@phdthesis{Riedl2021, author = {Riedl, Simon}, title = {Active tectonics in the Kenya Rift}, doi = {10.25932/publishup-53855}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-538552}, school = {Universit{\"a}t Potsdam}, pages = {xi, 207}, year = {2021}, abstract = {Magmatische und tektonisch aktive Grabenzonen (Rifts) stellen die Vorstufen entstehender Plattengrenzen dar. Diese sich spreizenden tektonischen Provinzen zeichnen sich durch allgegenw{\"a}rtige Abschiebungen aus, und die r{\"a}umliche Verteilung, die Geometrie, und das Alter dieser Abschiebungen l{\"a}sst R{\"u}ckschl{\"u}sse auf die r{\"a}umlichen und zeitlichen Zusammenh{\"a}nge zwischen tektonischer Deformation, Magmatismus und langwelliger Krustendeformation in Rifts zu. Diese Arbeit konzentriert sich auf die St{\"o}rungsaktivit{\"a}t im Kenia-Rift des k{\"a}nozoischen Ostafrikanischen Grabensystems im Zeitraum zwischen dem mittleren Pleistoz{\"a}n und dem Holoz{\"a}n. Um die fr{\"u}hen Stadien der Entstehung kontinentaler Plattengrenzen zu untersuchen, wird in dieser Arbeit eine zeitlich gemittelte minimale Extensionsrate f{\"u}r den inneren Graben des N{\"o}rdlichen Kenia-Rifts (NKR) f{\"u}r die letzten 0,5 Mio Jahre abgeleitet. Die Analyse beruht auf Messungen mit Hilfe des digitalen TanDEM-X-H{\"o}henmodells, um die Abschiebungen entlang der vulkanisch-tektonischen Achse des inneren Grabens des NKR zu kartieren und deren Versatzbetr{\"a}ge zu bestimmen. Mithilfe von vorhandenen Geochronologiedaten der deformierten vulkanischen Einheiten sowie in dieser Arbeit erstellten ⁴⁰Ar/³⁹Ar-Datierungen werden zeitlich gemittelte Extensionsraten berechnet. Die Auswertungen zeigen, dass im inneren Graben des NKR die langfristige Extensionsrate f{\"u}r mittelpleistoz{\"a}ne bis rezente St{\"o}rungen Mindestwerte von 1,0 bis 1,6 mm yr⁻¹ aufweist und lokal allerdings auch Werte bis zu 2,0 mm yr⁻¹ existieren. In Anbetracht der nahezu inaktiven Randst{\"o}rungen des NKR zeigt sich somit, dass sich die Extension auf die Region der aktiven vulkanisch-tektonischen Achse im inneren Graben konzentriert und somit ein fortgeschrittenes Stadium kontinentaler Extensionsprozesse im NKR vorliegt. In dieser Arbeit wird diese r{\"a}umlich fokussierte Extension zudem im Rahmen einer St{\"o}rungsanalyse der j{\"u}ngsten vulkanischen Erscheinungen des Kenia-Rifts betrachtet. Die Arbeit analysiert mithilfe von Gel{\"a}ndekartierungen und eines auf Luftbildern basierenden Gel{\"a}ndemodells die St{\"o}rungscharakteristika der etwa 36 tausend Jahre alten Menengai-Kaldera und der umliegenden Gebiete im zentralen Kenia-Rift. Im Allgemeinen sind die holoz{\"a}nen St{\"o}rungen innerhalb des Rifts reine, NNO-streichende Abschiebungen, die somit das gegenw{\"a}rtige tektonische Spannungsfeld wiederspiegeln; innerhalb der Menengai-Kaldera sind die jungen Strukturen jedoch von andauernder magmatischer Aktivit{\"a}t und von Aufdomung {\"u}berpr{\"a}gt. Die Kaldera befindet sich im Zentrum eines sich aktiv dehnenden Riftsegments und zusammen mit den anderen quart{\"a}ren Vulkanen des Kenia-Rifts lassen sich diese Bereiche als Kernpunkte der extensionalen St{\"o}rungsaktivit{\"a}t verstehen, die letztlich zu einer weiter entwickelten Phase magmengest{\"u}tzter Kontinentalseparation f{\"u}hren werden. Die bereits seit dem Terti{\"a}r andauernde St{\"o}rungsaktivit{\"a}t im Kenia-Rift f{\"u}hrt zur Zergliederung der gr{\"o}ßeren Rift-Senken in kleinere Segmente und beeinflusst die Sedimentologie und die Hydrologie dieser Riftbecken. Gegenw{\"a}rtig sind die meisten, durch St{\"o}rungen begrenzten Becken des Kenia-Rifts hydrologisch isoliert, sie waren aber w{\"a}hrend feuchter Klimaphasen hydrologisch miteinander verbunden; in dieser Arbeit untersuche ich deshalb auch diese hydrologische Verbindung der Rift-Becken f{\"u}r die Zeit der Afrikanischen Feuchteperiode des fr{\"u}hen Holoz{\"a}ns. Mithilfe der Analyse von digitalen Gel{\"a}ndemodellen, unter Ber{\"u}cksichtigung von geomorphologischen Anzeigern f{\"u}r Seespiegelhochst{\"a}nde, Radiokarbondatierungen und einer {\"U}bersicht {\"u}ber Fossiliendaten konnten zwei kaskadierende Flusssysteme aus diesen Daten abgeleitet werden: eine Flusskaskade in Richtung S{\"u}den und eine in Richtung Norden. Beide Kaskaden haben die derzeit isolierten Becken w{\"a}hrend des fr{\"u}hen Holoz{\"a}ns durch {\"u}berlaufende Seen und eingeschnittene Schluchten miteinander verbunden. Diese hydrologische Verbindung f{\"u}hrte zu der Ausbreitung aquatischer Fauna entlang des Rifts, und gleichzeitig stellte die Wasserscheide zwischen den beiden Flusssystemen den einzigen terrestrischen Ausbreitungskorridor dar, der eine {\"U}berquerung des Kenia-Rifts erm{\"o}glichte. Diese tektonisch-geomorphologische Rekonstruktion erkl{\"a}rt die heute isolierten Vorkommen nilotischer Fischarten in den Riftseen Kenias sowie die isolierten Vorkommen Guineo-Congolischer S{\"a}ugetiere in W{\"a}ldern {\"o}stlich des Kenia-Rifts, die sich {\"u}ber die Wasserscheide im Kenia-Rift ausbreiten konnten. Auf l{\"a}ngeren Zeitskalen sind solche Phasen hydrologischer Verbindung und Phasen der Isolation wiederholt aufgetreten und zeigen sich in wechselnden pal{\"a}o{\"o}kologischen Indikatoren in Sedimentbohrkernen. Hier stelle ich einen Sedimentbohrkern aus dem Koora-Becken des S{\"u}dlichen Kenia-Rifts vor, der einen Datensatz der Pal{\"a}o-Umweltbedingungen der letzten 1 Million Jahre beinhaltet. Dieser Datensatz zeigt, dass etwa vor 400 tausend Jahren die zuvor relativ stabilen Umweltbedingungen zum Erliegen kamen und tektonische, hydrologische und {\"o}kologische Ver{\"a}nderungen dazu f{\"u}hrten, dass die Wasserverf{\"u}gbarkeit, die Grasland-Vergesellschaftungen und die Bedeckung durch Baumvegetation zunehmend st{\"a}rkeren und h{\"a}ufigeren Schwankungen unterlagen. Diese großen Ver{\"a}nderungen fallen zeitlich mit Phasen zusammen, in denen das s{\"u}dliche Becken des Kenia-Rifts von vulkanischer und tektonischer Aktivit{\"a}t besonders betroffen war. Die vorliegende Arbeit zeigt deshalb deutlich, inwiefern die tektonischen und geomorphologischen Gegebenheiten im Zuge einer zeitlich langanhaltenden Extension die Hydrologie, die Pal{\"a}o-Umweltbedingungen sowie die Biodiversit{\"a}t einer Riftzone beeinflussen k{\"o}nnen.}, language = {en} } @phdthesis{Bai2010, author = {Bai, Shuo}, title = {Active hydrogels with nanocomposites}, address = {Potsdam}, pages = {VI, 109 Bl. : Ill., graph. Darst.}, year = {2010}, language = {en} } @phdthesis{Sawade2012, author = {Sawade, Christoph}, title = {Active evaluation of predictive models}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-255-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65583}, school = {Universit{\"a}t Potsdam}, pages = {ix, 157}, year = {2012}, abstract = {The field of machine learning studies algorithms that infer predictive models from data. Predictive models are applicable for many practical tasks such as spam filtering, face and handwritten digit recognition, and personalized product recommendation. In general, they are used to predict a target label for a given data instance. In order to make an informed decision about the deployment of a predictive model, it is crucial to know the model's approximate performance. To evaluate performance, a set of labeled test instances is required that is drawn from the distribution the model will be exposed to at application time. In many practical scenarios, unlabeled test instances are readily available, but the process of labeling them can be a time- and cost-intensive task and may involve a human expert. This thesis addresses the problem of evaluating a given predictive model accurately with minimal labeling effort. We study an active model evaluation process that selects certain instances of the data according to an instrumental sampling distribution and queries their labels. We derive sampling distributions that minimize