@article{RieckGeigerMunkertetal.2019, author = {Rieck, Christoph Paul Kurt and Geiger, Daniel and Munkert, Jennifer and Messerschmidt, Katrin and Petersen, Jan and Strasser, Juliane and Meitinger, Nadine and Kreis, Wolfgang}, title = {Biosynthetic approach to combine the first steps of cardenolide formation in Saccharomyces cerevisiae}, series = {Microbiologyopen}, volume = {8}, journal = {Microbiologyopen}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-8827}, doi = {10.1002/mbo3.925}, pages = {11}, year = {2019}, abstract = {A yeast expression plasmid was constructed containing a cardenolide biosynthetic module, referred to as CARD II, using the AssemblX toolkit, which enables the assembly of large DNA constructs. The genes cloned into the vector were (a) a Δ5-3β-hydroxysteroid dehydrogenase gene from Digitalis lanata, (b) a steroid Δ5-isomerase gene from Comamonas testosteronii, (c) a mutated steroid-5β-reductase gene from Arabidopsis thaliana, and (d) a steroid 21-hydroxylase gene from Mus musculus. A second plasmid bearing an ADR/ADX fusion gene from Bos taurus was also constructed. A Saccharomyces cerevisiae strain bearing these two plasmids was generated. This strain, termed "CARD II yeast", was capable of producing 5β-pregnane-3β,21-diol-20-one, a central intermediate in 5β-cardenolide biosynthesis, starting from pregnenolone which was added to the culture medium. Using this approach, five consecutive steps in cardenolide biosynthesis were realized in baker's yeast.}, language = {en} } @article{EugeniaTietzeJoshiPugnaireetal.2019, author = {Eugenia Tietze, Hedwig Selma and Joshi, Jasmin Radha and Pugnaire, Francisco Ignacio and Dechoum, Michele de Sa}, title = {Seed germination and seedling establishment of an invasive tropical tree species under different climate change scenarios}, series = {Austral ecology}, volume = {44}, journal = {Austral ecology}, number = {8}, publisher = {Wiley}, address = {Hoboken}, issn = {1442-9985}, doi = {10.1111/aec.12809}, pages = {1351 -- 1358}, year = {2019}, abstract = {Increasing air temperature and atmospheric CO2 levels may affect the distribution of invasive species. Whereas there is wide knowledge on the effect of global change on temperate species, responses of tropical invasive species to these two global change drivers are largely unknown. We conducted a greenhouse experiment on Terminalia catappa L. (Combretaceae), an invasive tree species on Brazilian coastal areas, to evaluate the effects of increased air temperature and CO2 concentration on seed germination and seedling growth on the island of Santa Catarina (Florianopolis, Brazil). Seeds of the invasive tree were subjected to two temperature levels (ambient and +1.6 degrees C) and two CO2 levels (ambient and 650 ppmv) with a factorial design. Increased temperature enhanced germination rate and shortened germination time of T. catappa seeds. It also increased plant height, number of leaves and above-ground biomass. By contrast, increased atmospheric CO2 concentration had no significant effects, and the interaction between temperature and CO2 concentration did not affect any of the measured traits. Terminalia catappa adapts to a relatively broad range of environmental conditions, being able to tolerate cooler temperatures in its invasive range. As T. catappa is native to tropical areas, global warming might favour its establishment along the coast of subtropical South America, while increased CO2 levels seem not to have significant effects on seed germination or seedling growth.}, language = {en} } @article{HansenAbreuDohertyetal.2019, author = {Hansen, Dominique and Abreu, Ana and Doherty, Patrick and V{\"o}ller, Heinz}, title = {Dynamic strength training intensity in cardiovascular rehabilitation: is it time to reconsider clinical practice? A systematic review}, series = {European journal of preventive cardiology : the official ESC journal for primary \& secondary cardiovascular prevention, rehabilitation and sports cardiology}, volume = {26}, journal = {European journal of preventive cardiology : the official ESC journal for primary \& secondary cardiovascular prevention, rehabilitation and sports cardiology}, number = {14}, publisher = {Sage Publ.}, address = {London}, issn = {2047-4873}, doi = {10.1177/2047487319847003}, pages = {1483 -- 1492}, year = {2019}, abstract = {When added to endurance training, dynamic strength training leads to significantly greater improvements in peripheral muscle strength and power output in patients with cardiovascular disease, which may be relevant to enhance the patient's prognosis. As a result, dynamic strength training is recommended in the rehabilitative treatment of many different cardiovascular diseases. However, what strength training intensity should be selected remains under intense debate. Evidence is nonetheless emerging that high-intensity strength training (≥70\% of one-repetition maximum) is more effective to increase acutely myofibrillar protein synthesis, cause neural adaptations and, in the long term, increase muscle strength, when compared to low-intensity strength training. Moreover, multiple studies report that high-intensity strength training causes fewer increments in (intra-)arterial blood pressure and cardiac output, as opposed to low-intensity strength training, thus potentially pointing towards sufficient medical safety for the cardiovascular system. The aim of this systematic review is therefore to discuss this line of evidence, which is in contrast to current clinical practice, and to re-open the debate as to what dynamic strength training intensities should actually be applied.