@article{SreeKeresztesMuellerRoeberetal.2015, author = {Sree, K. Sowjanya and Keresztes, Aron and M{\"u}ller-R{\"o}ber, Bernd and Brandt, Ronny and Eberius, Matthias and Fischer, Wolfgang and Appenroth, Klaus-J.}, title = {Phytotoxicity of cobalt ions on the duckweed Lemna minor - Morphology, ion uptake, and starch accumulation}, series = {Chemosphere : chemistry, biology and toxicology as related to environmental problems}, volume = {131}, journal = {Chemosphere : chemistry, biology and toxicology as related to environmental problems}, publisher = {Elsevier}, address = {Oxford}, issn = {0045-6535}, doi = {10.1016/j.chemosphere.2015.03.008}, pages = {149 -- 156}, year = {2015}, abstract = {Cobalt (Co2+) inhibits vegetative growth of Lemna minor gradually from 1 mu M to 100 mu M. Fronds accumulated up to 21 mg Co2+ g(-1) dry weight at 10 mu M external Co2+ indicating hyperaccumulation. Interestingly, accumulation of Co2+ did not decrease the iron (Fe) content in fronds, highlighting L. minor as a suitable system for studying effects of Co2+ undisturbed by Fe deficiency symptoms unlike most other plants. Digital image analysis revealed the size distribution of fronds after Co2+ treatment and also a reduction in pigmentation of newly formed daughter fronds unlike the mother fronds during the 7-day treatment. Neither chlorophyll nor photosystem II fluorescence changed significantly during the initial 4 d, indicating effective photosynthesis. During the later phase of the 7-day treatment, however, chlorophyll content and photosynthetic efficiency decreased in the Co2+-treated daughter fronds, indicating that Co2+ inhibits the biosynthesis of chlorophyll rather than leading to the destruction of pre-existing pigment molecules. In addition, during the first 4 d of Co2+ treatment starch accumulated in the fronds and led to the transition of chloroplasts to chloro-amyloplasts and amylo-chloroplasts, while starch levels strongly decreased thereafter. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{RalevskiApeltOlasetal.2022, author = {Ralevski, Alexandra and Apelt, Federico and Olas, Justyna Jadwiga and M{\"u}ller-R{\"o}ber, Bernd and Rugarli, Elena I. and Kragler, Friedrich and Horvath, Tamas L.}, title = {Plant mitochondrial FMT and its mammalian homolog CLUH controls development and behavior in Arabidopsis and locomotion in mice}, series = {Cellular and molecular life sciences}, volume = {79}, journal = {Cellular and molecular life sciences}, number = {6}, publisher = {Springer International Publishing AG}, address = {Cham (ZG)}, issn = {1420-682X}, doi = {10.1007/s00018-022-04382-3}, pages = {17}, year = {2022}, abstract = {Mitochondria in animals are associated with development, as well as physiological and pathological behaviors. Several conserved mitochondrial genes exist between plants and higher eukaryotes. Yet, the similarities in mitochondrial function between plant and animal species is poorly understood. Here, we show that FMT (FRIENDLY MITOCHONDRIA) from Arabidopsis thaliana, a highly conserved homolog of the mammalian CLUH (CLUSTERED MITOCHONDRIA) gene family encoding mitochondrial proteins associated with developmental alterations and adult physiological and pathological behaviors, affects whole plant morphology and development under both stressed and normal growth conditions. FMT was found to regulate mitochondrial morphology and dynamics, germination, and flowering time. It also affects leaf expansion growth, salt stress responses and hyponastic behavior, including changes in speed of hyponastic movements. Strikingly, Cluh(+/-) heterozygous knockout mice also displayed altered locomotive movements, traveling for shorter distances and had slower average and maximum speeds in the open field test. These observations indicate that homologous mitochondrial genes may play similar roles and affect homologous functions in both plants and animals.}, language = {en} } @article{NaseriBalazadehMachensetal.2017, author = {Naseri, Gita and Balazadeh, Salma and Machens, Fabian and Kamranfar, Iman and Messerschmidt, Katrin and M{\"u}ller-R{\"o}ber, Bernd}, title = {Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae}, series = {ACS synthetic biology}, volume = {6}, journal = {ACS synthetic biology}, publisher = {American Chemical Society}, address = {Washington}, issn = {2161-5063}, doi = {10.1021/acssynbio.7b00094}, pages = {1742 -- 1756}, year = {2017}, abstract = {Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.}, language = {en} } @article{ProostVanBelVaneechoutteetal.2015, author = {Proost, Sebastian and Van Bel, Michiel and Vaneechoutte, Dries and Van de Peer, Yves and Inze, Dirk and M{\"u}ller-R{\"o}ber, Bernd and Vandepoele, Klaas}, title = {PLAZA 3.0: an access point for plant comparative genomics}, series = {Nucleic acids research}, volume = {43}, journal = {Nucleic acids research}, number = {D1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0305-1048}, doi = {10.1093/nar/gku986}, pages = {D974 -- D981}, year = {2015}, abstract = {Comparative sequence analysis has significantly altered our view on the complexity of genome organization and gene functions in different kingdoms. PLAZA 3.0 is designed to make comparative genomics data for plants available through a user-friendly web interface. Structural and functional annotation, gene families, protein domains, phylogenetic trees and detailed information about genome