estimation error with respect to different performance measures such as error rate, mean squared error, and F-measures. An analysis of the distribution that governs the estimator leads to confidence intervals, which indicate how precise the error estimation is. Labeling costs may vary across different instances depending on certain characteristics of the data. For instance, documents differ in their length, comprehensibility, and technical requirements; these attributes affect the time a human labeler needs to judge relevance or to assign topics. To address this, the sampling distribution is extended to incorporate instance-specific costs. We empirically study conditions under which the active evaluation processes are more accurate than a standard estimate that draws equally many instances from the test distribution. We also address the problem of comparing the risks of two predictive models. The standard approach would be to draw instances according to the test distribution, label the selected instances, and apply statistical tests to identify significant differences. Drawing instances according to an instrumental distribution affects the power of a statistical test. We derive a sampling procedure that maximizes test power when used to select instances, and thereby minimizes the likelihood of choosing the inferior model. Furthermore, we investigate the task of comparing several alternative models; the objective of an evaluation could be to rank the models according to the risk that they incur or to identify the model with lowest risk. An experimental study shows that the active procedure leads to higher test power than the standard test in many application domains. Finally, we study the problem of evaluating the performance of ranking functions, which are used for example for web search. In practice, ranking performance is estimated by applying a given ranking model to a representative set of test queries and manually assessing the relevance of all retrieved items for each query. We apply the concepts of active evaluation and active comparison to ranking functions and derive optimal sampling distributions for the commonly used performance measures Discounted Cumulative Gain and Expected Reciprocal Rank. Experiments on web search engine data illustrate significant reductions in labeling costs.}, language = {en} } @phdthesis{Patzwald2020, author = {Patzwald, Christiane}, title = {Actions through the lens of communicative cues}, school = {Universit{\"a}t Potsdam}, pages = {156}, year = {2020}, abstract = {The PhD thesis entitled "Actions through the lens of communicative cues. The influence of verbal cues and emotional cues on action processing and action selection in the second year of life" is based on four studies, which examined the cognitive integration of another person's communicative cues (i.e., verbal cues, emotional cues) with behavioral cues in 18- and 24-month-olds. In the context of social learning of instrumental actions, it was investigated how the intention-related coherence of either a verbally announced action intention or an emotionally signaled action evaluation with an action demonstration influenced infants' neuro-cognitive processing (Study I) and selection (Studies II, III, IV) of a novel object-directed action. Developmental research has shown that infants benefit from another's behavioral cues (e.g., action effect, persistency, selectivity) to infer the underlying goal or intention, respectively, of an observed action (e.g., Cannon \& Woodward, 2012; Woodward, 1998). Particularly action effects support infants in distinguishing perceptual action features (e.g., target object identity, movement trajectory, final target object state) from conceptual action features such as goals and intentions. However, less is known about infants' ability to cognitively integrate another's behavioral cues with additional action-related communicative cues. There is some evidence showing that in the second year of life, infants selectively imitate a novel action that is verbally ("There!") or emotionally (positive expression) marked as aligning with the model's action intention over an action that is verbally ("Whoops!") or emotionally (negative expression) marked as unintentional (Carpenter, Akhtar, \& Tomasello, 1998; Olineck \& Poulin-Dubois, 2005, 2009; Repacholi, 2009; Repacholi, Meltzoff, Toub, \& Ruba, 2016). Yet, it is currently unclear which role the specific intention-related coherence of a communicative cue with a behavioral cue plays in infants' action processing and action selection that is, whether the communicative cue confirms, contrasts, clarifies, or is unrelated to the behavioral cue. Notably, by using both verbal cues and emotional cues, we examined not only two domains of communicative cues but also two qualitatively distinct relations between behavioral cues on the one hand and communicative cues on the other hand. More specifically, a verbal cue has the potential to communicate an action intention in the absence of an action demonstration and thus a prior-intention (Searle, 1983), whereas an emotional cue evaluates an ongoing or past action demonstration and thus signals an intention-in-action (Searle, 1983). In a first research focus, this thesis examined infants' capacity to cognitively integrate another's intention-related communicative cues and behavioral cues, and also focused on the role of the social cues' coherence in infants' action processing and action selection. In a second research focus, and to gain more elaborate insights into how the sub-processes of social learning (attention, encoding, response; cf. Bandura, 1977) are involved in this coherence-sensitive integrative processing, we employed a multi-measures approach. More specifically, we used Electroencephalography (EEG) and looking times to examine how the cues' coherence influenced the compound of attention and encoding, and imitation (including latencies to first-touch and first-action) to address the compound of encoding and response. Based on the action-reconstruction account (Csibra, 2007), we predicted that infants use extra-motor information (i.e., communicative cues) together with behavioral cues to reconstruct another's action intention. Accordingly, we expected infants to possess a flexibly organized internal action hierarchy, which they adapt according to the cues' coherence that is, according to what they inferred to be the overarching action goal. More specifically, in a social-learning situation that comprised an adult model, who demonstrated an action on a novel object that offered two actions, we expected the demonstrated action to lead infants' action hierarchy when the communicative (i.e., verbal, emotional) cue conveyed similar (confirming coherence) or no additional (un-related coherence) intention-related information relative to the behavioral cue. In terms of action selection, this action hierarchy should become evident in a selective imitation of the demonstrated action. However, when the communicative cue questioned (contrasting coherence) the behaviorally implied action goal or was the only cue conveying meaningful intention-related information (clarifying coherence), the verbally/emotionally intended action should ascend infants' action hierarchy. Consequently, infants' action selection should align with the verbally/emotionally intended action (goal emulation). Notably, these predictions oppose the direct-matching perspective (Rizzolatti \& Craighero, 2004), according to which the observation of another's action directly resonates with the observer's motor repertoire, with this motor resonance enabling the identification of the underlying action goal. Importantly, the direct-matching perspective predicts a rather inflexible action hierarchy inasmuch as the process of goal identification should solely rely on the behavioral cue, irrespective of the behavioral