@phdthesis{Naaf2011, author = {Naaf, Tobias}, title = {Floristic homogenization and impoverishment : herb layer changes over two decades in deciduous forest patches of the Weser-Elbe region (NW Germany)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52446}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Human-induced alterations of the environment are causing biotic changes worldwide, including the extinction of species and a mixing of once disparate floras and faunas. One type of biological communities that is expected to be particularly affected by environmental alterations are herb layer plant communities of fragmented forests such as those in the west European lowlands. However, our knowledge about current changes in species diversity and composition in these communities is limited due to a lack of adequate long-term studies. In this thesis, I resurveyed the herb layer communities of ancient forest patches in the Weser-Elbe region (NW Germany) after two decades using 175 semi-permanent plots. The general objectives were (i) to quantify changes in plant species diversity considering also between-community (β) and functional diversity, (ii) to determine shifts in species composition in terms of species' niche breadth and functional traits and (iii) to find indications on the most likely environmental drivers for the observed changes. These objectives were pursued with four independent research papers (Chapters 1-4) whose results were brought together in a General Discussion. Alpha diversity (species richness) increased by almost four species on average, whereas β diversity tended to decrease (Chapter 1). The latter is interpreted as a beginning floristic homogenization. The observed changes were primarily the result of a spread of native habitat generalists that are able to tolerate broad pH and moisture ranges. The changes in α and β diversity were only significant when species abundances were neglected (Chapters 1 and 2), demonstrating that the diversity changes resulted mainly from gains and losses of low-abundance species. This study is one of the first studies in temperate Europe that demonstrates floristic homogenization of forest plant communities at a larger than local scale. The diversity changes found at the taxonomic level did not result in similar changes at the functional level (Chapter 2). The likely reason is that these communities are functionally "buffered". Single communities involve most of the functional diversity of the regional pool, i.e., they are already functionally rich, while they are functionally redundant among each other, i.e., they are already homogeneous. Independent of taxonomic homogenization, the abundance of 30 species decreased significantly (Chapter 4). These species included 12 ancient forest species (i.e., species closely tied to forest patches with a habitat continuity > 200 years) and seven species listed on the Red List of endangered plant species in NW Germany. If these decreases continue over the next decades, local extinctions may result. This biotic impoverishment would seriously conflict with regional conservation goals. Community assembly mechanisms changed at the local level particularly at sites that experienced disturbance by forest management activities between the sampling periods (Chapter 3). Disturbance altered community assembly mechanisms in two ways: (i) it relaxed environmental filters and allowed the coexistence of different reproduction strategies, as reflected by a higher diversity of reproductive traits at the time of the resurvey, and (ii) it enhanced light availability and tightened competitive filters. These limited the functional diversity with respect to canopy height and selected for taller species. Thirty-one winner and 30 loser species, which had significantly increased or decreased in abundance, respectively, were characterized by various functional traits and ecological performances to find indications on the most likely environmental drivers for the observed floristic changes (Chapter 4). Winner species had higher seed longevity, flowered later in the season and had more often an oceanic distribution compared to loser species. Loser species tended to have a higher specific leaf area, to be more susceptible to deer browsing and to have a performance optimum at higher soil pH values compared to winner species. Multiple logistic regression analyses indicated that disturbances due to forest management interventions were the primary cause of the species shifts. As one of the first European resurvey studies, this study provides indications that an enhanced browsing pressure due to increased deer densities and increasingly warmer winters are important drivers. The study failed to demonstrate that eutrophication and acidification due to atmospheric deposition substantially drive herb layer changes. The restriction of the sample to the most base-rich sites in the region is discussed as a likely reason. Furthermore, the decline of several ancient forest species is discussed as an indication that the forest patches are still paying off their "extinction debt", i.e., exhibit a delayed response to forest fragmentation.}, language = {en} } @phdthesis{Arvidsson2010, author = {Arvidsson, Samuel Janne}, title = {Identification of growth-related tonoplast proteins in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52408}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {In a very simplified view, the plant leaf growth can be reduced to two processes, cell division and cell expansion, accompanied by expansion of their surrounding cell walls. The vacuole, as being the largest compartment of the plant cell, plays a major role in controlling the water balance of the plant. This is achieved by regulating the osmotic pressure, through import and export of solutes over the vacuolar membrane (the tonoplast) and by controlling the water channels, the aquaporins. Together with the control of cell wall relaxation, vacuolar osmotic pressure regulation is thought to play an important role in cell expansion, directly by providing cell volume and indirectly by providing ion and pH homestasis for the cytosoplasm. In this thesis the role of tonoplast protein coding genes in cell expansion in the model plant Arabidopsis thaliana is studied and genes which play a putative role in growth are identified. Since there is, to date, no clearly identified protein localization signal for the tonoplast, there is no possibility to perform genome-wide prediction of proteins localized to this compartment. Thus, a series of recent proteomic studies of the tonoplast were used to compile a list of cross-membrane tonoplast protein coding genes (117 genes), and other growth-related genes from notably the growth regulating factor (GRF) and expansin families were included (26 genes). For these genes a platform for high-throughput reverse transcription quantitative real time polymerase chain reaction (RT-qPCR) was developed by selecting specific primer pairs. To this end, a software tool (called QuantPrime, see http://www.quantprime.de) was developed that automatically designs such primers and tests their specificity in silico against whole transcriptomes and genomes, to avoid cross-hybridizations causing unspecific amplification. The RT-qPCR platform was used in an expression study in order to identify candidate growth related genes. Here, a growth-associative spatio-temporal leaf sampling strategy was used, targeting growing regions at high expansion developmental stages and comparing them to samples taken from non-expanding regions or stages of low expansion. Candidate growth related genes were identified after applying a template-based scoring analysis on the expression data, ranking the genes according to their association with leaf expansion. To analyze the functional involvement of these genes in leaf growth on a macroscopic scale, knockout mutants of the candidate growth related genes were screened for growth phenotypes. To this end, a system for non-invasive automated leaf growth phenotyping was established, based on a commercially available image capture and analysis system. A software package was developed for detailed developmental stage annotation of the images captured with the system, and an analysis pipeline was constructed for automated data pre-processing and statistical testing, including modeling and graph generation, for various growth-related phenotypes. Using this system, 24 knockout mutant lines were analyzed, and significant growth phenotypes were found for five different genes.