@article{PabloRichardsonMoffatetal.2015, author = {Pablo, Herbert and Richardson, Noel D. and Moffat, Anthony F. J. and Corcoran, Michael and Shenar, Tomer and Benvenuto, Omar and Fuller, Jim and Naze, Yael and Hoffman, Jennifer L. and Miroshnichenko, Anatoly and Apellaniz, Jesus Maiz and Evans, Nancy and Eversberg, Thomas and Gayley, Ken and Gull, Ted and Hamaguchi, Kenji and Hamann, Wolf-Rainer and Henrichs, Huib and Hole, Tabetha and Ignace, Richard and Iping, Rosina and Lauer, Jennifer and Leutenegger, Maurice and Lomax, Jamie and Nichols, Joy and Oskinova, Lida and Owocki, Stan and Pollock, Andy and Russell, Christopher M. P. and Waldron, Wayne and Buil, Christian and Garrel, Thierry and Graham, Keith and Heathcote, Bernard and Lemoult, Thierry and Li, Dong and Mauclaire, Benjamin and Potter, Mike and Ribeiro, Jose and Matthews, Jaymie and Cameron, Chris and Guenther, David and Kuschnig, Rainer and Rowe, Jason and Rucinski, Slavek and Sasselov, Dimitar and Weiss, Werner}, title = {A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. III. Analysis of optical photometric (most) and spectroscopic (ground based) variations}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/134}, pages = {11}, year = {2015}, abstract = {We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system delta Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P > 400 years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations.}, language = {en} } @article{vanLoonBaileyTattonetal.2013, author = {van Loon, J. Th. and Bailey, M. and Tatton, B. L. and Apellaniz, Jesus Maiz and Crowther, P. A. and de Koter, A. and Evans, C. J. and Henault-Brunet, V. and Howarth, I. D. and Richter, Philipp and Sana, Hugues and Simon D{\´i}az, Sergio and Taylor, W. and Walborn, N. R.}, title = {The VLT-FLAMES tarantula survey IX. - the interstellar medium seen through diffuse interstellar bands and neutral sodium}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {550}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {9}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201220210}, pages = {21}, year = {2013}, abstract = {Context. The Tarantula Nebula (a.k.a. 30 Dor) is a spectacular star-forming region in the Large Magellanic Cloud (LMC), seen through gas in the Galactic disc and halo. Diffuse interstellar bands (DIBs) offer a unique probe of the diffuse, cool-warm gas in these regions. Aims. The aim is to use DIBs as diagnostics of the local interstellar conditions, whilst at the same time deriving properties of the yet-unknown carriers of these enigmatic spectral features. Methods. Spectra of over 800 early-type stars from the Very Large Telescope Flames Tarantula Survey (VFTS) were analysed. Maps were created, separately, for the Galactic and LMC absorption in the DIBs at 4428 and 6614 angstrom and - in a smaller region near the central cluster R 136 - neutral sodium (the Na ID doublet); we also measured the DIBs at 5780 and 5797 angstrom. Results. The maps show strong 4428 and 6614 angstrom DIBs in the quiescent cloud complex to the south of 30 Dor but weak absorption in the harsher environments to the north (bubbles) and near the OB associations. The Na maps show at least five kinematic components in the LMC and a shell-like structure surrounding R 136, and small-scale structure in the Milky Way. The strengths of the 4428, 5780, 5797 and 6614 angstrom DIBs are correlated, also with Na absorption and visual extinction. The strong 4428 angstrom DIB is present already at low Na column density but the 6614, 5780 and 5797 angstrom DIBs start to be detectable at subsequently larger Na column densities. Conclusions. The carriers of the 4428, 6614, 5780 and 5797 angstrom DIBs are increasingly prone to removal from irradiated gas. The relative strength of the 5780 and 5797 angstrom DIBs clearly confirm the Tarantula Nebula as well as Galactic high-latitude gas to represent a harsh radiation environment. The resilience of the 4428 angstrom DIB suggests its carrier is large, compact and neutral. Structure is detected in the distribution of cool-warm gas on scales between one and > 100 pc in the LMC and as little as 0.01 pc in the Sun's vicinity. Stellar winds from the central cluster R 136 have created an expanding shell; some infalling gas is also detected, reminiscent of a galactic "fountain".}, language = {en} }