cue's coherence with extra-motor intention-related information, as it may be conveyed via communicative cues. As to the role of verbal cues, Study I used EEG to examine the influence of a confirming (Congruent) versus contrasting (Incongruent) coherence of a verbal action intention with the same action demonstration on 18-month-olds' conceptual action processing (as measured via mid-latency mean negative ERP amplitude) and motor activation (as measured via central mu-frequency band power). The action was demonstrated on a novel object that offered two action alternatives from a neutral position. We expected mid-latency ERP negativity to be enhanced in Incongruent compared to Congruent, because past EEG research has demonstrated enhanced conceptual processing for stimuli that mismatched rather than matched the semantic context (Friedrich \& Friederici, 2010; Kaduk et al., 2016). Regarding motor activation, Csibra (2007) posited that the identification of a clear action goal constitutes a crucial basis for motor activation to occur. We therefore predicted reduced mu power (indicating enhanced motor activation) for Congruent than Incongruent, because in Congruent, the cues' match provides unequivocal information about the model's action goal, whereas in Incongruent, the conflict may render the model's action goal more unclear. Unexpectedly, in the entire sample, 18-month-olds' mid-latency ERP negativity during the observation of the same action demonstration did not differ significantly depending on whether this action was congruent or incongruent with the model's verbal action intention. Yet, post hoc analyses revealed the presence of two subgroups of infants, each of which exhibited significantly different mid-latency ERP negativity for Congruent versus Incongruent, but in opposing directions. The subgroups differed in their productive action-related language skills, with the linguistically more advanced infants exhibiting the expected response pattern of enhanced ERP mean negativity in Incongruent than Congruent, indicating enhanced conceptual processing of an action demonstration that was contrasted rather than confirmed by the verbal action context. As expected, central mu power in the entire sample was reduced in Congruent relative to Incongruent, indicating enhanced motor activation when the action demonstration was preceded by a confirming relative to a contrasting verbal action intention. This finding may indicate the covert preparation for a preferential imitation of the congruent relative to the incongruent action (Filippi et al., 2016; Frey \& Gerry, 2006). Overall, these findings are in line with the action-reconstruction account (Csibra, 2007), because they suggest a coherence-sensitive attention to and encoding of the same perceptual features of another's behavior and thus a cognitive integration of intention-related verbal cues and behavioral cues. Yet, because the subgroup constellation in infants' ERPs was only discovered post hoc, future research is clearly required to substantiate this finding. Also, future research should validate our interpretation that enhanced motor activation may reflect an electrophysiological marker of subsequent imitation by employing EEG and imitation in a within-subjects design. Study II built on Study I by investigating the impact of coherence of a verbal cue and a behavioral cue on 18- and 24-month-olds' action selection in an imitation study. When infants of both age groups observed a confirming (Congruent) or unrelated (Pseudo-word: action demonstration was associated with novel verb-like cue) coherence, they selectively imitated the demonstrated action over the not demonstrated, alternative action, with no difference between these two conditions. These findings suggest that, as expected, infants' action hierarchy was led by the demonstrated action when the verbal cue provided similar (Congruent) or no additional (Pseudo-word) intention-related information relative to a meaningful behavioral cue. These findings support the above-mentioned interpretation that enhanced motor activation during action observation may reflect a covert preparation for imitation (Study I). Interestingly, infants did not seem to benefit from the intention-highlighting effect of the verbal cue in Congruent, suggesting that the verbal cue had an unspecific (e.g., attention-guiding) effect on infants' action selection. Contrary, when infants observed a contrasting (Incongruent) or clarifying (Failed-attempt: model failed to manipulate the object but verbally announced a certain action intention) coherence, their action selection varied with age and also varied across the course of the experiment (block 1 vs. block 2). More specifically, the 24-month-olds made stronger use of the verbal cue for their action selection in block 1 than did the 18-month-olds. However, while the 18-month-olds' use of the verbal cue increased across blocks, particularly in Incongruent, the 24-month-olds' use of the verbal cue decreased across blocks. Overall, these results suggest that, as expected, infants' action hierarchy in Incongruent (both age groups) and Failed-attempt (only 24-month-olds) drew on the verbal action intention, because in both age groups, infants emulated the verbal intention about as often as they imitated the demonstrated action or even emulated the verbal action intention preferentially. Yet, these findings were confined to certain blocks. It may be argued that the younger age group had a harder time inferring and emulating the intended, yet never observed action, because this requirement is more demanding in cognitive and motor terms. These demands may explain why the 18-month-olds needed some time to take account of the verbal action intention. Contrary, it seems that the 24-month-olds, although demonstrating their principle capacity to take account of the verbal cue in block 1, lost trust in the model's verbal cue, maybe because the verbal cue did not have predictive value for the model's actual behavior. Supporting this interpretation, research on selective trust has demonstrated that already infants evaluate another's reliability or competence, respectively, based on how that model handles familiar objects (behavioral reliability) or labels familiar objects (verbal reliability; for reviews, see Mills, 2013; Poulin-Dubois \& Brosseau-Liard, 2016). Relatedly, imitation research has demonstrated that the interpersonal aspects of a social-learning situation gain increasing relevance for infants during the second year of life (Gell{\´e}n \& Buttelmann, 2019; Matheson, Moore, \& Akhtar, 2013; Uzgiris, 1981). It may thus be argued that when the 24-month-olds were repeatedly faced with a verbally unreliable model, they de-evaluated the verbal cue as signaling the model's action intention and instead relied more heavily on alternative cues such as the behavioral cue (Incongruent) or the action context (e.g., object affordances, salience; Failed-attempt). Infants' first-action latencies were higher in Incongruent and Failed-attempt than in both Congruent and Pseudo-word, and were also higher in Failed-attempt than in Incongruent. These latency-findings thus indicate that situations involving a meaningful verbal cue that deviated from the behavioral cue are cognitively more demanding, resulting in a delayed initiation of a behavioral response. In sum, the findings of Study II suggest that both age groups were highly flexible in their integration of a verbal cue and behavioral cue. Moreover, our results do not indicate a general superiority of either cue. Instead, it seems to depend on the informational gain conveyed by the verbal cue whether it exerts a specific, intention-highlighting effect (Incongruent, Failed-attempt) or an unspecific (e.g., attention-guiding) effect (Congruent, Pseudo-word). Studies III and IV investigated the impact of another's action-related