}, language = {en} } @phdthesis{AndradeLinares2011, author = {Andrade Linares, Diana Roc{\´i}o}, title = {Characterization of tomato root-endophytic fungi and analysis of their effects on plant development, on fruit yield and quality and on interaction with the pathogen Verticillium dahliae}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51375}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Non-mycorrhizal fungal endophytes are able to colonize internally roots without causing visible disease symptoms establishing neutral or mutualistic associations with plants. These fungi known as non-clavicipitaceous endophytes have a broad host range of monocot and eudicot plants and are highly diverse. Some of them promote plant growth and confer increased abiotic-stress tolerance and disease resistance. According to such possible effects on host plants, it was aimed to isolate and to characterize native fungal root endophytes from tomato (Lycopersicon esculentum Mill.) and to analyze their effects on plant development, plant resistance and fruit yield and quality together with the model endophyte Piriformospora indica. Fifty one new fungal strains were isolated from desinfected tomato roots of four different crop sites in Colombia. These isolates were roughly characterized and fourteen potential endophytes were further analyzed concerning their taxonomy, their root colonization capacity and their impact on plant growth. Sequencing of the ITS region from the ribosomal RNA gene cluster and in-depth morphological characterisation revealed that they correspond to different phylogenetic groups among the phylum Ascomycota. Nine different morphotypes were described including six dark septate endophytes (DSE) that did not correspond to the Phialocephala group. Detailed confocal microscopy analysis showed various colonization patterns of the endophytes inside the roots ranging from epidermal penetration to hyphal growth through the cortex. Tomato pot experiments under glass house conditions showed that they differentially affect plant growth depending on colonization time and inoculum concentration. Three new isolates (two unknown fungal endophyte DSE48, DSE49 and one identified as Leptodontidium orchidicola) with neutral or positiv effects were selected and tested in several experiments for their influence on vegetative growth, fruit yield and quality and their ability to diminish the impact of the pathogen Verticillium dahliae on tomato plants. Although plant growth promotion by all three fungi was observed in young plants, vegetative growth parameters were not affected after 22 weeks of cultivation except a reproducible increase of root diameter by the endophyte DSE49. Additionally, L. orchidicola increased biomass and glucose content of tomato fruits, but only at an early date of harvest and at a certain level of root colonization. Concerning bioprotective effects, the endophytes DSE49 and L. orchidicola decreased significantly disease symptoms caused by the pathogen V. dahliae, but only at a low dosis of the pathogen. In order to analyze, if the model root endophytic fungus Piriformospora indica could be suitable for application in production systems, its impact on tomato was evaluated. Similarly to the new fungal isolates, significant differences for vegetative growth parameters were only observable in young plants and, but protection against V. dahliae could be seen in one experiment also at high dosage of the pathogen. As the DSE L. orchidicola, P. indica increased the number and biomass of marketable tomatoes only at the beginning of fruit setting, but this did not lead to a significant higher total yield. If the effects on growth are due to a better nutrition of the plant with mineral element was analyzed in barley in comparison to the arbuscular mycorrhizal fungus Glomus mosseae. While the mycorrhizal fungus increased nitrogen and phosphate uptake of the plant, no such effect was observed for P. indica. In summary this work shows that many different fungal endophytes can be also isolated from roots of crops and, that these isolates can have positive effects on early plant development. This does, however, not lead to an increase in total yield or in improvement of fruit quality of tomatoes under greenhouse conditions.}, language = {en} } @phdthesis{Wegerich2010, author = {Wegerich, Franziska}, title = {Engineered human cytochrome c : investigation of superoxide and protein-protein interaction and application in bioelectronic systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50782}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {The aim of this thesis is the design, expression and purification of human cytochrome c mutants and their characterization with regard to electrochemical and structural properties as well as with respect to the reaction with the superoxide radical and the selected proteins sulfite oxidase from human and fungi bilirubin oxidase. All three interaction partners are studied here for the first time with human cyt c and with mutant forms of cyt c. A further aim is the incorporation of the different cyt c forms in two bioelectronic systems: an electrochemical superoxide biosensor with an enhanced sensitivity and a protein multilayer assembly with and without bilirubin oxidase on electrodes. The first part of the thesis is dedicated to the design, expression and characterization of the mutants. A focus is here the electrochemical characterization of the protein in solution and immobilized on electrodes. Further the reaction of these mutants with superoxide was investigated and the possible reaction mechanisms are discussed. In the second part of the work an amperometric superoxide biosensor with selected human cytochrome c mutants was constructed and the performance of the sensor electrodes was studied. The human wild-type and four of the five mutant electrodes could be applied successfully for the detection of the superoxide radical. In the third part of the thesis the reaction of horse heart cyt c, the human wild-type and seven human cyt c mutants with the two proteins sulfite oxidase and bilirubin oxidase was studied electrochemically and the influence of the mutations on the electron transfer reactions was discussed. Finally protein multilayer electrodes with different cyt form including the mutant forms G77K and N70K which exhibit different reaction rates towards BOD were investigated and BOD together with the wild-type and engineered cyt c was embedded in the multilayer assembly. The relevant electron transfer steps and the kinetic behavior of the multilayer electrodes are investigated since the functionality of electroactive multilayer assemblies with incorporated redox proteins is often limited by the electron transfer abilities of the proteins within the multilayer. The formation via the layer-by-layer technique and the kinetic behavior of the mono and bi-protein multilayer system are studied by SPR and cyclic voltammetry. In conclusion this thesis shows that protein engineering is a helpful instrument to study protein reactions as well as electron transfer mechanisms of complex bioelectronic systems (such as bi-protein multilayers). Furthermore, the possibility to design tailored recognition elements for the construction of biosensors with an improved performance is demonstrated.}, language = {en} } @phdthesis{Andorf2011, author = {Andorf, Sandra}, title = {A systems biological approach towards the molecular basis of heterosis in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51173}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Heterosis is defined as the superiority in performance of heterozygous genotypes compared to their corresponding genetically different homozygous parents. This phenomenon is already known since the beginning of the last century and it has been widely used in plant breeding, but the underlying genetic and molecular mechanisms are not well understood. In this work, a systems biological approach based on molecular network structures is proposed to contribute to the understanding of heterosis. Hybrids are likely to contain additional regulatory possibilities compared to their homozygous parents and, therefore, they may be able to correctly respond to a higher number of environmental challenges, which leads to a higher adaptability and, thus, the heterosis phenomenon. In the network hypothesis for heterosis, presented in this work, more regulatory interactions are expected in the molecular networks of the hybrids compared to the homozygous parents. Partial correlations were used to assess this difference in the global interaction structure of regulatory networks between the hybrids and the homozygous genotypes. This network hypothesis for heterosis was tested on metabolite profiles as well as gene expression data of the two parental Arabidopsis thaliana accessions C24 and Col-0 and their reciprocal crosses. These plants are known to show a heterosis effect in their biomass phenotype. The hypothesis was confirmed for mid-parent and best-parent heterosis for either hybrid of our experimental metabolite as well as gene expression data. It was shown that this result is influenced by the used cutoffs during the analyses. Too strict filtering resulted in sets of metabolites and genes for which the network hypothesis for heterosis does not hold true for either hybrid regarding mid-parent as well as best-parent heterosis. In an over-representation analysis, the genes that show the largest heterosis effects according to our network hypothesis were compared to genes of heterotic quantitative trait loci (QTL) regions. Separately for either hybrid regarding mid-parent as well as best-parent heterosis, a significantly larger overlap between the resulting gene lists of the two different approaches towards biomass heterosis was detected than expected by chance. This suggests that each heterotic QTL region contains many genes influencing biomass heterosis in the early development of Arabidopsis thaliana. Furthermore, this integrative analysis led to a confinement and an increased confidence in the group of candidate genes for biomass heterosis in Arabidopsis thaliana identified by both approaches.