@article{OmoleMoshiHeydenreichetal.2019, author = {Omole, Ruth Anyango and Moshi, Mainen Julius and Heydenreich, Matthias and Malebo, Hamisi Masanja and Gathirwa, Jeremiah Waweru and Ochieng, Sharon Alice and Omosa, Leonida Kerubo and Midiwo, Jacob Ogweno}, title = {Two lignans derivatives and two fusicoccane diterpenoids from the whole plant of Hypoestes verticillaris (L.F.) Sol. Ex roem. \& schult}, series = {Phytochemistry letters}, volume = {30}, journal = {Phytochemistry letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2019.02.019}, pages = {194 -- 200}, year = {2019}, abstract = {Bioassay-guided screening of Hypoestes verticillaris whole plant CH2Cl2: MeOH (1:1) extract for anti-plasmodial activity yielded four new compounds: two lignans 2, 6-dimethoxysavinin (1), 2,6-dimethoxy-(7E)-7,8-dehydroheliobuphthalmin (2); and two fusicoccane diterpenoids: 11(12)-epoxyhypoestenone (3) and 3(11)-epoxyhypoestenone (4). The chemical structures were determined using various spectroscopic techniques: UV-vis, IR, CD, 1D, 2D and MS. Two fractions (RAO-43B and RAO-43D) and the isolated compounds were tested for activity against CQ susceptible (D6) and resistant (W2) Plasmodium falciparum parasite strains, in vitro and the IC50 values determined. While the whole extract and some resultant fractions displayed moderate activity, the isolated compounds exhibited mild anti-plasmodial activity against the both strains ranging from IC50 value of 328 mu M in 1 to 93 mu M in 3 against W2 strain.}, language = {en} } @article{OmosaAmuguneNdundaetal.2014, author = {Omosa, Leonidah K. and Amugune, Beatrice and Ndunda, Beth and Milugo, Trizah K. and Heydenreich, Matthias and Yenesew, Abiy and Midiwo, Jacob O.}, title = {Antimicrobial flavonoids and diterpenoids from Dodonaea angustifolia}, series = {South African journal of botany : an international interdisciplinary journal for botanical sciences}, volume = {91}, journal = {South African journal of botany : an international interdisciplinary journal for botanical sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0254-6299}, doi = {10.1016/j.sajb.2013.11.012}, pages = {58 -- 62}, year = {2014}, language = {en} } @article{PazBecerraSilvaetal.2015, author = {Paz, Cristian and Becerra, Jose and Silva, Mario and Burgos, Viviana and Heydenreich, Matthias and Schmidt, Bernd and Thu Tran, and Vetter, Irina}, title = {(-)-Pentylsedinine, a New Alkaloid from the Leaves of Lobelia tupa with Agonist Activity at Nicotinic Acetylcholine Receptor}, series = {Natural product communications : an international journal for communications and reviews}, volume = {10}, journal = {Natural product communications : an international journal for communications and reviews}, number = {8}, publisher = {NPC}, address = {Westerville}, issn = {1934-578X}, pages = {1355 -- 1357}, year = {2015}, abstract = {Lobelia tupa, also called devil's tobacco, is a native plant from the center-south of Chile which has been used by the native people of Chile as a hallucinogenic and anesthetic plant. A new piperidine alkaloid, called pentylsedinine, which comprises five carbons in the side chain, was isolated from the aerial part of L. tupa, along with lobeline and lobelanidine. The structure was established on the basis of 1D and 2D NMR spectroscopy. While lobeline is a neutral antagonist at alpha 3 beta 2/alpha 3 beta 4 nAChR and alpha 7 nAChR, both lobelanidine and pentylsedinine act as partial agonists at nAChR}, language = {en} } @article{PazBecerraSilvaetal.2016, author = {Paz, Cristian and Becerra, Jose and Silva, Mario