emotional cues on 18-month-olds' action selection. In Study III, infants observed a model, who demonstrated two actions on a novel object in direct succession, and who combined one of the two actions with a positive (happy) emotional expression and the other action with a negative (sad) emotional expression. As expected, infants imitated the positively emoted (PE) action more often than the negatively emoted (NE) action. This preference arose from an increase in infants' readiness to perform the PE action from the baseline period (prior to the action demonstrations) to the test period (following the action demonstrations), rather than from a decrease in readiness to the perform the NE action. The positive cue thus had a stronger behavior-regulating effect than the negative cue. Notably, infants' more general object-directed behavior in terms of first-touch latencies remained unaffected by the emotional cues' valence, indicating that infants had linked the emotional cues specifically to the corresponding action and not the object as a whole (Repacholi, 2009). Also, infants' looking times during the action demonstration did not differ significantly as a function of emotional valence and were characterized by a predominant attentional focus to the action/object rather than to the model's face. Together with the findings on infants' first-touch latencies, these results indicate a sensitivity for the notion that emotions can have very specific referents (referential specificity; Martin, Maza, McGrath, \& Phelps, 2014). Together, Study III provided evidence for selective imitation based on another's intention-related (particularly positive) emotional cues in an action-selection task, and thus indicates that infants' action hierarchy flexibly responds to another's emotional evaluation of observed actions. According to Repacholi (2009), we suggest that infants used the model's emotional evaluation to re-appraise the corresponding action (effect), for instance in terms of desirability. Study IV followed up on Study III by investigating the role of the negative emotional cue for infants' action selection in more detail. Specifically, we investigated whether a contrasting (negative) emotional cue alone would be sufficient to differentially rank the two actions along infants' action hierarchy or whether instead infants require direct information about the model's action intention (in the form of a confirming action-emotion pair) to align their action selection with the emotional cues. Also, we examined whether the absence of a direct behavior-regulating effect of the negative cue in Study III was due to the negative cue itself or to the concurrently available positive cue masking the negative cue's potential effect. To this end, we split the demonstration of the two action-emotion pairs across two trials. In each trial, one action was thus demonstrated and emoted (PE, NE action), and one action was not demonstrated and un-emoted (UE action). For trial 1, we predicted that infants, who observed a PE action demonstration, would selectively imitate the PE action, whereas infants, who observed a NE action demonstration would selectively emulate the UE action. As to trial 2, we expected the complementary action-emotion pair to provide additional clarifying information as the model's emotional evaluation of both actions, which should either lead to adaptive perseveration (if infants' action selection in trial 1 had already drawn on the emotional cue) or adaptive change (if infants' action selection in trial 1 signaled a disregard of the emotional cue). As to trial 1, our findings revealed that, as expected, infants imitated the PE action more often than they emulated the UE action. Like in Study III, this selectivity arose from an increase in infants' propensity to perform the PE action from baseline to trial 1. Also like in Study III, infants performed the NE action about equally often in baseline and trial 1, which speaks against a direct behavior-regulating effect of the negative cue also when presented in isolation. However, after a NE action demonstration, infants emulated the UE action more often in trial 1 than in baseline, suggesting an indirect behavior-regulating effect of the negative cue. Yet, this indirect effect did not yield a selective emulation of the UE action, because infants performed both action alternatives about equally often in trial 1. Unexpectedly, infants' action selection in trial 2 was unaffected by the emotional cue. Instead, infants perseverated their action selection of trial 1 in trial 2, irrespective of whether it was adaptive or non-adaptive with respect to the model's emotional evaluation of the action. It seems that infants changed their strategy across trials, from an initial adherence to the emotional (particularly positive) cue, towards bringing about a salient action effect (Marcovich \& Zelazo, 2009). In sum, Studies III and IV indicate a dynamic interplay of different action-selection strategies, depending on valence and presentation order. Apparently, at least in infancy, action reconstruction as one basis for selective action performance reaches its limits when infants can only draw on indirect intention-related information (i.e., which action should be avoided). Overall, our findings favor the action-reconstruction account (Csibra, 2007), according to which actions are flexibly organized along a hierarchy, depending on inferential processes based on extra-motor intention-related information. At the same time, the findings question the direct-matching hypothesis (Rizzolatti \& Craighero, 2004), according to which the identification (and pursuit) of action goals hinges on a direct simulation of another's behavioral cues. Based on the studies' findings, a preliminary working model is introduced, which seeks to integrate the two theoretical accounts by conceptualizing the routes that activation induced by social cues may take to eventually influence an infant's action selection. Our findings indicate that it is useful to strive a differentiated conceptualization of communicative cues, because they seem to operate at different places within the process of cue integration, depending on their potential to convey direct intention-related information. Moreover, we suggest that there is bidirectional exchange within each compound of adjacent sub-processes (i.e., between attention and encoding, and encoding and response), and between the compounds. Hence, our findings highlight the benefits of a multi-measures approach when studying the development of infants' social-cognitive abilities, because it provides a more comprehensive picture how the concerted use of social cues from different domains influences infants' processing and selection of instrumental actions. Finally, this thesis points to potential future directions to substantiate our current interpretation of the findings.. Moreover, an extension to additional kinds of coherence is suggested to get closer to infants' everyday-world of experience.