@misc{AlbersUestuenWitzeletal.2018, author = {Albers, Philip and Uestuen, Suayib and Witzel, Katja and Bornke, Frederik}, title = {Identification of a novel target of the bacterial effector HopZ1a}, series = {Phytopathology}, volume = {108}, journal = {Phytopathology}, number = {10}, publisher = {American Phytopathological Society}, address = {Saint Paul}, issn = {0031-949X}, pages = {1}, year = {2018}, abstract = {The plant pathogen Pseudomonas syringae is a gram-negative bacterium which infects a wide range of plant species including important crops plants. To suppress plant immunity and cause disease P.syringae injects type-III effector proteins (T3Es) into the plant cell cytosol. In this study, we identified a novel target of the well characterized bacterial T3E HopZ1a. HopZ1a is an acetyltransferase that was shown to disrupt vesicle transport during innate immunity by acetylating tubulin. Using a yeast-two-hybrid screen approach, we identified a REMORIN (REM) protein from tobacco as a novel HopZ1a target. HopZ1a interacts with REM at the plasma membrane (PM) as shown by split-YFP experiments. Interestingly, we found that PBS1, a well-known kinase involved in plant immunity also interacts with REM in pull-down assays, and at the PM as shown by BiFC. Furthermore, we confirmed that REM is phosphorylated by PBS1 in vitro. Overexpression of REM provokes the upregulation of defense genes and leads to disease-like phenotypes pointing to a role of REM in plant immune signaling. Further protein-protein interaction studies reveal novel REM binding partners with a possible role in plant immune signaling. Thus, REM might act as an assembly hub for an immune signaling complex targeted by HopZ1a. Taken together, this is the first report describing that a REM protein is targeted by a bacterial effector. How HopZ1a might mechanistically manipulate the plant immune system through interfering with REM function will be discussed.}, language = {en} } @article{AlbersUestuenWitzeletal.2019, author = {Albers, Philip and {\"U}st{\"u}n, Suayib and Witzel, Katja and Kraner, Max Erdmund and B{\"o}rnke, Frederik}, title = {A Remorin from Nicotiana benthamiana Interacts with the Pseudomonas Type-III Effector Protein HopZ1a and is Phosphorylated by the Immune-Related Kinase PBS1}, series = {Molecular Plant-Microbe Interactions}, volume = {32}, journal = {Molecular Plant-Microbe Interactions}, number = {9}, publisher = {Amer phytopathological SOC}, address = {ST Paul}, issn = {0894-0282}, doi = {10.1094/MPMI-04-19-0105-R}, pages = {1229 -- 1242}, year = {2019}, abstract = {The plasma membrane (PM) is at the interface of plant-pathogen interactions and, thus, many bacterial type-III effector (T3E) proteins target membrane-associated processes to interfere with immunity. The Pseudomonas syringae T3E HopZ1a is a host cell PM-localized effector protein that has several immunity-associated host targets but also activates effector-triggered immunity in resistant backgrounds. Although HopZ1a has been shown to interfere with early defense signaling at the PM, no dedicated PM-associated HopZ1a target protein has been identified until now. Here, we show that HopZ1a interacts with the PM-associated remorin protein NbREM4 from Nicotiana benthamiana in several independent assays. NbREM4 relocalizes to membrane nanodomains after treatment with the bacterial elicitor flg22 and transient overexpression of NbREM4 in N. benthamiana induces the expression of a subset of defense-related genes. We can further show that NbREM4 interacts with the immune-related receptor-like cytoplasmic kinase avrPphB-susceptible 1 (PBS1) and is phosphorylated by PBS1 on several residues in vitro. Thus, we conclude that NbREM4 is associated with early defense signaling at the PM. The possible relevance of the HopZ1a-NbREM4 interaction for HopZ1a virulence and avirulence functions is discussed.