}, language = {en} } @phdthesis{Mutwil2011, author = {Mutwil, Marek}, title = {Integrative transcriptomic approaches to analyzing plant co-expression networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50752}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {It is well documented that transcriptionally coordinated genes tend to be functionally related, and that such relationships may be conserved across different species, and even kingdoms. (Ihmels et al., 2004). Such relationships was initially utilized to reveal functional gene modules in yeast and mammals (Ihmels et al., 2004), and to explore orthologous gene functions between different species and kingdoms (Stuart et al., 2003; Bergmann et al., 2004). Model organisms, such as Arabidopsis, are readily used in basic research due to resource availability and relative speed of data acquisition. A major goal is to transfer the acquired knowledge from these model organisms to species that are of greater importance to our society. However, due to large gene families in plants, the identification of functional equivalents of well characterized Arabidopsis genes in other plants is a non-trivial task, which often returns erroneous or inconclusive results. In this thesis, concepts of utilizing co-expression networks to help infer (i) gene function, (ii) organization of biological processes and (iii) knowledge transfer between species are introduced. An often overlooked fact by bioinformaticians is that a bioinformatic method is as useful as its accessibility. Therefore, majority of the work presented in this thesis was directed on developing freely available, user-friendly web-tools accessible for any biologist.}, language = {en} } @phdthesis{Goetze2010, author = {G{\"o}tze, Jan Philipp}, title = {Influence of protein and solvent environments on quantum chemical properties of photosynthesis enzymes and photoreceptors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51135}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {This thesis contains quantum chemical models and force field calculations for the RuBisCO isotope effect, the spectral characteristics of the blue-light sensor BLUF and the light harvesting complex II. The work focuses on the influence of the environment on the corresponding systems. For RuBisCO, it was found that the isotopic effect is almost unaffected by the environment. In case of the BLUF domain, an amino acid was found to be important for the UV/vis spectrum, but unaccounted for in experiments so far (Ser41). The residue was shown to be highly mobile and with a systematic influence on the spectral shift of the BLUF domain chromophore (flavin). Finally, for LHCII it was found that small changes in the geometry of a Chlorophyll b/Violaxanthin chromophore pair can have strong influences regarding the light harvesting mechanism. Especially here it was seen that the proper description of the environment can be critical. In conclusion, the environment was observed to be of often unexpected importance for the molecular properties, and it seems not possible to give a reliable estimate on the changes created by the presence of the environment.}, language = {en} } @phdthesis{Tronci2010, author = {Tronci, Giuseppe}, title = {Synthesis, characterization, and biological evaluation of gelatin-based scaffolds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49727}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {This work presents the development of entropy-elastic gelatin based networks in the form of films or scaffolds. The materials have good prospects for biomedical applications, especially in the context of bone regeneration. Entropy-elastic gelatin based hydrogel films with varying crosslinking densities were prepared with tailored mechanical properties. Gelatin was covalently crosslinked above its sol gel transition, which suppressed the gelatin chain helicity. Hexamethylene diisocyanate (HDI) or ethyl ester lysine diisocyanate (LDI) were applied as chemical crosslinkers, and the reaction was conducted either in dimethyl sulfoxide (DMSO) or water. Amorphous films were prepared as measured by Wide Angle X-ray Scattering (WAXS), with tailorable degrees of swelling (Q: 300-800 vol. \%) and wet state Young's modulus (E: 70 740 kPa). Model reactions showed that the crosslinking reaction resulted in a combination of direct crosslinks (3-13 mol.-\%), grafting (5-40 mol.-\%), and blending of oligoureas (16-67 mol.-\%). The knowledge gained with this bulk material was transferred to the integrated process of foaming and crosslinking to obtain porous 3-D gelatin-based scaffolds. For this purpose, a gelatin solution was foamed in the presence of a surfactant, Saponin, and the resulting foam was fixed by chemical crosslinking with a diisocyanate. The amorphous crosslinked scaffolds were synthesized with varied gelatin and HDI concentrations, and analyzed in the dry state by micro computed tomography (µCT, porosity: 65±11-73±14 vol.-\%), and scanning electron microscopy (SEM, pore size: 117±28-166±32 µm). Subsequently, the work focused on the characterization of the gelatin scaffolds in conditions relevant to biomedical applications. Scaffolds showed high water uptake (H: 630-1680 wt.-\%) with minimal changes in outer dimension. Since a decreased scaffold pore size (115±47-130±49 µm) was revealed using confocal laser scanning microscopy (CLSM) upon wetting, the form stability could be explained. Shape recoverability was observed after removal of stress when compressing wet scaffolds, while dry scaffolds maintained the compressed shape. This was explained by a reduction of the glass transition temperature upon equilibration with water (dynamic mechanical analysis at varied temperature (DMTA)). The composition dependent compression moduli (Ec: 10 50 kPa) were comparable to the bulk micromechanical Young's moduli, which were measured by atomic force microscopy (AFM). The hydrolytic degradation profile could be adjusted, and a controlled decrease of mechanical properties was observed. Partially-degraded scaffolds displayed an increase of pore size. This was likely due to the pore wall disintegration during degradation, which caused the pores to merge. The scaffold cytotoxicity and immunologic responses were analyzed. The porous scaffolds enabled proliferation of human dermal fibroblasts within the implants (up to 90 µm depth). Furthermore, indirect eluate tests were carried out with L929 cells to quantify the material cytotoxic response. Here, the effect of the sterilization method (Ethylene oxide sterilization), crosslinker, and surfactant were analyzed. Fully cytocompatible scaffolds were obtained by using LDI as crosslinker and PEO40 PPO20-PEO40 as surfactant. These investigations were accompanied by a study of the endotoxin material contamination. The formation of medical-grade materials was successfully obtained (<0.5 EU/mL) by using low-endotoxin gelatin and performing all synthetic steps in a laminar flow hood.}, language = {en} } @phdthesis{Liesenjohann2010, author = {Liesenjohann, Thilo}, title = {Foraging in space and time}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-48562}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {All animals are adapted to the environmental conditions of the habitat they chose to live in. It was the aim of this PhD-project, to show which behavioral strategies are expressed as mechanisms to cope with the constraints, which contribute to the natural selection pressure acting on individuals. For this purpose, small mammals were exposed to different levels and types of predation risk while actively foraging. Individuals were either exposed to different predator types (airborne or ground) or combinations of both, or to indirect predators (nest predators). Risk was assumed to be distributed homogeneously, so changing the habitat or temporal adaptations where not regarded as potential options. Results show that wild-caught voles have strategic answers to this homogeneously distributed risk, which is perceived by tactile, olfactory or acoustic cues. Thus, they do not have to know an absolut quality (e.g., in terms of food provisioning and risk levels of all possible habitats), but they can adapt their behavior to the actual circumstances. Deriving risk uniform levels from cues and adjusting activity levels to the perceived risk is an option to deal with predators of the same size or with unforeseeable attack rates. Experiments showed that as long as there are no safe places or times, it is best to reduce activity and behave as inconspicuous as possible as long as the costs of missed opportunities do not exceed the benefits of a higher survival probability. Test showed that these