}, language = {en} } @phdthesis{Adam2019, author = {Adam, Maurits}, title = {Action-goal predictions in infancy}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2019}, language = {en} } @phdthesis{Seerangan2023, author = {Seerangan, Kumar}, title = {Actin-based regulation of cell and tissue scale morphogenesis in developing leaves}, school = {Universit{\"a}t Potsdam}, pages = {120}, year = {2023}, abstract = {Leaves exhibit cells with varying degrees of shape complexity along the proximodistal axis. Heterogeneities in growth directions within individual cells bring about such complexity in cell shape. Highly complex and interconnected gene regulatory networks and signaling pathways have been identified to govern these processes. In addition, the organization of cytoskeletal networks and cell wall mechanical properties greatly influences the regulation of cell shape. Research has shown that microtubules are involved in regulating cellulose deposition and direc-tion of cell growth. However, comprehensive analysis of the regulation of the actin cytoskele-ton in cell shape regulation has not been well studied. This thesis provides evidence that actin regulates aspects of cell growth, division, and direction-al expansion that impacts morphogenesis of developing leaves. The jigsaw puzzle piece mor-phology of epidermal pavement cells further serves as an ideal system to investigate the com-plex process of morphogenetic processes occurring at the cellular level. Here we have em-ployed live cell based imaging studies to track the development of pavement cells in actin com-promised conditions. Genetic perturbation of two predominantly expressed vegetative actin genes ACTIN2 and ACTIN7 results in delayed emergence of the cellular protrusions in pave-ment cells. Perturbation of actin also impacted the organization of microtubule in these cells that is known to promote emergence of cellular protrusions. Further, live-cell imaging of actin or-ganization revealed a correlation with cell shape, suggesting that actin plays a role in influencing pavement cell morphogenesis. In addition, disruption of actin leads to an increase in cell size along the leaf midrib, with cells being highly anisotropic due to reduced cell division. The reduction of cell division further im-pacted the morphology of the entire leaf, with the mutant leaves being more curved. These re-sults suggests that actin plays a pivotal role in regulating morphogenesis at the cellular and tis-sue scales thereby providing valuable insights into the role of the actin cytoskeleton in plant morphogenesis.}, language = {en} } @phdthesis{Chen2022, author = {Chen, Hui Ching}, title = {Acquisition of focus - in a cross-linguistic perspective}, doi = {10.25932/publishup-55345}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553458}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 130}, year = {2022}, abstract = {In dieser Dissertation untersuchen wir, wie chinesischen Muttersprachler und deutschen Muttersprachler, sowohl die Erwachsenen als auch die Kinder, verschiedene linguistische Mittel, wie z. B. Wortstellungsinformationen, prosodische und lexikalische Mittel im Sprachverst{\"a}ndnis korrekt interpretieren.}, language = {en} } @phdthesis{Heinz2011, author = {Heinz, Kathrin}, title = {Achtsamkeit und Akzeptanz als sportpsychologische Intervention : Adaption, Weiterentwicklung und Wirksamkeitspr{\"u}fung}, address = {Potsdam}, pages = {125 S.}, year = {2011}, language = {de} } @phdthesis{Antonelli2021, author = {Antonelli, Andrea}, title = {Accurate waveform models for gravitational-wave astrophysics: synergetic approaches from analytical relativity}, doi = {10.25932/publishup-57667}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576671}, school = {Universit{\"a}t Potsdam}, pages = {XII, 259, LXXV}, year = {2021}, abstract = {Gravitational-wave (GW) astrophysics is a field in full blossom. Since the landmark detection of GWs from a binary black hole on September 14th 2015, fifty-two compact-object binaries have been reported by the LIGO-Virgo collaboration. Such events carry astrophysical and cosmological information ranging from an understanding of how black holes and neutron stars are formed, what neutron stars are composed of, how the Universe expands, and allow testing general relativity in the highly-dynamical strong-field regime. It is the goal of GW astrophysics to extract such information as accurately as possible. Yet, this is only possible if the tools and technology used to detect and analyze GWs are advanced enough. A key aspect of GW searches are waveform models, which encapsulate our best predictions for the gravitational radiation under a certain set of parameters, and that need to be cross-correlated with data to extract GW signals. Waveforms must be very accurate to avoid missing important physics in the data, which might be the key to answer the fundamental questions of GW astrophysics. The continuous improvements of the current LIGO-Virgo detectors, the development of next-generation ground-based detectors such as the Einstein Telescope or the Cosmic Explorer, as well as the development of the Laser Interferometer Space Antenna (LISA), demand accurate waveform models. While available models are enough to capture the low spins, comparable-mass binaries routinely detected in LIGO-Virgo searches, those for sources from both current and next-generation ground-based and spaceborne detectors must be accurate enough to detect binaries with large spins and asymmetry in the masses. Moreover, the thousands of sources that we expect to detect with future detectors demand accurate waveforms to mitigate biases in the estimation of signals' parameters due to the presence of a foreground of many sources that overlap in the frequency band. This is recognized as one of the biggest challenges for the analysis of future-detectors' data, since biases might hinder the extraction of important astrophysical and cosmological information from future detectors' data. In the first part of this thesis, we discuss how to improve waveform models for binaries with high spins and asymmetry in the masses. In the second, we present the first generic metrics that have been proposed to predict biases in the presence of a foreground of many overlapping signals in GW data. For the first task, we will focus on several classes of analytical techniques. Current models for LIGO and Virgo studies are based on the post-Newtonian (PN, weak-field, small velocities) approximation that is most natural for the bound orbits that are routinely detected in GW searches. However, two other approximations have risen in prominence, the post-Minkowskian (PM, weak- field only) approximation natural for unbound (scattering) orbits and the small-mass-ratio (SMR) approximation typical of binaries in which the mass of one body is much bigger than the other. These are most appropriate to binaries with high asymmetry in the masses that challenge current waveform models. Moreover, they allow one to "cover" regions of the parameter space of coalescing binaries, thereby improving the interpolation (and faithfulness) of waveform models. The analytical approximations to the relativistic two-body problem can synergically be included within the effective-one-body (EOB) formalism, in which the two-body information from each approximation can be recast into an effective problem of a mass orbiting a deformed Schwarzschild (or Kerr) black hole. The hope is that the resultant models can cover both the low-spin comparable-mass binaries that are routinely detected, and the ones that challenge current models. The first part of this thesis is dedicated to a study about how to best incorporate information from the PN, PM, SMR and EOB approaches in a synergistic way. We also discuss how accurate the resulting waveforms are, as compared against numerical-relativity (NR) simulations. We begin by comparing PM models, whether alone or recast in the EOB framework, against PN models and NR simulations. We will show that PM information has the potential to improve currently-employed models for LIGO and Virgo, especially if recast within the EOB formalism. This is very important, as the PM approximation comes with a host of new computational techniques from particle physics to exploit. Then, we show how a combination of PM and SMR approximations can be employed to access previously-unknown PN orders, deriving the third subleading PN dynamics for spin-orbit and (aligned) spin1-spin2 couplings. Such new results can then be included in the EOB models currently used in GW searches and parameter estimation studies, thereby improving them when the binaries have high spins. Finally, we build an EOB model for quasi-circular nonspinning binaries based on the