}, language = {en} } @article{SchoepkeHeinzePaetzigetal.2019, author = {Sch{\"o}pke, Benito and Heinze, Johannes and P{\"a}tzig, Marlene and Heinken, Thilo}, title = {Do dispersal traits of wetland plant species explain tolerance against isolation effects in naturally fragmented habitats?}, series = {Plant ecology : an international journal}, volume = {220}, journal = {Plant ecology : an international journal}, number = {9}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-019-00955-8}, pages = {801 -- 815}, year = {2019}, abstract = {The effects of habitat fragmentation and isolation on plant species richness have been verified for a wide range of anthropogenically fragmented habitats, but there is currently little information about their effects in naturally small and isolated habitats. We tested whether habitat area, heterogeneity, and isolation affect the richness of wetland vascular plant species in kettle holes, i.e., small glacially created wetlands, in an agricultural landscape of 1 km(2) in NE Germany. We compared fragmentation effects with those of forest fragments in the same landscape window. Since wetland and forest species might differ in their tolerance to isolation, and because isolation effects on plant species may be trait dependent, we asked which key life history traits might foster differences in isolation tolerance between wetland and forest plants. We recorded the flora and vegetation types in 83 isolated sites that contained 81 kettle holes and 25 forest fragments. Overall, the number of wetland species increased with increasing area and heterogeneity, i.e., the number of vegetation types, while area was not a surrogate for heterogeneity in these naturally fragmented systems. Isolation did not influence the number of wetland species but decreased the number of forest species. We also found that seeds of wetland species were on average lighter, more persistent and better adapted to epizoochory, e.g., by waterfowl, than seeds of forest species. Therefore, we suggest that wetland species are more tolerant to isolation than forest species due to their higher dispersal potential in space and time, which may counterbalance the negative effects of isolation.}, language = {en} } @article{ZupokGorkaSiemiatkowskaetal.2019, author = {Zupok, Arkadiusz and G{\´o}rka, Michał Jakub and Siemiatkowska, Beata and Skirycz, Aleksandra and Leimk{\"u}hler, Silke}, title = {Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli}, series = {Journal of bacteriology}, volume = {201}, journal = {Journal of bacteriology}, number = {17}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0021-9193}, doi = {10.1128/JB.00382-19}, pages = {15}, year = {2019}, abstract = {Molybdenum cofactor (Moco) biosynthesis is a complex process that involves the coordinated function of several proteins. In recent years it has become obvious that the availability of iron plays an important role in the biosynthesis of Moco. First, the MoaA protein binds two (4Fe-4S] clusters per monomer. Second, the expression of the moaABCDE and moeAB operons is regulated by FNR, which senses the availability of oxygen via a functional NFe-4S) cluster. Finally, the conversion of cyclic pyranopterin monophosphate to molybdopterin requires the availability of the L-cysteine desulfurase IscS, which is a shared protein with a main role in the assembly of Fe-S clusters. In this report, we investigated the transcriptional regulation of the moaABCDE operon by focusing on its dependence on cellular iron availability. While the abundance of selected molybdoenzymes is largely decreased under iron-limiting conditions, our data show that the regulation of the moaABCDE operon at the level of transcription is only marginally influenced by the availability of iron. Nevertheless, intracellular levels of Moco were decreased under iron-limiting conditions, likely based on an inactive MoaA protein in addition to lower levels of the L-cysteine desulfurase IscS, which simultaneously reduces the sulfur availability for Moco production. IMPORTANCE FNR is a very important transcriptional factor that represents the master switch for the expression of target genes in response to anaerobiosis. Among the FNR-regulated operons in Escherichia coli is the moaABCDE operon, involved in Moco biosynthesis. Molybdoenzymes have essential roles in eukaryotic and prokaryotic organisms. In bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. This work investigates the connection of iron availability to the biosynthesis of Moco and the production of active molybdoenzymes.