and Cabrera-Pardo, Jaime and Burgos, Viviana and Heydenreich, Matthias and Schmidt, Bernd}, title = {(-)-8-Oxohobartine a New Indole Alkaloid from Aristotelia chilensis (Mol.) Stuntz}, series = {Records of Natural Products}, volume = {10}, journal = {Records of Natural Products}, publisher = {ACG Publications}, address = {Gebze-Kocaeli}, issn = {1307-6167}, pages = {68 -- 73}, year = {2016}, abstract = {The fruit of Aristotelia chilensis is considered a "super fruit" due to its high concentration of polyphenols displaying exceptional antioxidant capacities ORAC. From maqui berries have been reported several anthocyanins and glycosylated flavonoids, those benefits increase the attention to restudy the plant. From the leaves of A. chilensis several indole alkaloids have been reported, we in addition to aristoteline, aristone, aristoquinoline and 3-fromylindole report the spectroscopic elucidation of 8-oxo-9-dehydromakomakine (1), hobartine (2) and a new alkaloid named 8-oxohobartine (3). Compound 1 to 3 did not show bactericidal activity against E. coli and S. aureus till 200 mu g.}, language = {en} } @article{PazHeydenreichSchmidtetal.2018, author = {Paz, Cristian and Heydenreich, Matthias and Schmidt, Bernd and Vadra, Nahir and Baggio, Ricardo}, title = {Three new dihydro-beta-agarofuran sesquiterpenes from the seeds of Maytenus boaria}, series = {Acta Crystallographica Section C}, volume = {74}, journal = {Acta Crystallographica Section C}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {2053-2296}, doi = {10.1107/S2053229618005429}, pages = {564 -- 570}, year = {2018}, abstract = {As part of a project studying the secondary metabolites extracted from the Chilean flora, we report herein three new beta-agarofuran sesquiterpenes, namely (1S,4S,5S,6R,7R,8R,9R,10S)-6-acetoxy-4,9-dihydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b] oxepine-5,10-diylbis(furan-3-carboxylate), C27H32O11, (II), (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-9-hydroxy-2,2,5a, 9-tetramethyloctahydro-2H-3,9a-methanobenzo[ b] oxepine-5,10-diyl bis(furan-3-carboxylate), C27H32O10, (III), and (1S,4S,5S,6R,7R,9S,10S)-6-acetoxy-10-(benzoyloxy)-9-hydroxy-2,2,5a,9-tetramethyloctahydro-2H-3,9a-methanobenzo[b]oxepin-5-yl furan-3-carboxylate, C29H34O9, (IV), obtained from the seeds of Maytenus boaria and closely associated with a recently published relative [Paz et al. (2017). Acta Cryst. C73, 451-457]. In the (isomorphic) structures of (II) and (III), the central decalin system is esterified with an acetate group at site 1 and furoate groups at sites 6 and 9, and differ at site 8, with an OH group in (II) and no substituent in (III). This position is also unsubstituted in (IV), with site 6 being occupied by a benzoate group. The chirality of the skeletons is described as 1S, 4S, 5S, 6R, 7R, 8R, 9R, 10S in (II) and 1S, 4S, 5S, 6R, 7R, 9S, 10S in (III) and (IV), matching the chirality suggested by NMR studies. This difference in the chirality sequence among the title structures (in spite of the fact that the three skeletons are absolutely isostructural) is due to the differences in the environment of site 8, i.e. OH in (II) and H in (III) and (IV). This diversity in substitution, in turn, is responsible for the differences in the hydrogen-bonding schemes, which is discussed.}, language = {en} } @misc{PeterMuivaYenesewetal.2009, author = {Peter, Martin G. and Muiva, Lois M. and Yenesew, Abiy and Derese, Solomon and Heydenreich, Matthias and Akala, Hoseah M. and Eyase, Fredrick and Waters, Norman C. and Mutai, Charles and Keriko, Joseph M. and Walsh, Douglas S.