costs apparently grow faster for males than for females, especially in times of inactivity. This is supported by strong predatory pressure on the most active groups of rodents (young males, sexually active or dispersers) leading to extremely female-biased operative sex ratios in natural populations. Other groups of animals, those with parental duties such as nest guarding, for example, have to deal with the actual risk in their habitat as well. Strategies to indirect predation pressure were tested by using bank vole mothers, confronted with a nest predator that posed no actual threat to themselves but to their young (Sorex araneus). They reduced travelling and concentrated their effort in the presence of shrews, independent of the different nutritional provisioning of food by varying resource levels due to the different seasons. Additionally, they exhibited nest-guarding strategies by not foraging in the vicinity of the nest site in order to reduce conspicuous scent marks. The repetition of the experiment in summer and autumn showed that changing environmental constraints can have a severe impact on results of outdoor studies. In our case, changing resource levels changed the type of interaction between the two species. The experiments show that it is important to analyze decision making and optimality models on an individual level, and, when that is not possible (maybe because of the constraints of field work), groups of animals should be classified by using the least common denominator that can be identified (such as sex, age, origin or kinship). This will control for the effects of the sex or stage of life history or the individual´s reproductive and nutritional status on decision making and will narrow the wide behavioral variability associated with the complex term of optimality.}, language = {en} } @phdthesis{Blacha2009, author = {Blacha, Anna Maria}, title = {Investigating the role of regulatory genes in heterosis for superior growth and biomass production in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-46146}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {'Heterosis' is a term used in genetics and breeding referring to hybrid vigour or the superiority of hybrids over their parents in terms of traits such as size, growth rate, biomass, fertility, yield, nutrient content, disease resistance or tolerance to abiotic and abiotic stress. Parental plants which are two different inbred (pure) lines that have desired traits are crossed to obtain hybrids. Maximum heterosis is observed in the first generation (F1) of crosses. Heterosis has been utilised in plant and animal breeding programs for at least 90 years: by the end of the 21st century, 65\% of worldwide maize production was hybrid-based. Generally, it is believed that an understanding of the molecular basis of heterosis will allow the creation of new superior genotypes which could either be used directly as F1 hybrids or form the basis for the future breeding selection programmes. Two selected accessions of a research model plant Arabidopsis thaliana (thale cress) were crossed to obtain hybrids. These typically exhibited a 60-80\% increase of biomass when compared to the average weight of both parents. This PhD project focused on investigating the role of selected regulatory genes given their potentially key involvement in heterosis. In the first part of the project, the most appropriate developmental stage for this heterosis study was determined by metabolite level measurements and growth observations in parents and hybrids. At the selected stage, around 60 candidate regulatory genes (i.e. differentially expressed in hybrids when compared to parents) were identified. Of these, the majority were transcription factors, genes that coordinate the expression of other genes. Subsequent expression analyses of the candidate genes in biomass-heterotic hybrids of other Arabidopsis accessions revealed a differential expression in a gene subset, highlighting their relevance for heterosis. Moreover, a fraction of the candidate regulatory genes were found within DNA regions closely linked to the genes that underlie the biomass or growth heterosis. Additional analyses to validate the role of selected candidate regulatory genes in heterosis appeared insufficient to establish their role in heterosis. This uncovered a need for using novel approaches as discussed in the thesis. Taken together, the work provided an insight into studies on the molecular mechanisms underlying heterosis. Although studies on heterosis date back to more than one hundred years, this project as many others revealed that more investigations will be needed to uncover this phenomenon.}, language = {en} } @phdthesis{Esther2010, author = {Esther, Alexandra}, title = {Investigating mechanisms maintaining plant species diversity in fire prone Mediterranean-type vegetation using spatially-explicit simulation models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44632}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Fire prone Mediterranean-type vegetation systems like those in the Mediterranean Basin and South-Western Australia are global hot spots for plant species diversity. To ensure management programs act to maintain these highly diverse plant communities, it is necessary to get a profound understanding of the crucial mechanisms of coexistence. In the current literature several mechanisms are discussed. The objective of my thesis is to systematically explore the importance of potential mechanisms for maintaining multi-species, fire prone vegetation by modelling. The model I developed is spatially-explicit, stochastic, rule- and individual-based. It is parameterised on data of population dynamics collected over 18 years in the Mediterranean-type shrublands of Eneabba, Western Australia. From 156 woody species of the area seven plant traits have been identified to be relevant for this study: regeneration mode, annual maximum seed production, seed size, maximum crown diameter, drought tolerance, dispersal mode and seed bank type. Trait sets are used for the definition of plant functional types (PFTs). The PFT dynamics are simulated annual by iterating life history processes. In the first part of my thesis I investigate the importance of trade-offs for the maintenance of high diversity in multi-species systems with 288 virtual PFTs. Simulation results show that the trade-off concept can be helpful to identify non-viable combinations of plant traits. However, the Shannon Diversity Index of modelled communities can be high despite of the presence of 'supertypes'. I conclude, that trade-offs between two traits are less important to explain multi-species coexistence and high diversity than it is predicted by more conceptual models. Several studies show, that seed immigration from the regional seed pool is essential for maintaining local species diversity. However, systematical studies on the seed rain composition to multi-species communities are missing. The results of the simulation experiments, as presented in part two of this thesis, show clearly, that without seed immigration the local species community found in Eneabba drifts towards a state with few coexisting PFTs. With increasing immigration rates the number of simulated coexisting PFTs and Shannon diversity quickly approaches values as also observed in the field. Including the regional seed input in the model is suited to explain more aggregated measures of the local plant community structure such as species richness and diversity. Hence, the seed rain composition should be implemented in future studies. In the third part of my thesis I test the sensitivity of Eneabba PFTs to four different climate change scenarios, considering their impact on both local and regional processes. The results show that climate change clearly has the potential to alter the number of dispersed seeds for most of the Eneabba PFTs and therefore the source of the 'immigrants' at the community level. A classification tree analysis shows that, in general, the response to climate change was PFT-specific. In the Eneabba sand plains sensitivity of a PFT to climate change depends on its specific trait combination and on the scenario of environmental change i.e. development of the amount of rainfall and the fire frequency. This result emphasizes that PFT-specific responses and regional process seed immigration should not be ignored in studies dealing with the impact of climate change on future species distribution. The results of the three chapters are finally analysed in a general discussion. The model is discussed and improvements and suggestions are made for future research. My work leads to the following conclusions: i) It is necessary to support modelling with empirical work to explain coexistence in species-rich plant communities. ii) The chosen modelling approach allows considering the complexity of coexistence and improves the understanding of coexistence mechanisms. iii) Field research based assumptions in terms of environmental conditions and plant life histories can relativise the importance of more hypothetic coexistence theories in species-rich systems. In consequence, trade-offs can play a lower role than predicted by conceptual models. iv) Seed immigration is a key process for local coexistence. Its alteration because of climate change should be considered for prognosis of coexistence. Field studies should be carried out to get data on seed rain composition.