}, language = {en} } @article{WitzelAbuRishaAlbersetal.2020, author = {Witzel, Katja and Abu Risha, Marua and Albers, Philip and B{\"o}rnke, Frederik and Hanschen, Franziska S.}, title = {Corrigendum : Identification and characterization of three epithiospecifier protein isoforms in Brassica oleracea / Witzel, Katja; Abu Risha, Marua; Albers, Philip; B{\"o}rnke, Frederike; Hanschen, Franziska S. - Lausanne: Frontiers Media, 2019. - Frontiers in plant science : FPLS. - 10 (2019) art. 1552. - doi: 10.3389/fpls.2019.01552}, series = {Frontiers in plant science : FPLS}, volume = {11}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2020.00523}, pages = {2}, year = {2020}, language = {en} } @article{WitzelAbuRishaAlbersetal.2019, author = {Witzel, Katja and Abu Risha, Marua and Albers, Philip and B{\"o}rnke, Frederik and Hanschen, Franziska S.}, title = {Identification and Characterization of Three Epithiospecifier Protein Isoforms in Brassica oleracea}, series = {Frontiers in plant science}, volume = {10}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01552}, pages = {14}, year = {2019}, abstract = {Glucosinolates present in Brassicaceae play a major role in herbivory defense. Upon tissue disruption, glucosinolates come into contact with myrosinase, which initiates their breakdown to biologically active compounds. Among these, the formation of epithionitriles is triggered by the presence of epithiospecifier protein (ESP) and a terminal double bond in the glucosinolate side chain. One ESP gene is characterized in the model plant Arabidopsis thaliana (AtESP; At1g54040.2). However, Brassica species underwent genome triplication since their divergence from the Arabidopsis lineage. This indicates the presence of multiple ESP isoforms in Brassica crops that are currently poorly characterized. We identified three B. oleracea ESPs, specifically BoESP1 (LOC106296341), BoESP2 (LOC106306810), and BoESP3 (LOC106325105) based on in silico genome analysis. Transcript and protein abundance were assessed in shoots and roots of four B. oleracea vegetables, namely broccoli, kohlrabi, white, and red cabbage, because these genotypes showed a differential pattern for the formation of glucosinolate hydrolysis products as well for their ESP activity. BoESP1 and BoESP2 were expressed mainly in shoots, while BoESP3 was abundant in roots. Biochemical characterization of heterologous expressed BoESP isoforms revealed different substrate specificities towards seven glucosinolates: all isoforms showed epithiospecifier activity on alkenyl glucosinolates, but not on non-alkenyl glucosinolates. The pH-value differently affected BoESP activity: while BoESP1 and BoESP2 activities were optimal at pH 6-7, BoESP3 activity remained relatively stable from pH 4 to 7. In order test their potential for the in vivo modification of glucosinolate breakdown, the three isoforms were expressed in A. thaliana Hi-0, which lacks AtESP expression, and analyzed for the effect on their respective hydrolysis products. The BoESPs altered the hydrolysis of allyl glucosinolate in the A. thaliana transformants to release 1-cyano-2,3-epithiopropane and reduced formation of the corresponding 3-butenenitrile and allyl isothiocyanate. Plants expressing BoESP2 showed the highest percentage of released epithionitriles. Given these results, we propose a model for isoform-specific roles of B. oleracea ESPs in glucosinolate breakdown.