organization can easily be queried and visualized. Compared with the first version released in 2009, which featured nine organisms, the number of integrated genomes is more than four times higher, and now covers 37 plant species. The new species provide a wider phylogenetic range as well as a more in-depth sampling of specific clades, and genomes of additional crop species are present. The functional annotation has been expanded and now comprises data from Gene Ontology, MapMan, UniProtKB/Swiss-Prot, PlnTFDB and PlantTFDB. Furthermore, we improved the algorithms to transfer functional annotation from well-characterized plant genomes to other species. The additional data and new features make PLAZA 3.0 (http://bioinformatics.psb.ugent.be/plaza/) a versatile and comprehensible resource for users wanting to explore genome information to study different aspects of plant biology, both in model and non-model organisms.}, language = {en} } @article{LaiDentonGilesMuellerRoeberetal.2011, author = {Lai, Alvina G. and Denton-Giles, Matthew and M{\"u}ller-R{\"o}ber, Bernd and Schippers, Jos H. M. and Dijkwel, Paul P.}, title = {Positional information resolves structural variations and uncovers an evolutionarily divergent genetic locus in accessions of arabidopsis thaliana}, series = {Genome biology and evolution}, volume = {3}, journal = {Genome biology and evolution}, number = {1-2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1759-6653}, doi = {10.1093/gbe/evr038}, pages = {627 -- 640}, year = {2011}, abstract = {Genome sequencing of closely related individuals has yielded valuable insights that link genome evolution to phenotypic variations. However, advancement in sequencing technology has also led to an escalation in the number of poor quality-drafted genomes assembled based on reference genomes that can have highly divergent or haplotypic regions. The self-fertilizing nature of Arabidopsis thaliana poses an advantage to sequencing projects because its genome is mostly homozygous. To determine the accuracy of an Arabidopsis drafted genome in less conserved regions, we performed a resequencing experiment on a similar to 371-kb genomic interval in the Landsberg erecta (Ler-0) accession. We identified novel structural variations (SVs) between Ler-0 and the reference accession Col-0 using a long-range polymerase chain reaction approach to generate an Illumina data set that has positional information, that is, a data set with reads that map to a known location. Positional information is important for accurate genome assembly and the resolution of SVs particularly in highly duplicated or repetitive regions. Sixty-one regions with misassembly signatures were identified from the Ler-0 draft, suggesting the presence of novel SVs that are not represented in the draft sequence. Sixty of those were resolved by iterative mapping using our data set. Fifteen large indels (> 100 bp) identified from this study were found to be located either within protein-coding regions or upstream regulatory regions, suggesting the formation of novel alleles or altered regulation of existing genes in Ler-0. We propose future genome-sequencing experiments to follow a clone-based approach that incorporates positional information to ultimately reveal haplotype-specific differences between accessions.}, language = {en} } @article{ShubchynskyyBonieckaSchweighoferetal.2017, author = {Shubchynskyy, Volodymyr and Boniecka, Justyna and Schweighofer, Alois and Simulis, Justinas and Kvederaviciute, Kotryna and Stumpe, Michael and Mauch, Felix and Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd and Boutrot, Freddy and Zipfel, Cyril and Meskiene, Irute}, title = {Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae}, series = {Journal of experimental botany}, volume = {68}, journal = {Journal of experimental botany}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erw485}, pages = {1169 -- 1183}, year = {2017}, abstract = {Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance.}, language = {en} } @article{FaisalGechevMuellerRoeberetal.2020, author = {Faisal, Muhammad B. and Gechev, Tsanko S. and M{\"u}ller-R{\"o}ber, Bernd and Dijkwel, Paul P.}, title = {Putative alternative translation start site-encoding nucleotides of CPR5 regulate growth and resistance}, series = {BMC plant biology}, volume = {20}, journal = {BMC plant biology}, number = {1}, publisher = {BMC}, address = {London}, issn = {1471-2229}, doi = {10.1186/s12870-020-02485-2}, pages = {10}, year = {2020}, abstract = {Background The Arabidopsis CONSTITUTIVE EXPRESSER of PATHOGENESIS-RELATED GENES 5 (CPR5) has recently been shown to play a role in gating as part of the nuclear pore complex (NPC). Mutations in CPR5 cause multiple defects, including aberrant trichomes, reduced ploidy levels, reduced growth and enhanced resistance to bacterial and fungal pathogens. The pleiotropic nature of cpr5 mutations implicates that the CPR5 protein affects multiple pathways. However, little is known about the structural features that allow CPR5 to affect the different pathways. Results Our in silico studies suggest that in addition to three clusters of putative nuclear localization signals and four or five transmembrane domains, CPR5 contains two putative alternative translation start sites. To test the role of the methionine-encoding nucleotides implicated in those sites, metCPR5 cDNAs, in which the relevant