baez, Juan and Echalar, Arturo}, title = {Illuminating subduction zone rheological properties in the wake of a giant earthquake}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {12}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aax6720}, pages = {11}, year = {2019}, abstract = {Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 M-w 8.8 Maule earthquake occurred close to the Chilean coast within a dense network of continuously recording Global Positioning System stations, which provide a comprehensive history of surface strain. We use these data to assemble a detailed picture of a structurally controlled megathrust fault frictional patchwork and the three-dimensional rheological and time-dependent viscosity structure of the lower crust and upper mantle, all of which control the relative importance of afterslip and viscoelastic relaxation during postseismic deformation. These results enhance our understanding of subduction dynamics including the interplay of localized and distributed deformation during the subduction zone earthquake cycle.}, language = {en} }