}, language = {en} } @article{ClahsenJessen2019, author = {Clahsen, Harald and Jessen, Anna}, title = {Do bilingual children lag behind? A study of morphological encoding using ERPs}, series = {Journal of child language}, volume = {46}, journal = {Journal of child language}, number = {5}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0305-0009}, doi = {10.1017/S0305000919000321}, pages = {955 -- 979}, year = {2019}, abstract = {The current study investigates how bilingual children encode and produce morphologically complex words. We employed a silent-production-plus-delayed-vocalization paradigm in which event-related brain potentials (ERPs) were recorded during silent encoding of inflected words which were subsequently cued to be overtly produced. The bilingual children's spoken responses and their ERPs were compared to previous datasets from monolingual children on the same task. We found an enhanced negativity for regular relative to irregular forms during silent production in both bilingual children's languages, replicating the ERP effect previously obtained from monolingual children. Nevertheless, the bilingual children produced more morphological errors (viz. over-regularizations) than monolingual children. We conclude that mechanisms of morphological encoding (as measured by ERPs) are parallel for bilingual and monolingual children, and that the increased over-regularization rates are due to their reduced exposure to each of the two languages (relative to monolingual children).}, language = {en} } @article{CarvalhoBartoliFerrietal.2019, author = {Carvalho, Bruna B. and Bartoli, Omar and Ferri, Fabio and Cesare, Bernardo and Ferrero, Silvio and Remusat, Laurent and Capizzi, Luca Samuele and Poli, Stefano}, title = {Anatexis and fluid regime of the deep continental crust: New clues from melt and fluid inclusions in metapelitic migmatites from Ivrea Zone (NW Italy)}, series = {Journal of metamorphic geology}, volume = {37}, journal = {Journal of metamorphic geology}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0263-4929}, doi = {10.1111/jmg.12463}, pages = {951 -- 975}, year = {2019}, abstract = {We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 mu m and are regularly distributed in the core of the garnet. Microstructural and micro-Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N-2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K-feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0-3.4 wt\%), contain 860-1700 ppm CO2 and reach the highest H2O contents (6.5-10 wt\%). In the transition zone melts have intermediate H2O (4.8-8.5 wt\%), CO2 (457-1534 ppm) and maficity (FeO + MgO = 2.3-3.9 wt\%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2-4.7 wt\%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4-8.3 wt\%) to the other two zones. Our results represent the first clear evidence for carbonic fluid-present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid-melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+-bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon-contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid-present melting of the deep continental crust represents, together with hydrate-breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.}, language = {en} } @article{SoupionaSamarasOrtizAmezcuaetal.2019, author = {Soupiona, Ourania and Samaras, Stefanos and Ortiz-Amezcua, Pablo and B{\"o}ckmann, Christine and Papayannis, Alexandros D. and Moreira, Gregori De Arruda and Benavent-Oltra, Jose Antonio and Guerrero-Rascado, Juan Luis and Bedoya-Vel{\´a}squez, Andres Esteban and Olmo-Reyes, Francisco Jos{\´e} and Rom{\´a}n, Roberto and Kokkalis, Panagiotis and Mylonaki, Maria and Alados-Arboledas, Lucas and Papanikolaou, Christina Anna and Foskinis, Romanos}, title = {Retrieval of optical and microphysical properties of transported Saharan dust over Athens and Granada based on multi-wavelength Raman lidar measurements: Study of the mixing processes}, series = {Atmospheric environment : air pollution ; emissions, transport and dispersion, transformation, deposition effects, micrometeorology, urban atmosphere, global atmosphere}, volume = {214}, journal = {Atmospheric environment : air pollution ; emissions, transport and dispersion, transformation, deposition effects, micrometeorology, urban atmosphere, global atmosphere}, publisher = {Elsevier}, address = {Oxford}, issn = {1352-2310}, doi = {10.1016/j.atmosenv.2019.116824}, pages = {15}, year = {2019}, abstract = {In this paper we extract the aerosol microphysical properties for a collection of mineral dust cases measured by multi-wavelength depolarization Raman lidar systems located at the National Technical University of Athens (NTUA, Athens, Greece) and the Andalusian Institute for Earth System Research (IISTA-CEAMA, Granada, Spain). The lidar-based retrievals were carried out with the Spheroidal Inversion eXperiments software tool (SphInX) developed at the University of Potsdam (Germany). The software uses regularized inversion of a two-dimensional enhancement of the Mie model based on the spheroid-particle approximation with the aspect ratio determining the particle shape. The selection of the