}, language = {en} } @phdthesis{Huber2010, author = {Huber, Veronika Emilie Charlotte}, title = {Climate impact on phytoplankton blooms in shallow lakes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42346}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Lake ecosystems across the globe have responded to climate warming of recent decades. However, correctly attributing observed changes to altered climatic conditions is complicated by multiple anthropogenic influences on lakes. This thesis contributes to a better understanding of climate impacts on freshwater phytoplankton, which forms the basis of the food chain and decisively influences water quality. The analyses were, for the most part, based on a long-term data set of physical, chemical and biological variables of a shallow, polymictic lake in north-eastern Germany (M{\"u}ggelsee), which was subject to a simultaneous change in climate and trophic state during the past three decades. Data analysis included constructing a dynamic simulation model, implementing a genetic algorithm to parameterize models, and applying statistical techniques of classification tree and time-series analysis. Model results indicated that climatic factors and trophic state interactively determine the timing of the phytoplankton spring bloom (phenology) in shallow lakes. Under equally mild spring conditions, the phytoplankton spring bloom collapsed earlier under high than under low nutrient availability, due to a switch from a bottom-up driven to a top-down driven collapse. A novel approach to model phenology proved useful to assess the timings of population peaks in an artificially forced zooplankton-phytoplankton system. Mimicking climate warming by lengthening the growing period advanced algal blooms and consequently also peaks in zooplankton abundance. Investigating the reasons for the contrasting development of cyanobacteria during two recent summer heat wave events revealed that anomalously hot weather did not always, as often hypothesized, promote cyanobacteria in the nutrient-rich lake studied. The seasonal timing and duration of heat waves determined whether critical thresholds of thermal stratification, decisive for cyanobacterial bloom formation, were crossed. In addition, the temporal patterns of heat wave events influenced the summer abundance of some zooplankton species, which as predators may serve as a buffer by suppressing phytoplankton bloom formation. This thesis adds to the growing body of evidence that lake ecosystems have strongly responded to climatic changes of recent decades. It reaches beyond many previous studies of climate impacts on lakes by focusing on underlying mechanisms and explicitly considering multiple environmental changes. Key findings show that climate impacts are more severe in nutrient-rich than in nutrient-poor lakes. Hence, to develop lake management plans for the future, limnologists need to seek a comprehensive, mechanistic understanding of overlapping effects of the multi-faceted human footprint on aquatic ecosystems.}, language = {en} } @phdthesis{Krebs2009, author = {Krebs, Jonas}, title = {Molecular and physiological characterisation of selected DOF transcription factors in the model plant Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41831}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {About 2,000 of the more than 27,000 genes of the genetic model plant Arabidopsis thaliana encode for transcription factors (TFs), proteins that bind DNA in the promoter region of their target genes and thus act as transcriptional activators and repressors. Since TFs play essential roles in nearly all biological processes, they are of great scientific and biotechnological interest. This thesis concentrated on the functional characterisation of four selected members of the Arabidopsis DOF-family, namely DOF1.2, DOF3.1, DOF3.5 and DOF5.2, which were selected because of their specific expression pattern in the root tip, a region that comprises the stem cell niche and cells for the perception of environmental stimuli. DOF1.2, DOF3.1 and DOF3.5 are previously uncharacterized members of the Arabidopsis DOF-family, while DOF5.2 has been shown to be involved in the phototrophic flowering response. However, its role in root development has not been described so far. To identify biological processes regulated by the four DOF proteins in detail, molecular and physiological characterization of transgenic plants with modified levels of DOF1.2, DOF3.1, DOF3.5 and DOF5.2 expression (constitutive and inducible over-expression, artificial microRNA) was performed. Additionally expression patterns of the TFs and their target genes were analyzed using promoter-GUS lines and publicly available microarray data. Finally putative protein-protein interaction partners and upstream regulating TFs were identified using the yeast two-hybrid and one-hybrid system. This combinatorial approach revealed distinct biological functions of DOF1.2, DOF3.1, DOF3.5 and DOF5.2 in the context of root development. DOF1.2 and DOF3.5 are specifically and exclusively expressed in the root cap, including the central root cap (columella) and the lateral root cap, organs which are essential to direct oriented root growth. It could be demonstrated that both genes work in the plant hormone auxin signaling pathway and have an impact on distal cell differentiation. Altered levels of gene expression lead to changes in auxin distribution, abnormal cell division patterns and altered root growth orientation. DOF3.1 and DOF5.2 share a specific expression pattern in the organizing centre of the root stem cell niche, called the quiescent centre. Both genes redundantly control cell differentiation in the root´s proximal meristem and unravel a novel transcriptional regulation pathway for genes enriched in the QC cells. Furthermore this work revealed a novel bipartite nuclear localisation signal being present in the protein sequence of the DOF TF family from all sequenced plant species. Summing up, this work provides an important input into our knowledge about the role of DOF TFs during root development. Future work will concentrate on revealing the exact regulatory networks of DOF1.2, DOF3.1, DOF3.5 and DOF5.2 and their possible biotechnological applications.}, language = {en} } @phdthesis{Childs2010, author = {Childs, Liam H.}, title = {Bioinformatics approaches to analysing RNA mediated regulation of gene expression}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41284}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {The genome can be considered the blueprint for an organism. Composed of DNA, it harbours all organism-specific instructions for the synthesis of all structural components and their associated functions. The role of carriers of actual molecular structure and functions was believed to be exclusively assumed by proteins encoded in particular segments of the genome, the genes. In the process of converting the information stored genes into functional proteins, RNA - a third major molecule class - was discovered early on to act a messenger by copying the genomic information and relaying it to the protein-synthesizing machinery. Furthermore, RNA molecules were identified to assist in the assembly of amino acids into native proteins. For a long time, these - rather passive - roles were thought to be the sole purpose of RNA. However, in recent years, new discoveries have led to a radical revision of this view. First, RNA molecules with catalytic functions - thought to be the exclusive domain of proteins - were discovered. Then, scientists realized that much more of the genomic sequence is transcribed into RNA molecules than there are proteins in cells begging the question what the function of all these molecules are. Furthermore, very short and altogether new types of RNA molecules seemingly playing a critical role in orchestrating cellular processes were discovered. Thus, RNA has become a central research topic in molecular biology, even to the extent that some researcher dub cells as "RNA machines". This thesis aims to contribute towards our understanding of RNA-related phenomena by applying Bioinformatics means. First, we performed a genome-wide screen to identify sites at which the chemical composition of DNA (the genotype) critically influences phenotypic traits (the phenotype) of the model plant Arabidopsis thaliana. Whole genome hybridisation arrays were used and an informatics strategy developed, to identify polymorphic sites from hybridisation to genomic DNA. Following this approach, not only were genotype-phenotype associations discovered across the entire Arabidopsis genome, but also regions not currently known to encode proteins, thus representing candidate sites for novel RNA functional molecules. By statistically associating them with phenotypic traits, clues as to their particular