}, language = {en} } @phdthesis{Albers2018, author = {Albers, Philip}, title = {Funktionelle Charakterisierung des bakteriellen Typ-III Effektorproteins HopZ1a in Nicotiana benthamiana}, school = {Universit{\"a}t Potsdam}, pages = {viii, 134}, year = {2018}, abstract = {Um das Immunsystem der Pflanze zu manipulieren translozieren gram-negative pathogene Bakterien Typ-III Effektorproteine (T3E) {\"u}ber ein Typ-III Sekretionssystem (T3SS) in die pflanzliche Wirtszelle. Dort lokalisieren T3Es in verschiedenen subzellul{\"a}ren Kompartimenten, wo sie Zielproteine modifizieren und so die Infektion beg{\"u}nstigen. HopZ1a, ein T3E des Pflanzenpathogens Pseudomonas syringae pv. syringae, ist eine Acetyltransferase und lokalisiert {\"u}ber ein Myristolierungsmotiv an der Plasmamembran der Wirtszelle. Obwohl gezeigt wurde, dass HopZ1a die fr{\"u}he Signalweiterleitung an der Plasmamembran st{\"o}rt, wurde bisher kein mit der Plasmamembran assoziiertes Zielprotein f{\"u}r diesen T3E identifiziert. Um bisher unbekannte HopZ1a-Zieleproteine zu identifizieren wurde im Vorfeld dieser Arbeit eine Hefe-Zwei-Hybrid-Durchmusterung mit einer cDNA-Bibliothek aus Tabak durchgef{\"u}hrt, wobei ein nicht n{\"a}her charakterisiertes Remorin als Interaktor gefunden wurde. Bei dem Remorin handelt es sich um einen Vertreter der Gruppe 4 der Remorin-Familie, weshalb es in NbREM4 umbenannt wurde. Durch den Einsatz verschiedener Interaktionsstudien konnte demonstriert werden, dass HopZ1a mit NbREM4 in Hefe, in vitro und in planta wechselwirkt. Es wurde ferner deutlich, dass HopZ1a auf spezifische Weise mit dem konservierten C-Terminus von NbREM4 interagiert, das Remorin jedoch in vitro nicht acetyliert. Analysen mittels BiFC haben zudem ergeben, dass NbREM4 in Homodimeren an der Plasmamembran lokalisiert, wo auch die Interaktion mit HopZ1a stattfindet. Eine funktionelle Charakterisierung von NbREM4 ergab, dass das Remorin eine spezifische Rolle im Immunsystem der Pflanze einnimmt. Die transiente Expression in N. benthamiana induziert die Expression von Abwehrgenen sowie einen ver{\"a}nderten Blattph{\"a}notyp. In A. thaliana wird HopZ1a {\"u}ber das Decoy ZED1 und das R-Protein ZAR1 erkannt, was zur Ausl{\"o}sung einer starken Hypersensitiven Antwort (HR von hypersensitive response) f{\"u}hrt. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass ZAR1 in N. benthamiana konserviert ist, NbREM4 jedoch nicht in der ETI als Decoy fungiert. Mit Hilfe einer Hefe-Zwei-Hybrid-Durchmusterung mit NbZAR1 als K{\"o}der konnten zwei Proteine, die Catalase CAT1 und der Protonenpumpeninteraktor PPI1, als Interaktoren von NbZAR1 identifiziert werden, welche m{\"o}glicherweise in der Regulation der HR eine Rolle spielen. Aus Voruntersuchungen war bekannt, dass NbREM4 mit weiteren, nicht n{\"a}her charakterisierten Proteinen aus Tabak interagieren k{\"o}nnte. Eine phylogenetische Einordnung hat gezeigt, dass es sich um die bekannte Immun-Kinase PBS1 sowie zwei E3-Ubiquitin-Ligasen, NbSINA1 und NbSINAL3, handelt. PBS1 interagiert mit NbREM4 an der Plasmamembran und phosphoryliert das Remorin innerhalb des intrinsisch ungeordneten N-Terminus. Mittels Massenspektrometrie konnten die Serine an Position 64 und 65 innerhalb der Aminos{\"a}uresequenz von NbREM4 als PBS1-abh{\"a}ngige Phosphorylierungsstellen identifiziert wurden. NbSINA1 und NbSINAL3 besitzen in vitro Ubiquitinierungsaktivit{\"a}t, bilden Homo- und Heterodimere und interagieren ebenfalls mit dem N-terminalen Teil von NbREM4, wobei sie das Remorin in vitro nicht ubiquitinieren. Aus den in dieser Arbeit gewonnenen Ergebnissen l{\"a}sst sich ableiten, dass der bakterielle T3E HopZ1a gezielt mit dem Tabak-Remorin NbREM4 an der Plasmamembran interagiert und {\"u}ber einen noch unbekannten Mechanismus mit dem Immunsystem der Pflanze interferiert, wobei NbREM4 m{\"o}glicherweise eine Rolle als Adapter- oder Ankerprotein zukommt, {\"u}ber welches HopZ1a mit weiteren Immunkomponenten interagiert. NbREM4 ist Teil eines gr{\"o}ßeren Immunnetzwerkes, zu welchem die bekannte Immun-Kinase PBS1 und zwei E3-Ubiquitin-Ligasen geh{\"o}ren. Mit NbREM4 konnte damit erstmalig ein membranst{\"a}ndiges Protein mit einer Funktion im Immunsystem der Pflanze als Zielprotein von HopZ1a identifiziert werden.}, language = {de} }