@article{PatheNeuschaeferRubeNeuschaeferRubePueschel2005, author = {Pathe-Neusch{\"a}fer-Rube, Andrea and Neusch{\"a}fer-Rube, Frank and P{\"u}schel, Gerhard Paul}, title = {Role of the ERC motif in the proximal part of the second intracellular loop and the C-terminal domain of the human prostaglandin F2alpha receptor (hFP-R) in G-protein coupling control}, year = {2005}, abstract = {The human FP-R (F2alpha prostaglandin receptor) is a Gq-coupled heptahelical ectoreceptor, which is of significant medical interest, since it is a potential target for the treatment of glaucoma and preterm labour. On agonist exposure, it mediates an increase in intracellular inositol phosphate formation. Little is known about the structures that govern the agonist-dependent receptor activation. In other prostanoid receptors, the C-terminal domain has been inferred in the control of agonist-dependent receptor activation. A DRY motif at the beginning of the second intracellular loop is highly conserved throughout the G-protein-coupled receptor family and appears to be crucial for controlling agonist-dependent receptor activation. It is replaced by an ERC motif in the FP-R and no evidence for the relevance of this motif in ligand-dependent activation of prostanoid receptors has been provided so far. The aim of the present study was to elucidate the potential role of the C-terminal domain and the ERC motif in agonist-controlled intracellular signalling in FP-R mutants generated by site-directed mutagenesis. It was found that substitution of the acidic Glu(132) in the ERC motif by a threonine residue led to full constitutive activation, whereas truncation of the receptor's C-terminal domain led to partial constitutive activation of all three intracellular signal pathways that had previously been shown to be activated by the FP-R, i.e. inositol trisphosphate formation, focal adhesion kinase activation and T-cell factor signalling. Inositol trisphosphate formation and focal adhesion kinase phosphorylation were further enhanced by ligand binding in cells expressing the truncation mutant but not the E132T (Glu132-->Thr) mutant. Thus C-terminal truncation appeared to result in a receptor with partial constitutive activation, whereas substitution of Glu132 by threonine apparently resulted in a receptor with full constitutive activity.}, language = {en} } @article{PatheNeuschaeferRubeNeuschaeferRubePueschel2004, author = {Pathe-Neusch{\"a}fer-Rube, Andrea and Neusch{\"a}fer-Rube, Frank and P{\"u}schel, Gerhard Paul}, title = {G protein coupling control by the ERC-motif in the proximal part of the second intracellular loop and the C- terminal domain of the human prostaglandin F-2A receptor (FP receptor)}, issn = {0028-1298}, year = {2004}, language = {en} } @article{PatheNeuschaeferRubeNeuschaeferRubePueschel2021, author = {Pathe-Neusch{\"a}fer-Rube, Andrea and Neusch{\"a}fer-Rube, Frank and P{\"u}schel, Gerhard Paul}, title = {Cell-based reporter release assay to determine the activity of calcium-dependent neurotoxins and neuroactive pharmaceuticals}, series = {Toxins / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Toxins / Molecular Diversity Preservation International (MDPI)}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2072-6651}, doi = {10.3390/toxins13040247}, pages = {13}, year = {2021}, abstract = {The suitability of a newly developed cell-based functional assay was tested for the detection of the activity of a range of neurotoxins and neuroactive pharmaceuticals which act by stimulation or inhibition of calcium-dependent neurotransmitter release. In this functional assay, a reporter enzyme is released concomitantly with the neurotransmitter from neurosecretory vesicles. The current study showed that the release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) can be stimulated by a carbachol-mediated activation of the Gq-coupled muscarinic-acetylcholine receptor and by the Ca2+-channel forming spider toxin α-latrotoxin. Carbachol-stimulated luciferase release was completely inhibited by the muscarinic acetylcholine receptor antagonist atropine and α-latrotoxin-mediated release by the Ca2+-chelator EGTA, demonstrating the specificity of luciferase-release stimulation. SIMA-hPOMC1-26-GLuc cells express mainly L- and N-type and to a lesser extent T-type VGCC on the mRNA and protein level. In accordance with the expression profile a depolarization-stimulated luciferase release by a high K+-buffer was effectively and dose-dependently inhibited by L-type VGCC inhibitors and to a lesser extent by N-type and T-type inhibitors. P/Q- and R-type inhibitors did not affect the K+-stimulated luciferase release. In summary, the newly established cell-based assay may represent a versatile tool to analyze the biological efficiency of a range of neurotoxins and neuroactive pharmaceuticals which mediate their activity by the modulation of calcium-dependent neurotransmitter release.