cases was based on the transport time from the source regions to the measuring sites. The aerosol optical depth as measured by AERONET ranged from 0.27 to 0.54 (at 500 nm) depending on the intensity of each event. Our analysis showed the hourly mean particle linear depolarization ratio and particle lidar ratio values at 532 nm ranging from 11 to 34\% and from 42 to 79 sr respectively, depending on the mixing status, the corresponding air mass pathways and their transport time. Cases with shorter transport time showed good agreement in terms of the optical and SphInX-retrieved microphysical properties between Athens and Granada providing a complex refractive index value equal to 1.4 + 0.004i. On the other hand, the results for cases with higher transport time deviated from the aforementioned ones as well as from each other, providing, in particular, an imaginary part of the refractive index ranging from 0.002 to 0.005. Reconstructions of two-dimensional shape-size distributions for each selected layer showed that the dominant effective particle shape was prolate with diverse spherical contributions. The retrieved volume concentrations reflect overall the intensity of the episodes.}, language = {en} } @article{HoltzmanTackmanCareyetal.2019, author = {Holtzman, Nicholas S. and Tackman, Allison M. and Carey, Angela L. and Brucks, Melanie S. and Kuefner, Albrecht C. P. and Deters, Fenne Grosse and Back, Mitja D. and Donnellan, M. Brent and Pennebaker, James W. and Sherman, Ryne A. and Mehl, Matthias R.}, title = {Linguistic Markers of Grandiose Narcissism: A LIWC Analysis of 15 Samples}, series = {Journal of Language and Social Psychology}, volume = {38}, journal = {Journal of Language and Social Psychology}, number = {5-6}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {0261-927X}, doi = {10.1177/0261927X19871084}, pages = {773 -- 786}, year = {2019}, abstract = {Narcissism is unrelated to using first-person singular pronouns. Whether narcissism is linked to other language use remains unclear. We aimed to identify linguistic markers of narcissism. We applied the Linguistic Inquiry and Word Count to texts (k = 15; N = 4,941). The strongest positive correlates were using words related to sports, second-person pronouns, and swear words. The strongest negative correlates were using anxiety/fear words, tentative words, and words related to sensory/perceptual processes. Effects were small (each |r| < .10).}, language = {en} } @article{PittarelloGoderisSoensetal.2019, author = {Pittarello, Lidia and Goderis, Steven and Soens, Bastien and McKibbin, Seann J. and Giuli, Gabriele and Bariselli, Federico and Dias, Bruno and Helber, Bernd and Lepore, Giovanni Orazio and Vanhaecke, Frank and K{\"o}berl, Christian and Magin, Thierry E. and Claeys, Philippe}, title = {Meteoroid atmospheric entry investigated with plasma flow experiments: Petrography and geochemistry of the recovered material}, series = {Icarus : international journal of solar system studies}, volume = {331}, journal = {Icarus : international journal of solar system studies}, publisher = {Elsevier}, address = {San Diego}, issn = {0019-1035}, doi = {10.1016/j.icarus.2019.04.033}, pages = {170 -- 178}, year = {2019}, abstract = {Melting experiments attempting to reproduce some of the processes affecting asteroidal and cometary material during atmospheric entry have been performed in a high enthalpy facility. For the first time with the specific experimental setup, the resulting material has been recovered, studied, and compared with natural analogues, focusing on the thermal and redox reactions triggered by interaction between the melt and the atmospheric gases under high temperature and low pressure conditions. Experimental conditions were tested across a range of parameters, such as heat flux, experiment duration, and pressure, using two types of sample holders materials, namely cork and graphite. A basalt served as asteroidal analog and to calibrate the experiments, before melting a H5 ordinary chondrite meteorite. The quenched melt recovered after the experiments has been analyzed by mu-XRF, EDS-SEM, EMPA, LA-ICP-MS, and XANES spectroscopy. The glass formed from the basalt is fairly homogeneous, depleted in highly volatile elements (e.g., Na, K), relatively enriched in moderately siderophile elements (e.g., Co, Ni), and has reached an equilibrium redox state with a lower Fe3+/Fe-tot ratio than that in the starting material. Spherical objects, enriched in SiO2, Na2O and K2O, were observed, inferring condensation from the vaporized material. Despite instantaneous quenching, the melt formed from the ordinary chondrite shows extensive crystallization of mostly olivine and magnetite, the latter indicative of oxygen fugacity compatible with presence of both Fe2+ and Fe3+. Similar features have been observed in natural meteorite fusion crusts and in micrometeorites, implying that, at least in terms of maximum temperature reached and chemical reactions, the experiments have successfully reproduced the conditions likely encountered by extraterrestrial material following atmospheric entry.}, language = {en} }