@article{TomasHomannMuttietal.2013, author = {Tomas, Sara and Homann, Martin and Mutti, Maria and Amour, Frederic and Christ, Nicolas and Immenhauser, Adrian and Agar, Susan M. and Kabiri, Lahcen}, title = {Alternation of microbial mounds and ooid shoals (Middle Jurasssic, Morocco) - response to paleoenvironmental changes}, series = {Sedimentary geology : international journal of applied and regional sedimentology}, volume = {294}, journal = {Sedimentary geology : international journal of applied and regional sedimentology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0037-0738}, doi = {10.1016/j.sedgeo.2013.05.008}, pages = {68 -- 82}, year = {2013}, abstract = {The occurrence of neritic microbial carbonates is often related to ecological refuges, where grazers and other competitors are reduced by environmental conditions, or to post-extinction events (e.g. in the Late Devonian, Early Triassic). Here, we present evidence for Middle Jurassic (Bajocian) microbial mounds formed in the normal marine, shallow neritic setting of an inner, ramp system from the High Atlas of Morocco. The microbial mounds are embedded in cross-bedded oolitic facies. Individual mounds show low relief domal geometries (up to 3 m high and 4.5 m across), but occasionally a second generation of mounds exhibits tabular geometries (<1 m high). The domes are circular in plan view and have intact tops, lacking evidence of current influence on mound preferred growth direction or distribution patterns, or truncation. The mound fades consists almost entirely of non-laminated, micritic thrombolites with branching morphologies and fine-grained, clotted and peloidal fabrics. Normal marine biota are present but infrequent. Several lines of evidence document that microbial mound growth alternates with time intervals of active ooid shoal deposition. This notion is of general significance when compared with modern Bahamian microbialites that co-exist with active sub-aquatic dunes. Furthermore, the lack of detailed studies of Middle Jurassic, normal marine shallow neritic microbial mounds adds a strong motivation for the present study. Specifically, Bajocian mounds formed on a firmground substratum during transgressive phases under condensed sedimentation. Furthermore, a transient increase in nutrient supply in the prevailing mesotrophic setting, as suggested by the heterotrophic-dominated biota, may have controlled microbial mound stages.}, language = {en} } @article{AmourMuttiChristetal.2013, author = {Amour, Frederic and Mutti, Maria and Christ, Nicolas and Immenhauser, Adrian and Benson, Gregory S. and Agar, Susan M. and Tomas, Sara and Kabiri, Lahcen}, title = {Outcrop analog for an oolitic carbonate ramp reservoir a scale-dependent geologic modeling approach based on stratigraphic hierarchy}, series = {AAPG bulletin}, volume = {97}, journal = {AAPG bulletin}, number = {5}, publisher = {American Association of Petroleum Geologists}, address = {Tulsa}, issn = {0149-1423}, doi = {10.1306/10231212039}, pages = {845 -- 871}, year = {2013}, abstract = {Considerable effort has been devoted to the development of simulation algorithms for facies modeling, whereas a discussion of how to combine those techniques has not existed. The integration of multiple geologic data into a three-dimensional model, which requires the combination of simulation techniques, is yet a current challenge for reservoir modeling. This article presents a thought process that guides the acquisition and modeling of geologic data at various scales. Our work is based on outcrop data collected from a Jurassic carbonate ramp located in the High Atlas mountain range of Morocco. The study window is 1 km (0.6 mi) wide and 100 m (328.1 ft) thick. We describe and model the spatial and hierarchical arrangement of carbonate bodies spanning from largest to smallest: (1) stacking pattern of high-frequency depositional sequences, (2) facies association, and (3) lithofacies. Five sequence boundaries were modeled using differential global position system mapping and light detection and ranging data. The surface-based model shows a low-angle profile with modest paleotopographic relief at the inner-to-middle ramp transition. Facies associations were populated using truncated Gaussian simulation to preserve ordered trends between the inner, middle, and outer ramps. At the lithofacies scale, field observations and statistical analysis show a mosaiclike distribution that was simulated using a fully stochastic approach with sequential indicator simulation. This study observes that the use of one single simulation technique is unlikely to correctly model the natural patterns and variability of carbonate rocks. The selection and implementation of different techniques customized for each level of the stratigraphic hierarchy will provide the essential computing flexibility to model carbonate settings. This study demonstrates that a scale-dependent modeling approach should be a common procedure when building subsurface and outcrop models.