}, language = {en} } @article{PedroErnestodaSilvaRochaGomesetal.2022, author = {Pedro Ernesto, Pinho Tavares Leal and da Silva, Alexandre Alves and Rocha-Gomes, Arthur and Riul, Tania Regina and Cunha, Rennan Augusto and Reichetzeder, Christoph and Villela, Daniel Campos}, title = {High-salt diet in the pre- and postweaning periods leads to amygdala oxidative stress and changes in locomotion and anxiety-like behaviors of male wistar rats}, series = {Frontiers in behavioral neuroscience}, volume = {15}, journal = {Frontiers in behavioral neuroscience}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1662-5153}, doi = {10.3389/fnbeh.2021.779080}, pages = {12}, year = {2022}, abstract = {High-salt (HS) diets have recently been linked to oxidative stress in the brain, a fact that may be a precursor to behavioral changes, such as those involving anxiety-like behavior. However, to the best of our knowledge, no study has evaluated the amygdala redox status after consuming a HS diet in the pre- or postweaning periods. This study aimed to evaluate the amygdala redox status and anxiety-like behaviors in adulthood, after inclusion of HS diet in two periods: preconception, gestation, and lactation (preweaning); and only after weaning (postweaning). Initially, 18 females and 9 male Wistar rats received a standard (n = 9 females and 4 males) or a HS diet (n = 9 females and 5 males) for 120 days. After mating, females continued to receive the aforementioned diets during gestation and lactation. Weaning occurred at 21-day-old Wistar rats and the male offspring were subdivided: control-control (C-C)-offspring of standard diet fed dams who received a standard diet after weaning (n = 9-11), control-HS (C-HS)-offspring of standard diet fed dams who received a HS diet after weaning (n = 9-11), HS-C-offspring of HS diet fed dams who received a standard diet after weaning (n = 9-11), and HS-HS-offspring of HS diet fed dams who received a HS diet after weaning (n = 9-11). At adulthood, the male offspring performed the elevated plus maze and open field tests. At 152-day-old Wistar rats, the offspring were euthanized and the amygdala was removed for redox state analysis. The HS-HS group showed higher locomotion and rearing frequency in the open field test. These results indicate that this group developed hyperactivity. The C-HS group had a higher ratio of entries and time spent in the open arms of the elevated plus maze test in addition to a higher head-dipping frequency. These results suggest less anxiety-like behaviors. In the analysis of the redox state, less activity of antioxidant enzymes and higher levels of the thiobarbituric acid reactive substances (TBARS) in the amygdala were shown in the amygdala of animals that received a high-salt diet regardless of the period (pre- or postweaning). In conclusion, the high-salt diet promoted hyperactivity when administered in the pre- and postweaning periods. In animals that received only in the postweaning period, the addition of salt induced a reduction in anxiety-like behaviors. Also, regardless of the period, salt provided amygdala oxidative stress, which may be linked to the observed behaviors.