nucleotides were changed to encode glutamine, were fused to the CPR5 native promoter and the constructs transformed to cpr5-2 plants to complement cpr5-compromised phenotypes. The control and metCPR5 constructs were able to complement all cpr5 phenotypes, although the extent of complementation depended on the specific complementing plant lines. Remarkably, plants transformed with metCPR5 constructs showed larger leaves and displayed reduced resistance when challenged to Pseudomonas syringae pv Pst DC3000, as compared to control plants. Thus, the methionine-encoding nucleotides regulate growth and resistance. We propose that structural features of the CPR5 N-terminus are implicated in selective gating of proteins involved in regulating the balance between growth and resistance. Conclusion Plants need to carefully balance the amount of resources used for growth and resistance. The Arabidopsis CPR5 protein regulates plant growth and immunity. Here we show that N-terminal features of CPR5 are involved in the regulation of the balance between growth and resistance. These findings may benefit efforts to improve plant yield, while maintaining optimal levels of disease resistance.}, language = {en} } @article{KreftGeorgievaBaeumleretal.2006, author = {Kreft, Oliver and Georgieva, Radostina and B{\"a}umler, Hans and Steup, Martin and M{\"u}ller-R{\"o}ber, Bernd and Sukhorukov, Gleb B. and M{\"o}hwald, Helmuth}, title = {Red blood cell templated polyelectrolyte capsules : a novel vehicle for the stable encapsulation of DNA and proteins}, issn = {1022-1336}, doi = {10.1002/marc.200500777}, year = {2006}, abstract = {A novel method for the encapsulation of biomacromolecules, such as nucleic acids and proteins, into polyelectrolyte microcapsules is described. Fluorescence-labelled double-stranded DNA and human serum albumin (HSA) are used as model substances for encapsulation in hollow microcapsules templated on human erythrocytes. The encapsulation procedure involves an intermediate drying C, step. The accumulation of DNA and HSA in the capsules is observed by confocal laser scanning microscopy, UV spectroscopy, and flourimetry. The mechanism of encapsulation is discussed}, language = {en} } @article{JohnOlasMuellerRoeber2021, author = {John, Sheeba and Olas, Justyna Jadwiga and M{\"u}ller-R{\"o}ber, Bernd}, title = {Regulation of alternative splicing in response to temperature variation in plants}, series = {Journal of experimental botany}, volume = {72}, journal = {Journal of experimental botany}, number = {18}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erab232}, pages = {6150 -- 6163}, year = {2021}, abstract = {Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature-cold, heat, and moderate alterations in temperature-affect alternative splicing in plants, including crops. We present examples of the mode of action of various temperature-induced splice variants and discuss how these alternative splicing events enable favourable plant responses to altered temperatures. Finally, we point out unanswered questions that should be addressed to fully utilize the endogenous mechanisms in plants to adjust their growth to environmental temperature. We also indicate how this knowledge might be used to enhance crop productivity in the future.}, language = {en} } @article{ParlitzKunzeMuellerRoeberetal.2011, author = {Parlitz, Steffi and Kunze, Reinhard and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in Arabidopsis thaliana leaves}, series = {Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants}, volume = {168}, journal = {Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants}, number = {12}, publisher = {Elsevier}, address = {Jena}, issn = {0176-1617}, doi = {10.1016/j.jplph.2011.02.001}, pages = {1311 -- 1319}, year = {2011}, abstract = {Leaf senescence of annual plants is a genetically programmed developmental phase. The onset of leaf senescence is however not exclusively determined by tissue age but is modulated by various environmental factors. Shading of individual attached leaves evokes dark-induced senescence. The initiation and progression of dark-induced senescence depend on the plant and the age of the affected leaf, however. In several plant species dark-induced senescence is fully reversible upon re-illumination and the leaves can regreen, but the regreening ability depends on the duration of dark incubation. We studied the ability of Arabidopsis thaliana leaves to regreen after dark-incubation with the aim to identify transcription factors (TFs) that are involved in the regulation of early dark-induced senescence and regreening. Two days shading of individual attached leaves triggers the transition into a pre-senescence state from which the leaves can largely recover. Longer periods of darkness result in irreversible senescence. Large scale qRT-PCR analysis of 1872 TF genes revealed that 649 of them are regulated in leaves during normal development, upon shading or re-illumination. Leaf shading triggered upregulation of 150 TF genes, some of which are involved in controlling senescence. Of those, 39 TF genes were upregulated after two days in the dark and regained pre-shading expression level after two days of re-illumination. Furthermore, a larger number of 422 TF genes were down regulated upon shading. In TF gene clusters with different expression patterns certain TF families are over-represented.}, language = {en} }