}, language = {en} } @article{ShekharSahniBensonetal.2014, author = {Shekhar, R. and Sahni, I. and Benson, Gregory S. and Agar, Susan M. and Amour, Fr{\´e}d{\´e}ric and Tomas, Sara and Christ, Nicolas and Alway, Robert and Mutti, Maria and Immenhauser, A. and Karcz, Z. and Kabiri, L.}, title = {Modelling and simulation of a Jurassic carbonate ramp outcrop, Amellago, High Atlas Mountains, Morocco}, series = {Petroleum geoscience}, volume = {20}, journal = {Petroleum geoscience}, number = {1}, publisher = {Geological Soc. Publ. House}, address = {Bath}, issn = {1354-0793}, doi = {10.1144/petgeo2013-010}, pages = {109 -- 123}, year = {2014}, abstract = {Carbonate reservoirs pose significant challenges for reservoir modelling and flow prediction due to heterogeneities in rock properties, limits to seismic resolution and limited constraints on subsurface data. Hence, a systematic and streamlined approach is needed to construct geological models and to quickly evaluate key sensitivities in the flow models. This paper discusses results from a reservoir analogue study of a Middle Jurassic carbonate ramp in the High Atlas Mountains of Morocco that has stratigraphic and structural similarities to selected Middle East reservoirs. For this purpose, high-resolution geological models were constructed from the integration of sedimentological, diagenetic and structural studies in the area. The models are approximately 1200 x 1250 m in size, and only faults (no fractures) with offsets greater than 1 m are included. Novel methods have been applied to test the response of flow simulations to the presence or absence of specific geological features, including proxies for hardgrounds, stylolites, patch reefs, and mollusc banks, as a way to guide the level of detail that is suitable for modelling objectives. Our general conclusion from the study is that the continuity of any geological feature with extreme permeability (high or low) has the most significant impact on flow.}, language = {en} } @article{AgadaChenGeigeretal.2014, author = {Agada, S. and Chen, F. and Geiger, S. and Toigulova, G. and Agar, Susan M. and Shekhar, R. and Benson, Gregory S. and Hehmeyer, O. and Amour, Fr{\´e}d{\´e}ric and Mutti, Maria and Christ, Nicolas and Immenhauser, A.}, title = {Numerical simulation of fluid-flow processes in a 3D high-resolution carbonate reservoir analogue}, series = {Petroleum geoscience}, volume = {20}, journal = {Petroleum geoscience}, number = {1}, publisher = {Geological Soc. Publ. House}, address = {Bath}, issn = {1354-0793}, doi = {10.1144/petgeo2012-096}, pages = {125 -- 142}, year = {2014}, abstract = {A high-resolution three-dimensional (3D) outcrop model of a Jurassic carbonate ramp was used in order to perform a series of detailed and systematic flow simulations. The aim of this study was to test the impact of small- and large-scale geological features on reservoir performance and oil recovery. The digital outcrop model contains a wide range of sedimentological, diagenetic and structural features, including discontinuity surfaces, shoal bodies, mud mounds, oyster bioherms and fractures. Flow simulations are performed for numerical well testing and secondary oil recovery. Numerical well testing enables synthetic but systematic pressure responses to be generated for different geological features observed in the outcrops. This allows us to assess and rank the relative impact of specific geological features on reservoir performance. The outcome documents that, owing to the realistic representation of matrix heterogeneity, most diagenetic and structural features cannot be linked to a unique pressure signature. Instead, reservoir performance is controlled by subseismic faults and oyster bioherms acting as thief zones. Numerical simulations of secondary recovery processes reveal strong channelling of fluid flow into high-permeability layers as the primary control for oil recovery. However, appropriate reservoir-engineering solutions, such as optimizing well placement and injection fluid, can reduce channelling and increase oil recovery.