}, language = {en} } @article{PengZhuDongetal.2015, author = {Peng, Tao and Zhu, Ganghua and Dong, Yunpeng and Zeng, Junjie and Li, Wei and Guo, Weiwei and Chen, Yong and Duan, Maoli and Hocher, Berthold and Xie, Dinghua}, title = {BMP4: a possible key factor in differentiation of auditory neuron-like cells from bone-derived mesenchymal stromal cells}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {61}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {9}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2015.150217}, pages = {1171 -- 1178}, year = {2015}, abstract = {Background: Previous studies have shown that BMP4 may play an important part in the development of auditory neurons (ANs), which are degenerated in sensorineural hearing loss. However, whether BMP4 can promote sensory fate specification from mesenchymal stromal cells (MSCs) is unknown so far. Methods: MSCs isolated from Sprague-Dawley (SD) rats were confirmed by expression of MSC markers using flow cytometry and adipogenesis/osteogenesis using differentiation assays. MSCs treated with a complex of neurotrophic factors (BMP4 group and non-BMP4 group) were induced into auditory neuron-like cells, then the differences between the two groups were analyzed in morphological observation, cell growth curve, qRT-PCR, and immunofluorescence. Results: Flow cytometric analysis showed that the isolated cells expressed typical MSC surface markers. After adipogenic and osteogenic induction, the cells were stained by oil red O and Alizarin Red. The neuronal induced cells were in the growth plateau and had special forms of neurons. In the presence of BMP4, the inner ear genes NF-M, Neurog1, GluR4, NeuroD, Calretinin, NeuN, Tau, and GATA3 were up-regulated in MSCs. Conclusions: MSCs have the capacity to differentiate into auditory neuron-like cells in vitro. As an effective inducer, BMP4 may play a key role in transdifferentiation.}, language = {en} } @article{PeresEyngLopesetal.2015, author = {Peres, Tanara V. and Eyng, Helena and Lopes, Samantha C. and Colle, Dirleise and Goncalves, Filipe M. and Venske, Debora K. R. and Lopes, Mark W. and Ben, Juliana and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and Farina, Marcelo and Prediger, Rui D. and Leal, Rodrigo B.}, title = {Developmental exposure to manganese induces lasting motor and cognitive impairment in rats}, series = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, volume = {50}, journal = {Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0161-813X}, doi = {10.1016/j.neuro.2015.07.005}, pages = {28 -- 37}, year = {2015}, abstract = {Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor coordination and cognitive function in adulthood and potential underlying mechanisms. Male Wistar rats were exposed intraperitoneally to saline (control) or MnCl2 (5, 10 or 20 mg/kg/day) from post-natal day (PND) 8-12. Behavioral tests were performed on PND 60-65 and biochemical analysis in the striatum and hippocampus were performed on PND14 or PND70. Rats exposed to Mn (10 and 20 mg/kg) performed significantly worse on the rotarod test than controls indicating motor coordination and balance impairments. The object and social recognition tasks were used to evaluate short-term memory. Rats exposed to the highest Mn dose failed to recognize a familiar object when replaced by a novel object as well as to recognize a familiar juvenile rat after a short period of time. However, Mn did not alter olfactory discrimination ability. In addition, Mn-treated rats displayed decreased levels of non-protein thiols (e.g. glutathione) and increased levels of glial fibrillary acidic protein (GFAP) in the striatum. Moreover, Mn significantly increased hippocampal glutathione peroxidase (GPx) activity. These findings demonstrate that acute low-level exposure to Mn during a critical neurodevelopmental period causes cognitive and motor dysfunctions that last into adulthood, that are accompanied by alterations in antioxidant defense system in both the hippocampus and striatum. (C) 2015 Elsevier Inc. All rights reserved.}, language = {en} } @article{PeresHorningBornhorstetal.2019, author = {Peres, Tanara V. and Horning, Kyle J. and Bornhorst, Julia and Schwerdtle, Tanja and Bowman, Aaron B. and Aschner, Michael}, title = {Small Molecule Modifiers of In Vitro Manganese Transport Alter Toxicity In Vivo}, series = {Biological Trace Element Research}, volume = {188}, journal = {Biological Trace Element Research}, number = {1}, publisher = {Human press inc.