@article{PruefertUrbanFischeretal.2020, author = {Pr{\"u}fert, Chris and Urban, Raphael David and Fischer, Tillmann Georg and Villatoro, Jos{\´e} Andr{\´e}s and Riebe, Daniel and Beitz, Toralf and Belder, Detlev and Zeitler, Kirsten and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {In situ monitoring of photocatalyzed isomerization reactions on a microchip flow reactor by IR-MALDI ion mobility spectrometry}, series = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, volume = {412}, journal = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, number = {28}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-020-02923-y}, pages = {7899 -- 7911}, year = {2020}, abstract = {The visible-light photocatalyticE/Zisomerization of olefins can be mediated by a wide spectrum of triplet sensitizers (photocatalysts). However, the search for the most efficient photocatalysts through screenings in photo batch reactors is material and time consuming. Capillary and microchip flow reactors can accelerate this screening process. Combined with a fast analytical technique for isomer differentiation, these reactors can enable high-throughput analyses. Ion mobility (IM) spectrometry is a cost-effective technique that allows simple isomer separation and detection on the millisecond timescale. This work introduces a hyphenation method consisting of a microchip reactor and an infrared matrix-assisted laser desorption ionization (IR-MALDI) ion mobility spectrometer that has the potential for high-throughput analysis. The photocatalyzedE/Zisomerization of ethyl-3-(pyridine-3-yl)but-2-enoate (E-1) as a model substrate was chosen to demonstrate the capability of this device. Classic organic triplet sensitizers as well as Ru-, Ir-, and Cu-based complexes were tested as catalysts. The ionization efficiency of theZ-isomer is much higher at atmospheric pressure which is due to a higher proton affinity. In order to suppress proton transfer reactions by limiting the number of collisions, an IM spectrometer working at reduced pressure (max. 100 mbar) was employed. This design reduced charge transfer reactions and allowed the quantitative determination of the reaction yield in real time. Among 14 catalysts tested, four catalysts could be determined as efficient sensitizers for theE/Zisomerization of ethyl cinnamate derivativeE-1. Conversion rates of up to 80\% were achieved in irradiation time sequences of 10 up to 180 s. With respect to current studies found in the literature, this reduces the acquisition times from several hours to only a few minutes per scan.}, language = {en} } @article{Loehmannsroeben2000, author = {L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {In situ Laser-induced fluorescence (LIF) analysis pf petroleum product-contaminared soil samples}, year = {2000}, language = {en} } @misc{NiederkruegerSalbBecketal.2006, author = {Niederkr{\"u}ger, Matthias and Salb, Christian and Beck, Michael and Hildebrandt, Niko and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Marowsky, Gerd}, title = {Improvement of a fluorescence immunoassay with a compact diode-pumped solid state laser at 315 nm}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10150}, year = {2006}, abstract = {We demonstrate the improvement of fluorescence immunoassay (FIA) diagnostics in deploying a newly developed compact diode-pumped solid state (DPSS) laser with emission at 315 nm. The laser is based on the quasi-three-level transition in Nd:YAG at 946 nm. The pulsed operation is either realized by an active Q-switch using an electro-optical device or by introduction of a Cr4+:YAG saturable absorber as passive Q-switch element. By extra-cavity second harmonic generation in different nonlinear crystal media we obtained blue light at 473 nm. Subsequent mixing of the fundamental and the second harmonic in a β-barium-borate crystal provided pulsed emission at 315 nm with up to 20 μJ maximum pulse energy and 17 ns pulse duration. Substitution of a nitrogen laser in a FIA diagnostics system by the DPSS laser succeeded in considerable improvement of the detection limit. Despite significantly lower pulse energies (7 μJ DPSS laser versus 150 μJ nitrogen laser), in preliminary investigations the limit of detection was reduced by a factor of three for a typical FIA.