}, language = {en} } @article{ChristImmenhauserAmouretal.2012, author = {Christ, Nicolas and Immenhauser, Adrian and Amour, Frederic and Mutti, Maria and Preston, Rosalind and Whitaker, Fiona F. and Peterh{\"a}nsel, Arndt and Egenhoff, Sven O. and Dunn, Paul A. and Agar, Susan M.}, title = {Triassic Latemar cycle tops - Subaerial exposure of platform carbonates under tropical arid climate}, series = {Sedimentary geology : international journal of applied and regional sedimentology}, volume = {265}, journal = {Sedimentary geology : international journal of applied and regional sedimentology}, number = {28}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0037-0738}, doi = {10.1016/j.sedgeo.2012.02.008}, pages = {1 -- 29}, year = {2012}, abstract = {The Triassic Latemar platform in the Dolomites, Italy, is the site of several ongoing controversies. Perhaps the most interesting debate focuses on apparent cyclic deposition within the Latemar platform, whose nature and duration are still open to debate. Further disagreement concerns the lack of meteoric diagenesis-related isotope shifts at cycle tops that bear circumstantial petrographic evidence for subaerial emergence. Here, an evaluation of the nature of Latemar cycle tops is presented combining evidence from previous work and new field, petrographic and geochemical data. Cycle tops are ranked according to increasing exposure duration and spatial extent: type I surfaces lacking unequivocal evidence of prolonged supratidal conditions; type II dolomite caps formed in warm, evaporitic, intertidal lagoonal waters followed by exposure of perhaps intermediate duration; type III clastic-rich, red calcareous horizons with some showing platform-wide extent, representing prolonged supratidal conditions, and type IV discontinuities in tepee belts, genetically related to type II and III surfaces, but likely representing shorter-lived exposure stages. Petrographic and geochemical criteria indicate that most diagenesis occurred in the shallow marine and burial domain whilst an extensive meteoric overprint of cycle tops is lacking. This is underlined by the scarcity of meteoric diagenetic fabrics such as gravitational cements that, where present, are here interpreted as marine-vadose in origin. The scarcity of carbon and oxygen isotope signatures commonly assigned to subaerial exposure stages is best explained in the context of mid-Triassic climate. The low latitude, tropical but arid setting of the Latemar, situated in the western extension of the Tethys ocean, its isolation from nearby continental areas and overall short-term emergence episodes are in agreement with a limited degree of meteoric alteration of most cycle tops. High amounts of aeolian clastic material beneath some cycle tops, along with high Fe and Mn elemental abundances argue for intermittent subaerial conditions. This study proposes an enhancement of the classical Allan and Matthews (1982) isotope model for subaerial exposure under strongly arid climates. As the subaerial exposure nature of Latemar cycle tops, and therefore eustasy as the cause for cyclicity, have been previously challenged due to the lack of meteoric-induced isotopic signatures, the outcome of this study is of significance for the ongoing Latemar stratigraphic controversy.}, language = {en} } @article{AmourMuttiChristetal.2012, author = {Amour, Frederic and Mutti, Maria and Christ, Nicolas and Immenhauser, Adrian and Agar, Susan M. and Benson, Gregory S. and Tomas, Sara and Alway, Robert and Kabiri, Lachen}, title = {Capturing and modelling metre-scale spatial facies heterogeneity in a Jurassic ramp setting (Central High Atlas, Morocco)}, series = {Sedimentology : the journal of the International Association of Sedimentologists}, volume = {59}, journal = {Sedimentology : the journal of the International Association of Sedimentologists}, number = {4}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0037-0746}, doi = {10.1111/j.1365-3091.2011.01299.x}, pages = {1158 -- 1189}, year = {2012}, abstract = {Each simulation algorithm, including Truncated Gaussian Simulation, Sequential Indicator Simulation and Indicator Kriging is characterized by different operating modes, which variably influence the facies proportion, distribution and association of digital outcrop models, as shown in clastic sediments. A detailed study of carbonate heterogeneity is then crucial to understanding these differences and providing rules for carbonate modelling. Through a continuous exposure of Bajocian carbonate strata, a study window (320 m long, 190 m wide and 30 m thick) was investigated and metre-scale