SMR approximation (rather than the PN one as usually done). We show how this is done in detail without incurring in the divergences that had affected previous attempts, and compare the resultant model against NR simulations. We find that the SMR approximation is an excellent approximation for all (quasi-circular nonspinning) binaries, including both the equal-mass binaries that are routinely detected in GW searches and the ones with highly asymmetric masses. In particular, the SMR-based models compare much better than the PN models, suggesting that SMR-informed EOB models might be the key to model binaries in the future. In the second task of this thesis, we work within the linear-signal ap- proximation and describe generic metrics to predict inference biases on the parameters of a GW source of interest in the presence of confusion noise from unfitted foregrounds and from residuals of other signals that have been incorrectly fitted out. We illustrate the formalism with simple (yet realistic) LISA sources, and demonstrate its validity against Monte-Carlo simulations. The metrics we describe pave the way for more realistic studies to quantify the biases with future ground-based and spaceborne detectors.}, language = {en} } @phdthesis{Kellermann2011, author = {Kellermann, Thorsten}, title = {Accurate numerical relativity simulations of non-vacuumspace-times in two dimensions and applications to critical collapse}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59578}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {This Thesis puts its focus on the physics of neutron stars and its description with methods of numerical relativity. In the first step, a new numerical framework the Whisky2D code will be developed, which solves the relativistic equations of hydrodynamics in axisymmetry. Therefore we consider an improved formulation of the conserved form of these equations. The second part will use the new code to investigate the critical behaviour of two colliding neutron stars. Considering the analogy to phase transitions in statistical physics, we will investigate the evolution of the entropy of the neutron stars during the whole process. A better understanding of the evolution of thermodynamical quantities, like the entropy in critical process, should provide deeper understanding of thermodynamics in relativity. More specifically, we have written the Whisky2D code, which solves the general-relativistic hydrodynamics equations in a flux-conservative form and in cylindrical coordinates. This of course brings in 1/r singular terms, where r is the radial cylindrical coordinate, which must be dealt with appropriately. In the above-referenced works, the flux operator is expanded and the 1/r terms, not containing derivatives, are moved to the right-hand-side of the equation (the source term), so that the left hand side assumes a form identical to the one of the three-dimensional (3D) Cartesian formulation. We call this the standard formulation. Another possibility is not to split the flux operator and to redefine the conserved variables, via a multiplication by r. We call this the new formulation. The new equations are solved with the same methods as in the Cartesian case. From a mathematical point of view, one would not expect differences between the two ways of writing the differential operator, but, of course, a difference is present at the numerical level. Our tests show that the new formulation yields results with a global truncation error which is one or more orders of magnitude smaller than those of alternative and commonly used formulations. The second part of the Thesis uses the new code for investigations of critical phenomena in general relativity. In particular, we consider the head-on-collision of two neutron stars in a region of the parameter space where two final states a new stable neutron star or a black hole, lay close to each other. In 1993, Choptuik considered one-parameter families of solutions, S[P], of the Einstein-Klein-Gordon equations for a massless scalar field in spherical symmetry, such that for every P > P⋆, S[P] contains a black hole and for every P < P⋆, S[P] is a solution not containing singularities. He studied numerically the behavior of S[P] as P → P⋆ and found that the critical solution, S[P⋆], is universal, in the sense that it is approached by all nearly-critical solutions regardless of the particular family of initial data considered. All these phenomena have the common property that, as P approaches P⋆, S[P] approaches a universal solution S[P⋆] and that all the physical quantities of S[P] depend only on |P - P⋆|. The first study of critical phenomena concerning the head-on collision of NSs was carried out by Jin and Suen in 2007. In particular, they considered a series of families of equal-mass NSs, modeled with an ideal-gas EOS, boosted towards each other and varied the mass of the stars, their separation, velocity and the polytropic index in the EOS. In this way they could observe a critical phenomenon of type I near the threshold of black-hole formation, with the putative solution being a nonlinearly oscillating star. In a successive work, they performed similar simulations but considering the head-on collision of Gaussian distributions of matter. Also in this case they found the appearance of type-I critical behaviour, but also performed a perturbative analysis of the initial distributions of matter and of the merged object. Because of the considerable difference found in the eigenfrequencies in the two cases, they concluded that the critical solution does not represent a system near equilibrium and in particular not a perturbed Tolmann-Oppenheimer-Volkoff (TOV) solution. In this Thesis we study the dynamics of the head-on collision of two equal-mass NSs using a setup which is as similar as possible to the one considered above. While we confirm that the merged object exhibits a type-I critical behaviour, we also argue against the conclusion that the critical solution cannot be described in terms of equilibrium solution. Indeed, we show that, in analogy with what is found in, the critical solution is effectively a perturbed unstable solution of the TOV equations. Our analysis also considers fine-structure of the scaling relation of type-I critical phenomena and we show that it exhibits oscillations in a similar way to the one studied in the context of scalar-field critical collapse.}, language = {en} } @phdthesis{Mooz2010, author = {Mooz, Mathias E.}, title = {Accountancy Disciplines in der WTO zwischen Handelsliberalisierung und Regulierung}, publisher = {M. Adam Verl.}, address = {W{\"u}rzburg}, isbn = {978-3-942141-22-2}, pages = {402 S.}, year = {2010}, language = {de} } @phdthesis{Eckardt2008, author = {Eckardt, Sebastian}, title = {Accountability and decentralized service delivery : Explaining performance variation across local governments in Indonesia}, publisher = {Nomos}, address = {Baden-Baden}, isbn = {978-3-8329-3787-4}, pages = {238 S.