}, subject = {Immunoassay}, language = {en} } @article{RiebeBeitzDoscheetal.2014, author = {Riebe, Daniel and Beitz, Toralf and Dosche, Carsten and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Raab, Volker and Raab, Corinna and Unverzagt, Matthias}, title = {High-resolution spectrometer using combined dispersive and interferometric wavelength separation for raman and laser-induced Breakdown Spectroscopy (LIBS)}, series = {Applied spectroscopy : an international journal of spectroscopy ; official publication of the Society for Applied Spectroscopy}, volume = {68}, journal = {Applied spectroscopy : an international journal of spectroscopy ; official publication of the Society for Applied Spectroscopy}, number = {9}, publisher = {Society for Applied Spectroscopy}, address = {Frederick}, issn = {0003-7028}, doi = {10.1366/13-07426}, pages = {1030 -- 1038}, year = {2014}, abstract = {In this paper the concept of a compact high-resolution spectrometer based on the combination of dispersive and interferometric elements is presented. Dispersive elements are used to spectrally resolve the light in one direction with coarse resolution (Delta lambda < 0.5 nm), while perpendicular to that direction an etalon provides high spectral resolution (Delta lambda < 50 pm). This concept for two-dimensional spectroscopy has been implemented for the wavelength range lambda = 350-650 nm. Appropriate algorithms for reconstructing spectra from the two-dimensional raw data and for wavelength calibration were established in an analysis software. Potential applications for this new spectrometer are Raman and laser-induced breakdown spectroscopy (LIBS). Resolutions down to 28 pm (routinely 54 pm) could be realized for these applications.}, language = {en} } @article{ZuehlkeRiebeBeitzetal.2016, author = {Z{\"u}hlke, Martin and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Andreotti, Sandro and Reinert, Knut and Zenichowski, Karl and Diener, Marc}, title = {High-performance liquid chromatography with electrospray ionization ion mobility spectrometry: Characterization, data management, and applications}, series = {Journal of separation science}, volume = {39}, journal = {Journal of separation science}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1615-9306}, doi = {10.1002/jssc.201600749}, pages = {4756 -- 4764}, year = {2016}, abstract = {The combination of high-performance liquid chromatography and electrospray ionization ion mobility spectrometry facilitates the two-dimensional separation of complex mixtures in the retention and drift time plane. The ion mobility spectrometer presented here was optimized for flow rates customarily used in high-performance liquid chromatography between 100 and 1500 mu L/min. The characterization of the system with respect to such parameters as the peak capacity of each time dimension and of the 2D spectrum was carried out based on a separation of a pesticide mixture containing 24 substances. While the total ion current chromatogram is coarsely resolved, exhibiting coelutions for a number of compounds, all substances can be separately detected in the 2D plane due to the orthogonality of the separations in retention and drift dimensions. Another major advantage of the ion mobility detector is the identification of substances based on their characteristic mobilities. Electrospray ionization allows the detection of substances lacking a chromophore. As an example, the separation of a mixture of 18 amino acids is presented. A software built upon the free mass spectrometry package OpenMS was developed for processing the extensive 2D data. The different processing steps are implemented as separate modules which can be arranged in a graphic workflow facilitating automated processing of data.}, language = {en} } @article{EngelhardKumkeLoehmannsroeben2006, author = {Engelhard, Sonja and Kumke, Michael Uwe and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Examples of the application of optical process and quality sensing (OPQS) to beer brewing and polyurethane foaming processes}, issn = {1618-2642}, doi = {10.1007/s00216-005-3364-4}, year = {2006}, abstract = {Optical methods play an important role in process analytical technologies (PAT). Four examples of optical process and quality sensing (OPQS) are presented, which are based on three important experimental techniques: near- infrared absorption, luminescence quenching, and a novel method, photon density wave (PDW) spectroscopy. These are used to evaluate four process and quality parameters related to beer brewing and polyurethane (PU) foaming processes: the ethanol content and the oxygen (O-2) content in beer, the biomass in a bioreactor, and the cellular structures of PU foam produced in a pilot production plant}, language = {en} } @article{CywinskiHammannHuehnetal.2014, author = {Cywinski, Piotr J. and Hammann, Tommy and Huehn, Dominik and Parak, Wolfgang J. and Hildebrandt, Niko and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Europium-quantum dot nanobioconjugates as luminescent probes for time-gated biosensing}, series = {Journal of biomedical optics}, volume = {19}, journal = {Journal of biomedical optics}, number = {10}, publisher = {SPIE}, address = {Bellingham}, issn = {1083-3668}, doi = {10.1117/1.JBO.19.10.101506}, pages = {8}, year = {2014}, abstract = {Nanobioconjugates have been synthesized using cadmium selenide quantum dots (QDs), europium complexes (EuCs), and biotin. In those conjugates, long-lived photoluminescence (PL) is provided by the europium complexes, which efficiently transfer energy via Forster resonance energy transfer (FRET) to the QDs in close spatial proximity. As a result, the conjugates have a PL emission spectrum characteristic for QDs combined with the long PL decay time characteristic for EuCs. The nanobioconjugates synthesis strategy and photo-physical properties are described as well as their performance in a time-resolved streptavidin-biotin PL assay. In order to prepare the QD-EuC-biotin conjugates, first an amphiphilic polymer has been functionalized with the EuC and biotin. Then, the polymer has been brought onto the surface of the QDs (either QD655 or QD705) to provide functionality and to make the QDs water dispersible. Due to a short distance between EuC and QD, an efficient FRET can be observed. Additionally, the QD-EuC-biotin conjugates' functionality has been demonstrated in a PL assay yielding good signal discrimination, both from autofluorescence and directly excited QDs. These newly designed QD-EuC-biotin conjugates expand the class of highly sensitive tools for bioanalytical optical detection methods for diagnostic and imaging applications. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)}, language = {en} } @article{MorgnerBennemannCywińskietal.2017, author = {Morgner, Frank and Bennemann, Mark and Cywiński, Piotr J. and Kollosche, Matthias and G{\´o}rski, Krzysztof and Pietraszkiewicz, Marek and Geßner, Andr{\´e} and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Elastic FRET sensors for contactless pressure measurement}, series = {RSC Advances : an international journal to further the chemical sciences}, volume = {7}, journal = {RSC Advances : an international journal to further the chemical sciences}, publisher = {RSC Publishing}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c7ra06379b}, pages = {50578 -- 50583}, year = {2017}, abstract = {Contactless pressure monitoring based on Forster resonance energy transfer between donor/acceptor pairs immobilized within elastomers is demonstrated. The donor/acceptor energy transfer is employed by dispersing terbium(III) tris[(2-hydroxybenzoyl)-2-aminoethyl] amine complex (LLC, donor) and CdSe/ZnS quantum dots (QD655, acceptor) in styrene-ethylene/buthylene-styrene (SEBS) and poly(dimethylsiloxane) (PDMS). The continuous monitoring of QD luminescence showed a reversible intensity change as the pressure signal is alternated between two stable states indicating a pressure sensitivity of 6350 cps kPa(-1). Time-resolved measurements show the pressure impact on the FRET signal due to an increase of decay time (270 ms up to 420 ms) for the donor signal and parallel drop of decay time (170 mu s to 155 mu s) for the acceptor signal as the net pressure applied. The LLC/QD655 sensors enable a contactless readout as well as space resolved monitoring to enable miniaturization towards smaller integrated stretchable opto-electronics. Elastic FRET sensors can potentially lead to developing profitable analysis systems capable to outdo conventional wired electronic systems (inductive, capacitive, ultrasonic and photoelectric sensors) especially for point-of-care diagnostics, biological monitoring required for wearable electronics.}, language = {en} } @misc{EichSchmaelzlinLoehmannsroeben2013, author = {Eich, Susanne and Schm{\"a}lzlin, Elmar and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Distributed fiber optical sensing of oxygen with optical time domain reflectometry}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1085}, issn = {1866-8372}, doi = {10.25932/publishup-47665}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476659}, pages = {16}, year = {2013}, abstract = {In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements.}, language = {en} } @article{EichSchmaelzlinLoehmannsroeben2013, author = {Eich, Susanne and Schm{\"a}lzlin, Elmar and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Distributed fiber optical sensing of Oxygen with optical time domain reflectometry}, series = {Sensors}, volume = {13}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s130607170}, pages = {7170 -- 7183}, year = {2013}, abstract = {In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements.}, language = {en} }