functions were obtained. Furthermore, these candidate regions were subjected to a novel RNA-function classification prediction method developed as part of this thesis. While determining the chemical structure (the sequence) of candidate RNA molecules is relatively straightforward, the elucidation of its structure-function relationship is much more challenging. Towards this end, we devised and implemented a novel algorithmic approach to predict the structural and, thereby, functional class of RNA molecules. In this algorithm, the concept of treating RNA molecule structures as graphs was introduced. We demonstrate that this abstraction of the actual structure leads to meaningful results that may greatly assist in the characterization of novel RNA molecules. Furthermore, by using graph-theoretic properties as descriptors of structure, we indentified particular structural features of RNA molecules that may determine their function, thus providing new insights into the structure-function relationships of RNA. The method (termed Grapple) has been made available to the scientific community as a web-based service. RNA has taken centre stage in molecular biology research and novel discoveries can be expected to further solidify the central role of RNA in the origin and support of life on earth. As illustrated by this thesis, Bioinformatics methods will continue to play an essential role in these discoveries.}, language = {en} } @phdthesis{Cabral2009, author = {Cabral, Juliano Sarmento}, title = {Demographic processes determining the range dynamics of plant species, and their consequences for biodiversity maintenance in the face of environmental change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41188}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {The present thesis aims to introduce process-based model for species range dynamics that can be fitted to abundance data. For this purpose, the well-studied Proteaceae species of the South African Cape Floristic Region (CFR) offer a great data set to fit process-based models. These species are subject to wildflower harvesting and environmental threats like habitat loss and climate change. The general introduction of this thesis presents shortly the available models for species distribution modelling. Subsequently, it presents the feasibility of process-based modelling. Finally, it introduces the study system as well as the objectives and layout. In Chapter 1, I present the process-based model for range dynamics and a statistical framework to fit it to abundance distribution data. The model has a spatially-explicit demographic submodel (describing dispersal, reproduction, mortality and local extinction) and an observation submodel (describing imperfect detection of individuals). The demographic submodel links species-specific habitat models describing the suitable habitat and process-based demographic models that consider local dynamics and anemochoric seed dispersal between populations. After testing the fitting framework with simulated data, I applied it to eight Proteaceae species with different demographic properties. Moreover, I assess the role of two other demographic mechanisms: positive (Allee effects) and negative density-dependence. Results indicate that Allee effects and overcompensatory local dynamics (including chaotic behaviour) seem to be important for several species. Most parameter estimates quantitatively agreed with independent data. Hence, the presented approach seemed to suit the demand of investigating non-equilibrium scenarios involving wildflower harvesting (Chapter 2) and environmental change (Chapter 3). The Chapter 2 addresses the impacts of wildflower harvesting. The chapter includes a sensitivity analysis over multiple spatial scales and demographic properties (dispersal ability, strength of Allee effects, maximum reproductive rate, adult mortality, local extinction probability and carrying capacity). Subsequently, harvesting effects are investigated on real case study species. Plant response to harvesting showed abrupt threshold behavior. Species with short-distance seed dispersal, strong Allee effects, low maximum reproductive rate, high mortality and high local extinction are most affected by harvesting. Larger spatial scales benefit species response, but the thresholds become sharper. The three case study species supported very low to moderate harvesting rates. Summarizing, demographic knowledge about the study system and careful identification of the spatial scale of interest should guide harvesting assessments and conservation of exploited species. The sensitivity analysis' results can be used to qualitatively assess harvesting impacts for poorly studied species. I investigated in Chapter 3 the consequences of past habitat loss, future climate change and their interaction on plant response. I use the species-specific estimates of the best model describing local dynamics obtained in Chapter 1. Both habitat loss and climate change had strong negative impacts on species dynamics. Climate change affected mainly range size and range filling due to habitat reductions and shifts combined with low colonization. Habitat loss affected mostly local abundances. The scenario with both habitat loss and climate change was the worst for most species. However, this impact was better than expected by simple summing of separate effects of habitat loss and climate change. This is explained by shifting ranges to areas less affected by humans. Range size response was well predicted by the strength of environmental change, whereas range filling and local abundance responses were better explained by demographic properties. Hence, risk assessments under global change should consider demographic properties. Most surviving populations were restricted to refugia, serving as key conservation focus.The findings obtained for the study system as well as the advantages, limitations and potentials of the model presented here are further discussed in the General Discussion. In summary, the results indicate that 1) process-based demographic models for range dynamics can be fitted to data; 2) demographic processes improve species distribution models; 3) different species are subject to different processes and respond differently to environmental change and exploitation; 4) density regulation type and Allee effects should be considered when investigating range dynamics of species; 5) the consequences of wildflower harvesting, habitat loss and climate change could be disastrous for some species, but impacts vary depending on demographic properties; 6) wildflower harvesting impacts varies over spatial scale; 7) The effects of habitat loss and climate change are not always additive.}, language = {en} } @phdthesis{GuedesCorrea2009, author = {Guedes Corr{\^e}a, Luiz Gustavo}, title = {Evolutionary and functional analysis of transcription factors controlling leaf development}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-40038}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Leaves are the main photosynthetic organs of vascular plants, and leaf development is dependent on a proper control of gene expression. Transcription factors (TFs) are global regulators of gene expression that play essential roles in almost all biological processes among eukaryotes. This PhD project focused on the characterization of the sink-to-source transition of Arabidopsis leaves and on the analysis of TFs that play a role in early leaf development. The sink-to-source transition occurs when the young emerging leaves (net carbon importers) acquire a positive photosynthetic balance and start exporting photoassimilates. We have established molecular and physiological markers (i.e., CAB1 and CAB2 expression levels, AtSUC2 and AtCHoR expression patterns, chlorophyll and starch levels, and photosynthetic electron transport rates) to identify the starting point of the transition, especially because the sink-to-source is not accompanied by a visual phenotype in contrast to other developmental transitions, such as the mature-to-senescent transition of leaves. The sink-to-source transition can be divided into two different processes: one light dependent, related to photosynthesis and light responses; and one light independent or impaired, related to the changes in the vascular tissue that occur when leaves change from an import to an export mode. Furthermore, starch, but not sucrose, has been identified as one of the potential signalling molecules for this transition. The expression level of 1880 TFs during early leaf development was assessed by qRTPCR, and 153 TFs were found to exhibit differential expression levels of at least 5-fold. GRF, MYB and SRS are TF families, which are overrepresented among the differentially expressed TFs. Additionally, processes like cell identity acquisition, formation of the epidermis and leaf development are overrepresented among the differentially expressed TFs, which helps to validate the results obtained. Two of these TFs were further characterized. bZIP21 is a gene up-regulated during the sink-to-source and mature-to-senescent transitions. Its expression pattern in leaves