}, address = {Totowa}, issn = {0163-4984}, doi = {10.1007/s12011-018-1531-7}, pages = {127 -- 134}, year = {2019}, abstract = {Manganese (Mn) is essential for several species and daily requirements are commonly met by an adequate diet. Mn overload may cause motor and psychiatric disturbances and may arise from an impaired or not fully developed excretion system, transporter malfunction and/or exposure to excessive levels of Mn. Therefore, deciphering processes regulating neuronal Mn homeostasis is essential to understand the mechanisms of Mn neurotoxicity. In the present study, we selected two small molecules (with opposing effects on Mn transport) from a previous high throughput screen of 40,167 to test their effects on Mn toxicity parameters in vivo using Caenorhabditis elegans. We pre-exposed worms to VU0063088 and VU0026921 for 30min followed by co-exposure for 1h with Mn and evaluated Mn accumulation, dopaminergic (DAergic) degeneration and worm survival. Control worms were exposed to vehicle (DMSO) and saline only. In pdat-1::GFP worms, with GFP labeled DAergic neurons, we observed a decrease of Mn-induced DAergic degeneration in the presence of both small molecules. This effect was also observed in an smf-2 knockout strain. SMF-2 is a regulator of Mn transport in the worms and this strain accumulates higher Mn levels. We did not observe improved survival in the presence of small molecules. Our results suggest that both VU0063088 and VU0026921 may modulate Mn levels in the worms through a mechanism that does not require SMF-2 and induce protection against Mn neurotoxicity.}, language = {en} } @article{PeresArantesMiahetal.2018, author = {Peres, Tanara Vieira and Arantes, Leticia P. and Miah, Mahfuzur R. and Bornhorst, Julia and Schwerdtle, Tanja and Bowman, Aaron B. and Leal, Rodrigo B. and Aschner, Michael}, title = {Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity}, series = {Neurotoxicity Research}, volume = {34}, journal = {Neurotoxicity Research}, number = {3}, publisher = {Springer}, address = {New York}, issn = {1029-8428}, doi = {10.1007/s12640-018-9915-1}, pages = {584 -- 596}, year = {2018}, abstract = {Excessive levels of the essential metal manganese (Mn) may cause a syndrome similar to Parkinson's disease. The model organism Caenorhabditis elegans mimics some of Mn effects in mammals, including dopaminergic neurodegeneration, oxidative stress, and increased levels of AKT. The evolutionarily conserved insulin/insulin-like growth factor-1 signaling pathway (IIS) modulates worm longevity, metabolism, and antioxidant responses by antagonizing the transcription factors DAF-16/FOXO and SKN-1/Nrf-2. AKT-1, AKT-2, and SGK-1 act upstream of these transcription factors. To study the role of these proteins in C. elegans response to Mn intoxication, wild-type N2 and loss-of-function mutants were exposed to Mn (2.5 to 100 mM) for 1 h at the L1 larval stage. Strains with loss-of-function in akt-1, akt-2, and sgk-1 had higher resistance to Mn compared to N2 in the survival test. All strains tested accumulated Mn similarly, as shown by ICP-MS. DAF-16 nuclear translocation was observed by fluorescence microscopy in WT and loss-of-function strains exposed to Mn. qRT-PCR data indicate increased expression of γ-glutamyl cysteine synthetase (GCS-1) antioxidant enzyme in akt-1 mutants. The expression of sod-3 (superoxide dismutase homologue) was increased in the akt-1 mutant worms, independent of Mn treatment. However, dopaminergic neurons degenerated even in the more resistant strains. Dopaminergic function was evaluated with the basal slowing response behavioral test and dopaminergic neuron integrity was evaluated using worms expressing green fluorescent protein (GFP) under the dopamine transporter (DAT-1) promoter. These results suggest that AKT-1/2 and SGK-1 play a role in C. elegans response to Mn intoxication. However, tissue-specific responses may occur in dopaminergic neurons, contributing to degeneration.}, language = {en} } @article{PerezCornagoCroweApplebyetal.2021, author = {Perez-Cornago, Aurora and Crowe, Francesca L. and Appleby, Paul N. and Bradbury, Kathryn E. and Wood, Angela M. and Jakobsen, Marianne Uhre and Johnson, Laura and Sacerdote, Carlotta and Steur, Marinka and Weiderpass, Elisabete and Wurtz, Anne Mette L. and Kuhn, Tilman and Katzke, Verena and Trichopoulou, Antonia and Karakatsani, Anna and La Vecchia, Carlo and Masala, Giovanna and Tumino, Rosario and Panico, Salvatore and Sluijs, Ivonne and Skeie, Guri and Imaz, Liher and Petrova, Dafina and Quiros, J. Ramon and Yohar, Sandra Milena Colorado and Jakszyn, Paula and Melander, Olle and Sonestedt, Emily and Andersson, Jonas and Wennberg, Maria and Aune, Dagfinn and Riboli, Elio and Schulze, Matthias Bernd and di Angelantonio, Emanuele and Wareham, Nicholas J. and Danesh, John and Forouhi, Nita G. and Butterworth, Adam S. and Key, Timothy J.