@misc{BanerjeeStuekerSaalfrank2015, author = {Banerjee, Shiladitya and St{\"u}ker, Tony and Saalfrank, Peter}, title = {Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86826}, year = {2015}, abstract = {Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp2/sp3 hybrid species with C[double bond, length as m-dash]C double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics.}, language = {en} } @article{BanerjeeStuekerSaalfrank2015, author = {Banerjee, Shiladitya and St{\"u}ker, Tony and Saalfrank, Peter}, title = {Vibrationally resolved optical spectra of modified diamondoids obtained from time-dependent correlation function methods}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {17}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9084}, doi = {10.1039/C5CP02615F}, pages = {19656 -- 19669}, year = {2015}, abstract = {Optical properties of modified diamondoids have been studied theoretically using vibrationally resolved electronic absorption, emission and resonance Raman spectra. A time-dependent correlation function approach has been used for electronic two-state models, comprising a ground state (g) and a bright, excited state (e), the latter determined from linear-response, time-dependent density functional theory (TD-DFT). The harmonic and Condon approximations were adopted. In most cases origin shifts, frequency alteration and Duschinsky rotation in excited states were considered. For other cases where no excited state geometry optimization and normal mode analysis were possible or desired, a short-time approximation was used. The optical properties and spectra have been computed for (i) a set of recently synthesized sp2/sp3 hybrid species with C[double bond, length as m-dash]C double-bond connected saturated diamondoid subunits, (ii) functionalized (mostly by thiol or thione groups) diamondoids and (iii) urotropine and other C-substituted diamondoids. The ultimate goal is to tailor optical and electronic features of diamondoids by electronic blending, functionalization and substitution, based on a molecular-level understanding of the ongoing photophysics.}, language = {en} } @misc{VinkHegerKrumholzetal.2012, author = {Vink, Jorick Sandor and Heger, Alexander and Krumholz, Mark R. and Puls, Joachim and Banerjee, Shiladitya and Castro, Norberto and Chen, K.-J. and Chen{\`e}, A.-N. and Crowther, P. A. and Daminelli, A. and Gr{\"a}fener, G. and Groh, J. H. and Hamann, Wolf-Rainer and Heap, S. and Herrero, A. and Kaper, L. and Najarro, F. and Oskinova, Lidia M. and Roman-Lopes, A. and Rosen, A. and Sander, A. and Shirazi, M. and Sugawara, Y. and Tramper, F. and Vanbeveren, D. and Voss, R. and Wofford, A. and Zhang, Y.}, title = {Very massive stars in the local universe}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {601}, issn = {1866-8372}, doi = {10.25932/publishup-41522}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415220}, pages = {29}, year = {2012}, abstract = {Recent studies have claimed the existence of very massive stars (VMS) up to 300 M⊙ in the local Universe. As this finding may represent a paradigm shift for the canonical stellar upper-mass limit of 150 M⊙, it is timely to discuss the status of the data, as well as the far-reaching implications of such objects. We held a Joint Discussion at the General Assembly in Beijing to discuss (i) the determination of the current masses of the most massive stars, (ii) the formation of VMS, (iii) their mass loss, and (iv) their evolution and final fate. The prime aim was to reach broad consensus between observers and theorists on how to identify and quantify the dominant physical processes.}, language = {en} }