overlaps with the one observed for AtCHoR, therefore it constitutes a good marker for the sink-to-source transition. Homozygous null mutants of bZIP21 could not be obtained, indicating that the total absence of bZIP21 function may be lethal to the plant. Phylogenetic analyses indicate that bZIP21 is an orthologue of Liguleless2 from maize. In these analyses, we identified that the whole set of bZIPs in plants originated from four founder genes, and that all bZIPs from angiosperms can be classified into 13 groups of homologues and 34 Possible Groups of Orthologues (PoGOs). bHLH64 is a gene highly expressed in early sink leaves, its expression is downregulated during the mature-to-senescent transition. Null mutants of bHLH64 are characterized by delayed bolting when compared to the wild-type; this indicates a possible delay in the sink-to-source transition or the retention of a juvenile identity. A third TF, Dof4, was also characterized. Dof4 is neither differentially expressed during the sink-to-source nor during the senescent-to-mature transition, but a null mutant of Dof4 develops bigger leaves than the wild-type and forms a greater number of siliques. The Dof4 null mutant has proven to be a good background for biomass accumulation analysis. Though not overrepresented during the sink-to-source transition, NAC transcription factors seem to contribute significantly to the mature-to-senescent transition. Twenty two NACs from Arabidopsis and 44 from rice are differentially expressed during late stages of leaf development. Phylogenetic analyses revealed that most of these NACs cluster into three big groups of homologues, indicating functional conservation between eudicots and monocots. To prove functional conservation of orthologues, the expression of ten NAC genes of barley was analysed. Eight of the ten NAC genes were found to be differentially expressed during senescence. The use of evolutionary approaches combined with functional studies is thus expected to support the transfer of current knowledge of gene control gained in model species to crops.}, language = {en} } @phdthesis{Kirschbaum2009, author = {Kirschbaum, Michael}, title = {A microfluidic approach for the initiation and investigation of surface-mediated signal transduction processes on a single-cell level}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-39576}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {For the elucidation of the dynamics of signal transduction processes that are induced by cellular interactions, defined events along the signal transduction cascade and subsequent activation steps have to be analyzed and then also correlated with each other. This cannot be achieved by ensemble measurements because averaging biological data ignores the variability in timing and response patterns of individual cells and leads to highly blurred results. Instead, only a multi-parameter analysis at a single-cell level is able to exploit the information that is crucially needed for deducing the signaling pathways involved. The aim of this work was to develop a process line that allows the initiation of cell-cell or cell-particle interactions while at the same time the induced cellular reactions can be analyzed at various stages along the signal transduction cascade and correlated with each other. As this approach requires the gentle management of individually addressable cells, a dielectrophoresis (DEP)-based microfluidic system was employed that provides the manipulation of microscale objects with very high spatiotemporal precision and without the need of contacting the cell membrane. The system offers a high potential for automation and parallelization. This is essential for achieving a high level of robustness and reproducibility, which are key requirements in order to qualify this approach for a biomedical application. As an example process for intercellular communication, T cell activation has been chosen. The activation of the single T cells was triggered by contacting them individually with microbeads that were coated with antibodies directed against specific cell surface proteins, like the T cell receptor-associated kinase CD3 and the costimulatory molecule CD28 (CD; cluster of differentiation). The stimulation of the cells with the functionalized beads led to a rapid rise of their cytosolic Ca2+ concentration which was analyzed by a dual-wavelength ratiometric fluorescence measurement of the Ca2+-sensitive dye Fura-2. After Ca2+ imaging, the cells were isolated individually from the microfluidic system and cultivated further. Cell division and expression of the marker molecule CD69 as a late activation event of great significance were analyzed the following day and correlated with the previously recorded Ca2+ traces for each individual cell. It turned out such that the temporal profile of the Ca2+ traces between both activated and non-activated cells as well as dividing and non-dividing cells differed significantly. This shows that the pattern of Ca2+ signals in T cells can provide early information about a later reaction of the cell. As isolated cells are highly delicate objects, a precondition for these experiments was the successful adaptation of the system to maintain the vitality of single cells during and after manipulation. In this context, the influences of the microfluidic environment as well as the applied electric fields on the vitality of the cells and the cytosolic Ca2+ concentration as crucially important physiological parameters were thoroughly investigated. While a short-term DEP manipulation did not affect the vitality of the cells, they showed irregular Ca2+ transients upon exposure to the DEP field only. The rate and the strength of these Ca2+ signals depended on exposure time, electric field strength and field frequency. By minimizing their occurrence rate, experimental conditions were identified that caused the least interference with the physiology of the cell. The possibility to precisely control the exact time point of stimulus application, to simultaneously analyze short-term reactions and to correlate them with later events of the signal transduction cascade on the level of individual cells makes this approach unique among previously described applications and offers new possibilities to unravel the mechanisms underlying intercellular communication.}, language = {en} } @phdthesis{Itonaga2009, author = {Itonaga, Naomi}, title = {White storks (Ciconia ciconia) of Eastern Germany: age-dependent breeding ability, and age- and density-dependent effects on dispersal behavior}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-39052}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Dispersal behavior plays an important role for the geographical distribution and population structure of any given species. Individual's fitness, reproductive and competitive ability, and dispersal behavior can be determined by the age of the individual. Age-dependent as well as density-dependent dispersal patterns are common in many bird species. In this thesis, I first present age-dependent breeding ability and natal site fidelity in white storks (Ciconia ciconia); migratory birds breeding in large parts of Europe. I predicted that both the proportion of breeding birds and natal site fidelity increase with the age. After the seventies of the last century, following a steep population decline, a recovery of the white stork population has been observed in many regions in Europe. Increasing population density in the white stork population in Eastern Germany especially after 1983 allowed examining density- as well as age-dependent breeding dispersal patterns. Therefore second, I present whether: young birds show more often and longer breeding dispersal than old birds, and frequency of dispersal events increase with the population density increase, especially in the young storks. Third, I present age- and density-dependent dispersal direction preferences in the give population. I asked whether and how the major spring migration direction interacts with dispersal directions of white storks: in different age, and under different population densities. The proportion of breeding individuals increased in the first 22 years of life and then decreased suggesting, the senescent decay in aging storks. Young storks were more faithful to their natal sites than old storks probably due to their innate migratory direction and distance. Young storks dispersed more frequently than old storks in general, but not for longer distance. Proportion of dispersing individuals increased significantly with increasing population densities indicating, density- dependent dispersal behavior in white storks. Moreover, the finding of a significant interaction effects between the age of dispersing birds and year (1980-2006) suggesting, older birds dispersed more from their previous nest sites over time due to increased competition. Both young and old storks dispersed along their spring migration direction; however, directional preferences were different in young storks and old storks. Young storks tended to settle down before reaching their previous nest sites (leading to the south-eastward dispersal) while old birds tended to keep migrating along the migration direction after reaching their previous nest sites (leading to the north-westward dispersal). Cues triggering dispersal events may be age-dependent. Changes in the dispersal direction over time were observed. Dispersal direction became obscured during the second half of the observation period (1993-2006). Increase in competition may affect dispersal behavior in storks. I discuss the potential role of: age for the observed age-dependent dispersal behavior, and competition for the density dependent dispersal behavior. This Ph.D. thesis contributes significantly to the understanding of population structure and geographical distribution of white storks. Moreover, presented age- and density (competition)-dependent dispersal behavior helps understanding underpinning mechanisms of dispersal behavior in bird species.