lithofacies heterogeneity was captured and modelled using closely-spaced sections. Ten lithofacies, deposited in a shallow-water carbonate-dominated ramp, were recognized and their dimensions and associations were documented. Field data, including height sections, were georeferenced and input into the model. Four models were built in the present study. Model A used all sections and Truncated Gaussian Simulation during the stochastic simulation. For the three other models, Model B was generated using Truncated Gaussian Simulation as for Model A, Model C was generated using Sequential Indicator Simulation and Model D was generated using Indicator Kriging. These three additional models were built by removing two out of eight sections from data input. The removal of sections allows direct insights on geological uncertainties at inter-well spacings by comparing modelled and described sections. Other quantitative and qualitative comparisons were carried out between models to understand the advantages/disadvantages of each algorithm. Model A is used as the base case. Indicator Kriging (Model D) simplifies the facies distribution by assigning continuous geological bodies of the most abundant lithofacies to each zone. Sequential Indicator Simulation (Model C) is confident to conserve facies proportion when geological heterogeneity is complex. The use of trend with Truncated Gaussian Simulation is a powerful tool for modelling well-defined spatial facies relationships. However, in shallow-water carbonate, facies can coexist and their association can change through time and space. The present study shows that the scale of modelling (depositional environment or lithofacies) involves specific simulation constraints on shallow-water carbonate modelling methods.}, language = {en} } @article{ChristImmenhauserAmouretal.2012, author = {Christ, Nicolas and Immenhauser, Adrian and Amour, Frederic and Mutti, Maria and Tomas, Sara and Agar, Susan M. and Alway, Robert and Kabiri, Lahcen}, title = {Characterization and interpretation of discontinuity surfaces in a Jurassic ramp setting (High Atlas, Morocco)}, series = {Sedimentology : the journal of the International Association of Sedimentologists}, volume = {59}, journal = {Sedimentology : the journal of the International Association of Sedimentologists}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0037-0746}, doi = {10.1111/j.1365-3091.2011.01251.x}, pages = {249 -- 290}, year = {2012}, abstract = {Discontinuity surfaces are widely recognized but often poorly understood features of epeiric carbonate settings. In sedimentary systems, these features often represent hiatus surfaces below biostratigraphic resolution and may represent a considerable portion of the time contained in the sediment record. From an applied perspective, discontinuities may represent horizontal flow barriers and result in reservoir compartmentalization. Here, a total of 80 condensed surfaces (S1), firmgrounds (S2) and hardgrounds (S3) from a Jurassic (Middle and Upper Bajocian Assoul Formation) ramp setting of the High Atlas in Morocco are carefully documented with respect to their morphology, their secondary impregnation by Fe and Mn oxides and phosphates and their palaeoecological record. A statistical frequency distribution of two surfaces of the S1 type, 1.1 surfaces of the S2 type and 0.4 surfaces of the S3 type per 10 section metres is observed along a 220 m long carbonate succession. Based on two stratigraphically and spatially separated study windows and correlative sections, the stratigraphic frequency distribution, the lateral extent and the nature of facies change across discontinuities are documented in a quantitative manner. Specific features of the study site include the considerable stratigraphic thickness of the Assoul Formation and the conspicuous absence of subaerial-exposure-related features. Based on the data presented here, firmground and hardground surfaces are best interpreted as maximum-regression-related features. Relative sea-level lowstand results in a lowered wave base, and wave orbitals and currents result in sea floor omission and lithification. Care must be taken to avoid overly simplistic interpretations, as differences in bathymetry and carbonate facies result in marked changes in discontinuity characteristics in proximal-distal transects. The data shown here are of significance for those concerned with the interpretation of shoal water carbonate environments and are instrumental in the building of more realistic carbonate reservoir flow models.}, language = {en} }