}, year = {2008}, language = {en} } @phdthesis{Eckert2019, author = {Eckert, Sebastian}, title = {Accessing active sites of molecular proton dynamics}, doi = {10.25932/publishup-42587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425870}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 193}, year = {2019}, abstract = {The unceasing impact of intense sunlight on earth constitutes a continuous source of energy fueling countless natural processes. On a molecular level, the energy contained in the electromagnetic radiation is transferred through photochemical processes into chemical or thermal energy. In the course of such processes, photo-excitations promote molecules into thermally inaccessible excited states. This induces adaptations of their molecular geometry according to the properties of the excited state. Decay processes towards energetically lower lying states in transient molecular geometries result in the formation of excited state relaxation pathways. The photo-chemical relaxation mechanisms depend on the studied system itself, the interactions with its chemical environment and the character of the involved states. This thesis focuses on systems in which photo-induced deprotonation processes occur at specific atomic sites. To detect these excited-state proton dynamics at the affected atoms, a local probe of molecular electronic structure is required. Therefore, site-selective and orbital-specific K-edge soft X-ray spectroscopy techniques are used here to detect photo-induced proton dynamics in gaseous and liquid sample environments. The protonation of nitrogen (N) sites in organic molecules and the oxygen (O) atom in the water molecule are probed locally through transitions between 1s orbitals and the p-derived molecular valence electronic structure. The used techniques are X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Both yield access to the unoccupied local valence electronic structure, whereas the latter additionally probes occupied states. We apply these probes in optical pump X-ray probe experiments to investigate valence excited-state proton transfer capabilities of aqueous 2-thiopyridone. A characteristic shift of N K-edge X-ray absorption resonances as well as a distinct X-ray emission line are established by us as spectral fingerprints of N deprotonation in the system. We utilize them to identify photo-induced N deprotonation of 2-thiopyridone on femtosecond timescales, in optical pump N K-edge RIXS probe measurements. We further establish excited state proton transfer mechanisms on picosecond and nanosecond timescales along the dominant relaxation pathways of 2-thiopyridone using transient N K-edge XAS. Despite being an excellent probe mechanism for valence excited-state proton dynamics, the K-edge core-excitation itself also disturbs the electronic structure at specific sites of a molecule. The rapid reaction of protons to 1s photo-excitations can yield directional structural distortions within the femtosecond core-excited state lifetime. These directional proton dynamics can change the energetic separation of eigenstates of the system and alter probabilities for radiative decay between them. Both effects yield spectral signatures of the dynamics in RIXS spectra. Using these signatures of RIXS transitions into electronically excited states, we investigate proton dynamics induced by N K-edge excitation in the amino-acid histidine. The minor core-excited state dynamics of histidine in basic and neutral chemical environments allow us to establish XAS and RIXS spectral signatures of different N protonation states at its imidazole N sites. Based on these signatures, we identify an excitation-site-independent N-H dissociation for N K-edge excitation under acidic conditions. Such directional structural deformations, induced by core-excitations, also make proton dynamics in electronic ground states accessible through RIXS transitions into vibrationally excited states. In that context, we interpret high resolution RIXS spectra of the water molecule for three O K-edge resonances based on quantum-chemical wave packet propagation simulations. We show that highly oriented ground state vibrational modes of coupled nuclear motion can be populated through RIXS processes by preparation of core-excited state nuclear wave packets with the same directionality. Based on that, we analytically derive the possibility to extract one-dimensional directional cuts through potential energy surfaces of molecular systems from the corresponding RIXS spectra. We further verify this concept through the extraction of the gas-phase water ground state potential along three coordinates from experimental data in comparison to quantum-chemical simulations of the potential energy surface. This thesis also contains contributions to instrumentation development for investigations of photo-induced molecular dynamics at high brilliance X-ray light sources. We characterize the setup used for the transient valence-excited state XAS measurements of 2-thiopyridone. Therein, a sub-micrometer thin liquid sample environment is established employing in-vacuum flat-jet technology, which enables a transmission experimental geometry. In combination with a MHz-laser system, we achieve a high detection sensitivity for photo-induced X-ray absorption changes. Additionally, we present conceptual improvements for temporal X-ray optical cross-correlation techniques based on transient changes of multilayer optical properties, which are crucial for the realization of femtosecond time-resolved studies at synchrotrons and free-electron lasers.}, language = {en} } @phdthesis{Zhou2008, author = {Zhou, Wei}, title = {Access control model and policies for collaborative environments}, address = {Potsdam}, pages = {199 S. : graph. Darst.}, year = {2008}, language = {en} } @phdthesis{Lin2017, author = {Lin, Huijuan}, title = {Acceleration and Amplification of Biomimetric Actuation}, school = {Universit{\"a}t Potsdam}, pages = {99}, year = {2017}, language = {en} } @phdthesis{Stanke2023, author = {Stanke, Sandra}, title = {AC electrokinetic immobilization of influenza viruses and antibodies on nanoelectrode arrays for on-chip immunoassays}, doi = {10.25932/publishup-61716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617165}, school = {Universit{\"a}t Potsdam}, pages = {x, 115}, year = {2023}, abstract = {In the present thesis, AC electrokinetic forces, like dielectrophoresis and AC electroosmosis, were demonstrated as a simple and fast method to functionalize the surface of nanoelectrodes with submicrometer sized biological objects. These nanoelectrodes have a cylindrical shape with a diameter of 500 nm arranged in an array of 6256 electrodes. Due to its medical relevance influenza virus as well as anti-influenza antibodies were chosen as a model organism. Common methods to bring antibodies or proteins to biosensor surfaces are complex and time-consuming. In the present work, it was demonstrated that by applying AC electric fields influenza viruses and antibodies can be immobilized onto the nanoelectrodes within seconds without any prior chemical modification of neither the surface nor the immobilized biological object. The distribution of these immobilized objects is not uniform over the entire array, it exhibits a decreasing gradient from the outer row to the inner ones. Different causes for this gradient have been discussed, such as the vortex-shaped fluid motion above the nanoelectrodes generated by, among others, electrothermal fluid flow. It was demonstrated that parts of the accumulated material are permanently immobilized to the electrodes. This is a unique characteristic of the presented system since in the literature the AC electrokinetic immobilization is almost entirely presented as a method just for temporary immobilization. The spatial distribution of the immobilized viral material or the anti-influenza antibodies at the electrodes was observed by either the combination of fluorescence microscopy and deconvolution or by super-resolution microscopy (STED). On-chip immunoassays were performed to examine the suitability of the functionalized electrodes as a potential affinity-based biosensor. Two approaches were pursued: A) the influenza virus as the bio-receptor or B) the influenza virus as the analyte. Different sources of error were eliminated by ELISA and passivation experiments. Hence, the activity of the immobilized object was inspected by incubation with the analyte. This resulted in the successful detection of anti-influenza antibodies by the immobilized viral material. On the other hand, a detection of influenza virus particles by the immobilized anti-influenza antibodies was not possible. The latter might be due to lost activity or wrong orientation of the antibodies. Thus, further examinations on the activity of by AC electric fields immobilized antibodies should follow. When combined with microfluidics and an electrical read-out system, the functionalized chips possess the potential to serve as a rapid, portable, and cost-effective point-of-care (POC) device. This device can be utilized as a basis for diverse applications in diagnosing and treating influenza, as well as various other pathogens.