@article{AichLierschVetteretal.2014, author = {Aich, Valentin and Liersch, Stefan and Vetter, T. and Huang, S. and Tecklenburg, J. and Hoffmann, P. and Koch, H. and Fournet, S. and Krysanova, Valentina and Mueller, N. and Hattermann, Fred Fokko}, title = {Comparing impacts of climate change on streamflow in four large African river basins}, series = {Hydrology and earth system sciences : HESS}, volume = {18}, journal = {Hydrology and earth system sciences : HESS}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-18-1305-2014}, pages = {1305 -- 1321}, year = {2014}, abstract = {This study aims to compare impacts of climate change on streamflow in four large representative African river basins: the Niger, the Upper Blue Nile, the Oubangui and the Limpopo. We set up the eco-hydrological model SWIM (Soil and Water Integrated Model) for all four basins individually. The validation of the models for four basins shows results from adequate to very good, depending on the quality and availability of input and calibration data. For the climate impact assessment, we drive the model with outputs of five bias corrected Earth system models of Coupled Model Intercomparison Project Phase 5 (CMIP5) for the representative concentration pathways (RCPs) 2.6 and 8.5. This climate input is put into the context of climate trends of the whole African continent and compared to a CMIP5 ensemble of 19 models in order to test their representativeness. Subsequently, we compare the trends in mean discharges, seasonality and hydrological extremes in the 21st century. The uncertainty of results for all basins is high. Still, climate change impact is clearly visible for mean discharges but also for extremes in high and low flows. The uncertainty of the projections is the lowest in the Upper Blue Nile, where an increase in streamflow is most likely. In the Niger and the Limpopo basins, the magnitude of trends in both directions is high and has a wide range of uncertainty. In the Oubangui, impacts are the least significant. Our results confirm partly the findings of previous continental impact analyses for Africa. However, contradictory to these studies we find a tendency for increased streamflows in three of the four basins (not for the Oubangui). Guided by these results, we argue for attention to the possible risks of increasing high flows in the face of the dominant water scarcity in Africa. In conclusion, the study shows that impact intercomparisons have added value to the adaptation discussion and may be used for setting up adaptation plans in the context of a holistic approach.}, language = {en} } @article{AichZimmermannElsenbeer2014, author = {Aich, Valentin and Zimmermann, Alexander and Elsenbeer, Helmut}, title = {Quantification and interpretation of suspended-sediment discharge hysteresis patterns: How much data do we need?}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {122}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2014.06.020}, pages = {120 -- 129}, year = {2014}, abstract = {Sediment-discharge hysteresis loops are frequently analyzed to facilitate the understanding of sediment transport processes. Hysteresis patterns, however, are often complex and their interpretation can be complicated. Particularly, quantifying hysteresis patterns remains a problematic issue. Moreover, it is currently unknown how much data is required for analyzing sediment-discharge hysteresis loops in a given area. These open questions and challenges motivated us to develop a new method for quantifying suspended-sediment hysteresis. Subsequently, we applied the new hysteresis index to three suspended-sediment and discharge datasets from a small tropical rainforest catchment. The datasets comprised a different number of events and sampling sites. Our analyses show three main findings: (1) datasets restricted to only few events, which is typical for rapid assessment surveys, were always sufficient to identify the dominating hysteresis pattern in our research area. Furthermore, some of these small datasets contained multiple-peak events that allowed identifying intra-event exhaustion effects and hence, limitations in sediment supply. (2) Datasets comprising complete hydrological years were particularly useful for analyzing seasonal dynamics of hysteresis. These analyses revealed an exhaustion of hysteresis on the inter-event scale which also points to a limited sediment supply. (3) Datasets comprising measurements from two consecutive gauges installed at the catchment outlet and on a slope within that catchment allowed analyzing the change of hysteresis patterns along the flowpath. On the slope, multiple-peak events showed a stronger intra-event exhaustion of hysteresis than at the catchment outlet. Furthermore, exhaustion of hysteresis on the inter-event scale was not evident on the slope but occurred at the catchment outlet. Our results indicate that even small sediment datasets can provide valuable insights into sediment transport processes of small catchments. Furthermore, our results may serve as a first guideline on what to expect from an analysis of hysteresis patterns for datasets of varying quality and quantity. (c) 2014 Elsevier B.V. All rights reserved.}, language = {en} }