}, title = {Plant foods, dietary fibre and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort}, series = {International journal of epidemiology}, volume = {50}, journal = {International journal of epidemiology}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0300-5771}, doi = {10.1093/ije/dyaa155}, pages = {212 -- 222}, year = {2021}, abstract = {Background: Epidemiological evidence indicates that diets rich in plant foods are associated with a lower risk of ischaemic heart disease (IHD), but there is sparse information on fruit and vegetable subtypes and sources of dietary fibre. This study examined the associations of major plant foods, their subtypes and dietary fibre with risk of IHD in the European Prospective Investigation into Cancer and Nutrition (EPIC). Methods: We conducted a prospective analysis of 490 311 men and women without a history of myocardial infarction or stroke at recruitment (12.6 years of follow-up, n cases = 8504), in 10 European countries. Dietary intake was assessed using validated questionnaires, calibrated with 24-h recalls. Multivariable Cox regressions were used to estimate hazard ratios (HR) of IHD. Results: There was a lower risk of IHD with a higher intake of fruit and vegetables combined [HR per 200 g/day higher intake 0.94, 95\% confidence interval (CI): 0.90-0.99, P-trend = 0.009], and with total fruits (per 100 g/day 0.97, 0.95-1.00, P-trend = 0.021). There was no evidence for a reduced risk for fruit subtypes, except for bananas. Risk was lower with higher intakes of nuts and seeds (per 10 g/day 0.90, 0.82-0.98, Ptrend = 0.020), total fibre (per 10 g/day 0.91, 0.85-0.98, P-trend = 0.015), fruit and vegetable fibre (per 4 g/day 0.95, 0.91-0.99, P-trend = 0.022) and fruit fibre (per 2 g/day 0.97, 0.95-1.00, P-trend = 0.045). No associations were observed between vegetables, vegetables subtypes, legumes, cereals and IHD risk. Conclusions: In this large prospective study, we found some small inverse associations between plant foods and IHD risk, with fruit and vegetables combined being the most strongly inversely associated with risk. Whether these small associations are causal remains unclear.}, language = {en} } @article{PetzkeSchuppeRohnetal.2005, author = {Petzke, Klaus-J{\"u}rgen and Schuppe, S. and Rohn, Sascha and Rawel, Harshadrai Manilal and Kroll, J{\"u}rgen}, title = {Chlorogenic acid moderately decreases the quality of whey proteins in rats}, issn = {0021-8561}, year = {2005}, abstract = {During processing and storage, phenolic compounds (PCs) may react with food protein bound amino acids (AAs). Such reactions have been reported to change physicochemical and to decrease in vitro digestion properties of proteins. A rat growth and nitrogen (N) balance study was conducted to prove whether derivatization with chlorogenic acid (CA) affects the nutritional quality of beta-lactoglobulin (beta-LG). Test diets (10\% protein level) contained nonderivatized beta-LG (LG, treated under omission of CA), low derivatization level beta-LG (LGL), high derivatization level beta-LG (LGH), or casein supplemented with L-methionine (0.3\% of diet; C+met) as an internal standard. An additional group received untreated beta-LG supplemented with pure CA (1.03\% of diet; LG+CA). The AA composition of test proteins, plasma AAs, and liver glutathione (GSH) concentrations were determined. Protein digestibility-corrected amino acid score (PDCAAS) was calculated using human or rat AA requirement patterns and rat fecal digestibility values. N excretion was significantly higher in feces and lower in urine of rats fed with LGH as compared to LG and LGL. Consequently, true N digestibility (TND) was significantly lower with LGH as compared to LG and LGL. The lower content of methionine, cysteine, lysine, and tryptophan in LGH corresponded to a reduced TND. Net protein utilization (NPU) was not different between treated beta-LG fed diet groups but was lower than in LG+CA and C+met fed groups. Only at a relatively high level of derivatization with CA, the otherwise good nutritional quality of beta-LG is affected so that TND is reduced, while NPU still remains unaffected. Derivatization of beta-LG with CA does not seem to lead to an additional deficiency in a specific indispensable AA in growing rats fed with 10\% protein}, language = {en} }