}, language = {en} } @phdthesis{Schmidtke2009, author = {Schmidtke, Andrea}, title = {Biodiversity effects on the performance of terrestrial plant and phytoplankton communities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-38936}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Die {\"O}kosysteme unserer Erde sind durch das rasante Artensterben infolge von Umweltver{\"a}nderungen durch den Menschen und des globalen Klimawandels stark betroffen. Mit den Auswirkungen dieses Artenverlustes und der damit einhergehenden Ver{\"a}nderung der Diversit{\"a}t besch{\"a}ftigt sich die heutige Biodiversit{\"a}tsforschung. Spezieller wird der Effekt der Diversit{\"a}t auf {\"O}kosystemprozesse wie beispielsweise den Biomasseaufbau von Prim{\"a}rproduzenten oder der Resistenz einer Gemeinschaft gegen die Einwanderung neuer Arten untersucht. Die Quantifizierung des Einflusses der Diversit{\"a}t auf die Prim{\"a}rproduktion und das Verst{\"a}ndnis der zugrunde liegenden Mechanismen ist von besonderer Wichtigkeit. In terrestrischen Pflanzengemeinschaften wurde bereits ein positiver Diversit{\"a}tseffekt auf die Gemeinschaftsbiomasse beobachtet. Dies wird haupts{\"a}chlich durch den Komplementarit{\"a}ts- und/oder den Dominanzeffekt erkl{\"a}rt. Die Komplementarit{\"a}t zwischen Arten ist beispielsweise bei Unterschieden in der Ressourcenausnutzung gegeben (z.B. unterschiedliche Wurzeltiefen). Diese kann zu einer besseren N{\"a}hrstoffausnutzung in diverseren Gemeinschaften f{\"u}hren, die letztlich deren h{\"o}here Biomassen erkl{\"a}rt. Der Dominanzeffekt hingegen beruht auf der in diverseren Gemeinschaften h{\"o}heren Wahrscheinlichkeit, eine hochproduktive Art anzutreffen, was letztlich die h{\"o}here Biomasse der Gemeinschaft verursacht. Diversit{\"a}tseffekte auf {\"O}kosystemprozesse wurden bisher haupts{\"a}chlich auf der Gemeinschaftsebene untersucht. Analysen {\"u}ber die Reaktionen, die alle Arten einer Gemeinschaft einschließen, fehlen bisher. Daher wurde der Einfluss der Diversit{\"a}t auf die individuelle Performance von Pflanzenarten innerhalb des Biodiversit{\"a}tsprojektes „Das Jena Experiment" untersucht. Dieses Experiment umfasst 60 Arten, die charakteristisch f{\"u}r Mitteleurop{\"a}ische Graslandschaften sind. Die Arten wurden in die 4 funktionellen Gruppen Gr{\"a}ser, kleine Kr{\"a}uter, große Kr{\"a}uter und Leguminosen eingeteilt. Im Freilandversuch zeigte sich, dass mit steigender Artenzahl die individuelle Pflanzenh{\"o}he zunahm, w{\"a}hrend die individuelle oberirdische Biomasse sank. Der positive Diversit{\"a}tseffekt auf die pflanzliche Gemeinschaftsbiomasse kann folglich nicht auf der individuellen oberirdischen Biomassezunahme beruhen. {\"U}berdies reagierten die einzelnen funktionellen Gruppen und sogar die einzelnen Arten innerhalb einer funktionellen Gruppe unterschiedlich auf Diversit{\"a}tsver{\"a}nderungen. Folglich ist zu vermuten, dass einige {\"O}kosystemprozesse auf Gemeinschaftsebene durch die Reaktionen von bestimmten funktionellen Gruppen bzw. Arten hervorgerufen werden. Diversit{\"a}tseffekte auf Gemeinschaftsbiomassen wurden bislang haupts{\"a}chlich mit terrestrischen Pflanzen und weniger mit frei-schwebenden Algenarten (Phytoplankton) erforscht. Demzufolge wurde der Einfluss der Diversit{\"a}t auf die Biomasse von Phytoplankton-Gemeinschaften experimentell untersucht, wobei es sowohl zu negativen als auch positiven Diversit{\"a}tseffekten kam. Eine negative Beziehung zwischen Diversit{\"a}t und Gemeinschaftsbiomasse zeigte sich, wenn schnell-w{\"u}chsige Algenarten nur geringe Biomassen in Mono- und Mischkultur aufbauten. Die vorhandenen N{\"a}hrstoffe in der Mischkultur wurden von den schnell-w{\"u}chsigen Arten monopolisiert und folglich standen sie den langsam-w{\"u}chsigen Algenarten, welche viel Biomasse in Monokultur aufbauten, nicht mehr zur Verf{\"u}gung. Zu einem positiven Diversit{\"a}tseffekt auf die Gemeinschaftsbiomasse kam es, wenn die Artengemeinschaft eine positive Beziehung zwischen Wachstumsrate und Biomasse in Monokultur zeigte, sodass die schnell-w{\"u}chsige Algenarten viel Biomasse aufbauten. Da diese schnell-w{\"u}chsigen Algen in der Mischkultur dominant wurden, bestand die Gemeinschaft letztlich aus hoch-produktiven Algenarten, was zu einer erh{\"o}hten Gesamtbiomasse f{\"u}hrte. Diese beiden Versuchsans{\"a}tze verdeutlichen Mechanismen f{\"u}r die unterschiedlichen Reaktionen der Gemeinschaften auf Diversit{\"a}tsver{\"a}nderungen, welche auch f{\"u}r terrestrische Pflanzengemeinschaften gefunden wurden. Ein anderer wichtiger {\"O}kosystemprozess, der von der Diversit{\"a}t beeinflusst wird, ist die Anf{\"a}lligkeit von Gemeinschaften gegen{\"u}ber invasiven Arten (Invasibilit{\"a}t). Die Invasibilit{\"a}t wird von einer Vielzahl von Faktoren beeinflusst und demzufolge wurde der Effekt der Diversit{\"a}t und der Produktivit{\"a}t (N{\"a}hrstoffgehalt) auf die Invasibilit{\"a}t von Phytoplankton-Gemeinschaften in An- und Abwesenheit eines Herbivoren untersucht. Die zwei funktionell unterschiedlichen invasiven Arten waren die Blaualge Cylindrospermopsis raciborskii (schlecht fressbar) und der Phytoflagellat Cryptomonas sp. (gut fressbar). Es zeigte sich, dass der Fraßdruck, welcher selber durch die Produktivit{\"a}t beeinflusst wurde, einen bedeutenden Effekt auf die Invasibilit{\"a}t von Phytoplankton-Gemeinschaften hat. Die funktionellen Eigenschaften der invasiven und residenten Arten waren zudem bedeutender als die Artenzahl.}, language = {en} } @phdthesis{Feige2009, author = {Feige, Katharina}, title = {Molecular ecological analysis of methanogenic communities in terrestrial and submarine permafrost deposits of Siberian Laptev Sea area}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-37998}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Despite general concern that the massive deposits of methane stored under permafrost underground and undersea could be released into the atmosphere due to rising temperatures attributed to global climate change, little is known about the methanogenic microorganisms in permafrost sediments, their role in methane emissions, and their phylogeny. The aim of this thesis was to increase knowledge of uncultivated methanogenic microorganisms in submarine and terrestrial permafrost deposits, their community composition, the role they play with regard to methane emissions, and their phylogeny. It is assumed that methanogenic communities in warmer submarine permafrost may serve as a model to anticipate the response of methanogenic communities in colder terrestrial permafrost to rising temperatures. The compositions of methanogenic communities were examined in terrestrial and submarine permafrost sediment samples. The submarine permafrost studied in this research was 10°C warmer than the terrestrial permafrost. By polymerase chain reaction (PCR), DNA was extracted from each of the samples and analyzed by molecular microbiological methods such as PCR-DGGE, RT-PCR, and cloning. Furthermore, these samples were used for in vitro experiment and FISH. The submarine permafrost analysis of the isotope composition of CH4 suggested a relationship between methane content and in situ active methanogenesis. Furthermore, active methanogenesis was proven using 13C-isotope measurements of methane in submarine permafrost sediment with a high TOC value and a high methane concentration. In the molecular-microbiological studies uncultivated lines of Methanosarcina, Methanomicrobiales, Methanobacteriacea and the Groups 1.3 and Marine Benthic from Crenarchaeota were found in all submarine and terrestrial permafrost samples. Methanosarcina was the dominant group of the Archaea in all submarine and terrestrial permafrost samples. The archaeal community composition, in particular, the methanogenic community composition showed diversity with changes in temperatures. Furthermore, cell count of methanogens in submarine permafrost was 10 times higher than in terrestrial permafrost. In vitro experiments showed that methanogens adapt quickly and well to higher temperatures. If temperatures rise due to climate change, an increase in methanogenic activity can be expected as long as organic material is sufficiently available and qualitatively adequate.}, language = {en} }