}, language = {en} } @phdthesis{Gunold2022, author = {Gunold, Sascha}, title = {Abzug unter Beobachtung}, doi = {10.25932/publishup-57197}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571977}, school = {Universit{\"a}t Potsdam}, pages = {391}, year = {2022}, abstract = {Mehr als vier Jahrzehnte lang beobachteten die Streitkr{\"a}fte und Milit{\"a}rnachrichtendienste der NATO-Staaten die sowjetischen Truppen in der DDR. Hierf{\"u}r {\"u}bernahm in der Bundesrepublik Deutschland der Bundesnachrichtendienst (BND) die milit{\"a}rische Auslandsaufkl{\"a}rung unter Anwendung nachrichtendienstlicher Mittel und Methoden. Die Bundeswehr betrieb dagegen taktische Fernmelde- und elektronische Aufkl{\"a}rung und h{\"o}rte vor allem den Funkverkehr der „Gruppe der sowjetischen Streitkr{\"a}fte in Deutschland" (GSSD) ab. Mit der Aufstellung einer zentralen Dienststelle f{\"u}r das milit{\"a}rische Nachrichtenwesen, dem Amt f{\"u}r Nachrichtenwesen der Bundeswehr, b{\"u}ndelte und erweiterte zugleich das Bundesministerium f{\"u}r Verteidigung in den 1980er Jahren seine analytischen Kapazit{\"a}ten. Das Monopol des BND in der milit{\"a}rischen Auslandsaufkl{\"a}rung wurde von der Bundeswehr dadurch zunehmend infrage gestellt. Nach der deutschen Wiedervereinigung am 3. Oktober 1990 befanden sich immer noch mehr als 300.000 sowjetische Soldaten auf deutschem Territorium. Die 1989 in Westgruppe der Truppen (WGT) umbenannte GSSD sollte - so der Zwei-plus-Vier-Vertrag - bis 1994 vollst{\"a}ndig abziehen. Der Vertrag verbot auch den drei Westm{\"a}chten, in den neuen Bundesl{\"a}ndern milit{\"a}risch t{\"a}tig zu sein. Die f{\"u}r die Milit{\"a}raufkl{\"a}rung bis dahin unverzichtbaren Milit{\"a}rverbindungsmissionen der Westm{\"a}chte mussten ihre Dienste einstellen. Doch was geschah mit diesem „alliierten Erbe"? Wer {\"u}bernahm auf deutscher Seite die Aufkl{\"a}rung der sowjetischen Truppen und wer kontrollierte den Truppenabzug?  Die Studie untersucht die Rolle von Bundeswehr und BND beim Abzug der WGT zwischen 1990 und 1994 und fragt dabei nach Kooperation und Konkurrenz zwischen Streitkr{\"a}ften und Nachrichtendiensten. Welche milit{\"a}rischen und nachrichtendienstlichen Mittel und F{\"a}higkeiten stellte die Bundesregierung zur Bew{\"a}ltigung des Truppenabzugs zur Verf{\"u}gung, nachdem die westlichen Milit{\"a}rverbindungsmissionen aufgel{\"o}st wurden? Wie ver{\"a}nderten sich die Anforderungen an die milit{\"a}rische Auslandsaufkl{\"a}rung des BND? Inwieweit setzten sich Konkurrenz und Kooperation von Bundeswehr und BNDbeim Truppenabzug fort? Welche Rolle spielten dabei die einstigen Westm{\"a}chte? Die Arbeit versteht sich nicht nur als Beitrag zur Milit{\"a}rgeschichte, sondern auch zur deutschen Nachrichtendienstgeschichte.}, language = {de} } @phdthesis{UrbanFahr2000, author = {Urban-Fahr, Susanne}, title = {Abwehr von Antisemitismus und der Kampf um Selbstbehauptung : Deutsche Juden und der Philo-Verlag 1919 - 1938}, pages = {359 S.}, year = {2000}, language = {de} } @phdthesis{Moewes2015, author = {Moewes, Udo}, title = {Abundanzumlagen im kommunalen Finanzausgleich}, series = {Kommunalrechtliche Studien ; 2}, volume = {2015}, journal = {Kommunalrechtliche Studien ; 2}, publisher = {Nomos}, address = {Baden-Baden}, isbn = {978-3-8487-1963-1}, pages = {695}, year = {2015}, language = {de} } @phdthesis{Lemke2013, author = {Lemke, Karina}, title = {Abtrennung und Charakterisierung von Polyelektrolyt-modifizierten Nanopartikeln}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68133}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Gegenstand der Dissertation ist die gr{\"o}ßen- und eigenschaftsoptimierte Synthese und Charakterisierung von anorganischen Nanopartikeln in einer geeigneten Polyelektrolytmodifizierten Mikroemulsion. Das Hauptziel bildet dabei die Auswahl einer geeigneten Mikroemulsion, zur Synthese von kleinen, stabilen, reproduzierbaren Nanopartikeln mit besonderen Eigenschaften. Die vorliegende Arbeit wurde in zwei Haupteile gegliedert. Der erste Teil befasst sich mit der Einmischung von unterschiedlichen Polykationen (lineares Poly (diallyldimethylammoniumchlorid) (PDADMAC) und verzweigtes Poly (ethylenimin) (PEI)) in verschiedene, auf unterschiedlichen Tensiden (CTAB - kationisch, SDS - anionisch, SB - zwitterionisch) basierenden, Mikroemulsionssysteme. Dabei zeigt sich, dass das Einmischen der Polykationen in die Wassertr{\"o}pfchen der Wasser-in-{\"O}l (W/O) Mikroemulsion prinzipiell m{\"o}glich ist. Der Einfluss der verschiedenen Polykationen auf das Phasenverhalten der W/O Mikroemulsion ist jedoch sehr unterschiedlich. In Gegenwart des kationischen Tensids f{\"u}hren die repulsiven Wechselwirkungen mit den Polykationen zu einer Destabilisierung des Systems, w{\"a}hrend die ausgepr{\"a}gten Wechselwirkungen mit dem anionischen Tensid in einer deutlichen Stabilisierung des Systems resultieren. F{\"u}r das zwitterionische Tensid f{\"u}hren die moderaten Wechselwirkungen mit den Polykationen zu einer partiellen Stabilisierung. Der zweite Teil der Arbeit besch{\"a}ftigt sich mit dem Einsatz der unterschiedlichen, Polyelektrolyt- modifizierten Mikroemulsionen als Templatphase f{\"u}r die Herstellung verschiedener, anorganischer Nanopartikel. Die CTAB-basierte Mikroemulsion erweist sich dabei als ungeeignet f{\"u}r die Herstellung von CdS Nanopartikeln, da zum einen nur eine geringe Toleranz gegen{\"u}ber den Reaktanden vorhanden ist (Destabilisierungseffekt) und zum anderen das Partikelwachstum durch den Polyelektrolyt-Tensid-Film nicht ausreichend begrenzt wird. Zudem zeigt sich, dass eine Abtrennung der Partikel aus der Mikroemulsion nicht m{\"o}glich ist. Die SDS-basierten Mikroemulsionen, erweisen sich als geeignete Templatphase zur Synthese kleiner anorganischer Nanopartikel (3 - 20 nm). Sowohl CdS Quantum Dots, als auch Gold Nanopartikel konnten erfolgreich in der Mikroemulsion synthetisiert werden, wobei das verzweigte PEI einen interessanten Templat-Effekt in der Mikroemulsion hervorruft. Als deutlicher Nachteil der SDS-basierten Mikroemulsionen offenbaren sich die starken Wechselwirkungen zwischen dem Tensid und den Polyelektrolyten w{\"a}hrend der Aufarbeitung der Nanopartikel aus der Mikroemulsion. Dabei erweist sich die Polyelektrolyt-Tensid-Komplexbildung als hinderlich f{\"u}r die Redispergierung der CdS Quantum Dots in Wasser, so dass Partikelaggregation einsetzt. Die SB-basierten Mikroemulsionen erweisen sich als g{\"u}nstige Templatphase f{\"u}r die Bildung von gr{\"o}ßen- und eigenschaftenoptimierten Nanopartikeln (< 4 nm), wobei insbesondere eine Modifizierung mit PEI als ideal betrachtet werden kann. In Gegenwart des verzweigten PEI gelang es erstmals ultrakleine, fluoreszierende Gold Cluster (< 2 nm) in einer SB-basierten Mikroemulsion als Templatphase herzustellen. Als besonderer Vorteil der SB-basierten Mikroemulsion zeigen sich die moderaten Wechselwirkungen zwischen dem zwitterionischen Tensid und den Polyelektrolyten, welche eine anschließende Abtrennung der Partikel aus der Mikroemulsion unter Erhalt der Gr{\"o}ße und ihrer optischen Eigenschaften erm{\"o}glichen. In der redispergierten w{\"a}ssrigen L{\"o}sung gelang somit eine Auftrennung der PEI-modifizierten Partikel mit Hilfe der asymmetrischer Fluss Feldflussfraktionierung (aF FFF). Die gebildeten Nanopartikel zeigen interessante optische Eigenschaften und k{\"o}nnen zum Beispiel erfolgreich zur Modifizierung von Biosensoren eingesetzt werden.}, language = {de} }