}, title = {Antiplasmodial β-hydroxydihydrochalcone from seedpods of Tephrosia elata}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44437}, year = {2009}, abstract = {From the seedpods of Tephrosia elata, a new β-hydroxydihydrochalcone named (S)-elatadihydrochalcone was isolated. In addition, the known flavonoids obovatachalcone, obovatin, obovatin methyl ether and deguelin were identified. The structures were determined on the basis of spectroscopic evidence. The crude extract and the flavonoids obtained from the seedpods of this plant showed antiplasmodial activities. The literature NMR data on β-hydroxydihydrochalcones is reviewed and the identity of some of the compounds assigned β-hydroxydihydrochalcone skeleton is questioned.}, language = {en} } @misc{PeterYenesewTwinomuhwezietal.2009, author = {Peter, Martin G. and Yenesew, Abiy and Twinomuhwezi, Hannington and Kabaru, Jacques M. and Akala, Hoseah M. and Kiremire, Bernard T. and Heydenreich, Matthias and Eyase, Fredrick and Waters, Norman C. and Walsh, Douglas S.}, title = {Antiplasmodial and larvicidal flavonoids from Derris trifoliata}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44614}, year = {2009}, abstract = {From the dichloromethane-methanol (1:1) extract of the seed pods of Derris trifoliata, a new flavanone derivative (S)-lupinifolin 4´-methyl ether was isolated. In addition, the known flavonoids lupinifolin and rotenone were identified. The structures were determined on the basis of spectroscopic evidence. Lupinfolin showed moderate in vitro antiplasmodial activity against the D6 (chloroquine-sensitive) and W2 (chloroquineresistant) strains of Plasmodium falciparum. The different parts of this plant showed larvicidal activities against Aedes aegypti and rotenoids were identified as the active principles.}, language = {en} } @article{PoleschnerHeydenreich1997, author = {Poleschner, Helmut and Heydenreich, Matthias}, title = {1H and 13C NMR Spectra and One-Bond 13C,13C Coupling Constants of 2-Alken-4-yn-1-ols, (E)-2-Alken-4-yn-1-yl Acetates and (E)-2-Alken-4-yn-1-als}, year = {1997}, language = {en} } @article{PoleschnerHeydenreich1995, author = {Poleschner, Helmut and Heydenreich, Matthias}, title = {13C NMR chemical shifts of unbranched 2-Alkyn-1-ols, w-Alkyn-1-ols and "internal" Alkyn-1-ols}, year = {1995}, language = {en} } @article{PoleschnerHeydenreichSchilde2000, author = {Poleschner, Helmut and Heydenreich, Matthias and Schilde, Uwe}, title = {13C, 19F and 77Se NMR study of vicinal (E)-fluoro(organylseleno)olefins and [(E)- fluoroalkenyl]diorganylselenonium salts}, year = {2000}, abstract = {Selenides of the type R1Se-EMe3 (E = Si, Ge, Sn, Pb) react with xenon difluoride by cleavage of the Se-E bond to yield the R1Se-F intermediate and the fluorides Me3E-F, whereas the Se-C bond in PhSe-tBu (E = C) is stable against XeF2. The presence of R1Se-F intermediates is confirmed by addition to acetylenes (4-octyne, 3-hexyne). Thus, the fluoroselenenylation of acetylenes gives fluoro(organylseleno)olefins in preparative yields. In the cases of E = Si, Ge, Sn, and Pb, aryl and n-alkyl groups are suitable as the substituent R1. The X-ray crystal structural analysis of (E)-3- (p-carboxyphenylseleno)-4-fluorohex-3-ene - the first example of an uncharged fluoroselenoolefin synthesized from p- EtO2C-C6H4-Se-SnMe3, XeF2, and 3-hexyne followed by an ester hydrolysis - shows that the addition of the selenenylfluoride intermediate to the acetylene proceeds via a trans-addition, as is known for the R2Se2-XeF2 reagents.}, language = {en} }