@misc{BandraukParamonov2014, author = {Bandrauk, Andre D. and Paramonov, Guennaddi K.}, title = {Excitation of muonic molecules dd mu and dt mu by super-intense attosecond soft X-ray laser pulses: Shaped post-laser-pulse muonic oscillations and enhancement of nuclear fusion}, series = {International journal of modern physics : E, Nuclear physics}, volume = {23}, journal = {International journal of modern physics : E, Nuclear physics}, number = {9}, publisher = {World Scientific}, address = {Singapore}, issn = {0218-3013}, doi = {10.1142/S0218301314300148}, pages = {34}, year = {2014}, abstract = {The quantum dynamics of muonic molecular ions dd mu and dt mu excited by linearly polarized along the molecular (z)-axis super-intense laser pulses is studied beyond the Born-Oppenheimer approximation by the numerical solution of the time-dependent Schrodinger equation within a three-dimensional model, including the internuclear distance R and muon coordinates z and rho. The peak-intensity of the super-intense laser pulses used in our simulations is I-0 = 3.51 x 10(22) W/cm(2) and the wavelength is lambda(l) = 5nm. In both dd mu and dt mu, expectation values < z > and of muon demonstrate "post-laser-pulse" oscillations after the ends of the laser pulses. In dd mu post-laser-pulse z-oscillations appear as shaped nonoverlapping "echo-pulses". In dt mu post-laser-pulse muonic z-oscillations appear as comparatively slow large-amplitude oscillations modulated with small-amplitude pulsations. The post-laser-pulse rho-oscillations in both dd mu and dt mu appear, for the most part, as overlapping "echo-pulses". The post-laser-pulse oscillations do not occur if the Born-Oppenheimer approximation is employed. Power spectra generated due to muonic motion along both optically active z and optically passive rho degrees of freedom are calculated. The fusion probability in dt mu can be increased by more than 11 times by making use of three sequential super-intense laser pulses. The energy released from the dt fusion in dt mu can by more than 20 GeV exceed the energy required to produce a usable muon and the energy of the laser pulses used to enhance the fusion. The possibility of power production from the laser-enhanced muon-catalyzed fusion is discussed.}, language = {en} } @article{ParamonovKlamrothLuetal.2018, author = {Paramonov, Guennaddi K. and Klamroth, Tillmann and Lu, H. Z. and Bandrauk, Andre D.}, title = {Quantum dynamics, isotope effects, and power spectra of H-2(+) and HD+ excited to the continuum by strong one-cycle laser pulses: Three-dimensional non-Born-Oppenheimer simulations}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {98}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.98.063431}, pages = {16}, year = {2018}, abstract = {Non-Born-Oppenheimer quantum dynamics of H-2(+) and HD+ excited by single one-cycle laser pulses linearly polarized along the molecular (z) axis have been studied within a three-dimensional model, including the internuclear distance R and electron coordinates z and rho, by means of the numerical solution of the time-dependent Schrodinger equation on the timescale of about 200 fs. Laser carrier frequencies corresponding to the wavelengths of lambda(l) = 400 and 50 nm have been used and the amplitudes of the pulses have been chosen such that the energies of H-2(+) and HD+ are above the dissociation threshold after the ends of the laser pulses. It is shown that excitation of H-2(+) and HD+ above the dissociation threshold is accompanied by formation of vibrationally "hot" and "cold" ensembles of molecules. Dissociation of vibrationally "hot" molecules does not prevent the appearance of post-laser-pulse electronic oscillations, parallel z oscillations, and transversal rho oscillations. Moreover, dissociation of "hot" molecules does not influence characteristic frequencies of electronic z and rho oscillations. The main difference between the laser-induced quantum dynamics of homonuclear H-2(+) and its heteronuclear isotope HD+ is that fast post-laser-pulse electronic z oscillations in H-2(+) are regularly shaped with the period of tau(shp) approximate to 30 fs corresponding to nuclear oscillations in H-2(+), while electronic z oscillations in HD+ arise as "echo pulses" of its initial excitation and appear with the period of tau(echo) approximate to 80 fs corresponding to nuclear motion in HD+. Accordingly, corresponding power spectra of nuclear motion contain strong low-frequency harmonics at omega(shp) = 2 pi/tau(shp) in H2(+) and omega(echo) = 2 pi/tau(echo) in HD+. Power spectra related to both electronic and nuclear motion have been calculated in the acceleration form. Both higher- and lower-order harmonics are generated at the laser wavelength lambda(l) = 400 nm, while only lower-order harmonics are well pronounced at lambda(l) = 50 nm. It is also shown that a rationalized harmonic order, defined in terms of the frequency of the laser-induced electronic z oscillations, agrees with the concept of inversion symmetry for electronic motion in diatomic molecules.}, language = {en} } @article{ParamonovKuehnBandrauk2016, author = {Paramonov, Guennaddi K. and Kuehn, O. and Bandrauk, Andre D.}, title = {Shaped Post-Field Electronic Oscillations in H-2(+) Excited by Two-Cycle Laser Pulses: Three-Dimensional Non-Born-Oppenheimer Simulations}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {120}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.5b11599}, pages = {3175 -- 3185}, year = {2016}, abstract = {Quantum dynamics of H-2(+) excited by two-cycle laser pulses with laser carrier frequencies corresponding to the wavelengths lambda(1) = 800 and 200 nm (corresponding to the periods tau(1) = 2.667 and 0.667 fs, respectively) and being linearly polarized along the molecular axis have been studied by the numerical solution of the non-Born-Oppenheimer time-dependent Schrodinger equation within a three-dimensional (3D) model, including the internuclear distance R and electron coordinates z and rho. The amplitudes of the pulses have been chosen such that the energies of H-2(+) after the ends of the laser pulses, < E > approximate to-0.515 au, were close to the dissociation threshold of H-2(+). It is found that there exists a certain characteristic oscillation frequency omega(osc) = 0.2278 au (corresponding to the period tau(osc) = 0.667 fs and the wavelength lambda(osc) = 200 nm) that plays the role of a "carrier" frequency of temporally shaped oscillations of the expectation values <-partial derivative V/partial derivative z) emerging after the ends of the laser pulses, both at lambda(1) = 800 nm and at lambda(1) = 200 nm. Moreover, at lambda(1) = 200 nm, the expectation value < z > also demonstrates temporally shaped oscillations after the end of the laser pulse. In contrast, at lambda(1) = 800 nm, the characteristic oscillation frequency omega(osc) = 0.2278 au appears as the frequency of small-amplitude oscillations of the slowly varying expectation value < z > which makes, after the end of the pulse, an excursion with an amplitude of about 4.5 au along the z axis and returns back to < z > approximate to 0 afterward. It is found that the period of the temporally shaped post-field oscillations of <-partial derivative V/partial derivative z > and < z >, estimated as tau(shp) approximate to 30 fs, correlates with the nuclear motion. It is also shown that vibrational excitation of H-2(+) is accompanied by the formation of "hot" and "cold" vibrational ensembles along the R degree of freedom. Power spectra related to the electron motion in H-2(+) calculated for both the laser-driven z and optically passive rho degrees of freedom in the acceleration form proved to be very interesting. In particular, both odd and even harmonics can be observed.}, language = {en} }