@phdthesis{Schuette2011, author = {Sch{\"u}tte, Moritz}, title = {Evolutionary fingerprints in genome-scale networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57483}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Mathematical modeling of biological phenomena has experienced increasing interest since new high-throughput technologies give access to growing amounts of molecular data. These modeling approaches are especially able to test hypotheses which are not yet experimentally accessible or guide an experimental setup. One particular attempt investigates the evolutionary dynamics responsible for today's composition of organisms. Computer simulations either propose an evolutionary mechanism and thus reproduce a recent finding or rebuild an evolutionary process in order to learn about its mechanism. The quest for evolutionary fingerprints in metabolic and gene-coexpression networks is the central topic of this cumulative thesis based on four published articles. An understanding of the actual origin of life will probably remain an insoluble problem. However, one can argue that after a first simple metabolism has evolved, the further evolution of metabolism occurred in parallel with the evolution of the sequences of the catalyzing enzymes. Indications of such a coevolution can be found when correlating the change in sequence between two enzymes with their distance on the metabolic network which is obtained from the KEGG database. We observe that there exists a small but significant correlation primarily on nearest neighbors. This indicates that enzymes catalyzing subsequent reactions tend to be descended from the same precursor. Since this correlation is relatively small one can at least assume that, if new enzymes are no "genetic children" of the previous enzymes, they certainly be descended from any of the already existing ones. Following this hypothesis, we introduce a model of enzyme-pathway coevolution. By iteratively adding enzymes, this model explores the metabolic network in a manner similar to diffusion. With implementation of an Gillespie-like algorithm we are able to introduce a tunable parameter that controls the weight of sequence similarity when choosing a new enzyme. Furthermore, this method also defines a time difference between successive evolutionary innovations in terms of a new enzyme. Overall, these simulations generate putative time-courses of the evolutionary walk on the metabolic network. By a time-series analysis, we find that the acquisition of new enzymes appears in bursts which are pronounced when the influence of the sequence similarity is higher. This behavior strongly resembles punctuated equilibrium which denotes the observation that new species tend to appear in bursts as well rather than in a gradual manner. Thus, our model helps to establish a better understanding of punctuated equilibrium giving a potential description at molecular level. From the time-courses we also extract a tentative order of new enzymes, metabolites, and even organisms. The consistence of this order with previous findings provides evidence for the validity of our approach. While the sequence of a gene is actually subject to mutations, its expression profile might also indirectly change through the evolutionary events in the cellular interplay. Gene coexpression data is simply accessible by microarray experiments and commonly illustrated using coexpression networks where genes are nodes and get linked once they show a significant coexpression. Since the large number of genes makes an illustration of the entire coexpression network difficult, clustering helps to show the network on a metalevel. Various clustering techniques already exist. However, we introduce a novel one which maintains control of the cluster sizes and thus assures proper visual inspection. An application of the method on Arabidopsis thaliana reveals that genes causing a severe phenotype often show a functional uniqueness in their network vicinity. This leads to 20 genes of so far unknown phenotype which are however suggested to be essential for plant growth. Of these, six indeed provoke such a severe phenotype, shown by mutant analysis. By an inspection of the degree distribution of the A.thaliana coexpression network, we identified two characteristics. The distribution deviates from the frequently observed power-law by a sharp truncation which follows after an over-representation of highly connected nodes. For a better understanding, we developed an evolutionary model which mimics the growth of a coexpression network by gene duplication which underlies a strong selection criterion, and slight mutational changes in the expression profile. Despite the simplicity of our assumption, we can reproduce the observed properties in A.thaliana as well as in E.coli and S.cerevisiae. The over-representation of high-degree nodes could be identified with mutually well connected genes of similar functional families: zinc fingers (PF00096), flagella, and ribosomes respectively. In conclusion, these four manuscripts demonstrate the usefulness of mathematical models and statistical tools as a source of new biological insight. While the clustering approach of gene coexpression data leads to the phenotypic characterization of so far unknown genes and thus supports genome annotation, our model approaches offer explanations for observed properties of the coexpression network and furthermore substantiate punctuated equilibrium as an evolutionary process by a deeper understanding of an underlying molecular mechanism.}, language = {en} } @phdthesis{Sedaghatmehr2017, author = {Sedaghatmehr, Mastoureh}, title = {Unraveling the regulatory mechanisms of heat stress memory in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {176}, year = {2017}, language = {en} } @phdthesis{Seerangan2023, author = {Seerangan, Kumar}, title = {Actin-based regulation of cell and tissue scale morphogenesis in developing leaves}, school = {Universit{\"a}t Potsdam}, pages = {120}, year = {2023}, abstract = {Leaves exhibit cells with varying degrees of shape complexity along the proximodistal axis. Heterogeneities in growth directions within individual cells bring about such complexity in cell shape. Highly complex and interconnected gene regulatory networks and signaling pathways have been identified to govern these processes. In addition, the organization of cytoskeletal networks and cell wall mechanical properties greatly influences the regulation of cell shape. Research has shown that microtubules are involved in regulating cellulose deposition and direc-tion of cell growth. However, comprehensive analysis of the regulation of the actin cytoskele-ton in cell shape regulation has not been well studied. This thesis provides evidence that actin regulates aspects of cell growth, division, and direction-al expansion that impacts morphogenesis of developing leaves. The jigsaw puzzle piece mor-phology of epidermal pavement cells further serves as an ideal system to investigate the com-plex process of morphogenetic processes occurring at the cellular level. Here we have em-ployed live cell based imaging studies to track the development of pavement cells in actin com-promised conditions. Genetic perturbation of two predominantly expressed vegetative actin genes ACTIN2 and ACTIN7 results in delayed emergence of the cellular protrusions in pave-ment cells. Perturbation of actin also impacted the organization of microtubule in these cells that is known to promote emergence of cellular protrusions. Further, live-cell imaging of actin or-ganization revealed a correlation with cell shape, suggesting that actin plays a role in influencing pavement cell morphogenesis. In addition, disruption of actin leads to an increase in cell size along the leaf midrib, with cells being highly anisotropic due to reduced cell division. The reduction of cell division further im-pacted the morphology of the entire leaf, with the mutant leaves being more curved. These re-sults suggests that actin plays a pivotal role in regulating morphogenesis at the cellular and tis-sue scales thereby providing valuable insights into the role of the actin cytoskeleton in plant morphogenesis.}, language = {en} } @phdthesis{Seibert, author = {Seibert, Tanja Stefanie}, title = {The T6P pathway in Solanum tuberosum}, pages = {212}, language = {en} } @phdthesis{Serrano2014, author = {Serrano, Paloma}, title = {Methanogens from Siberian permafrost as models for life on Mars : response to simulated martian conditions and biosignature characterization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72299}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Mars is one of the best candidates among planetary bodies for supporting life. The presence of water in the form of ice and atmospheric vapour together with the availability of biogenic elements and energy are indicators of the possibility of hosting life as we know it. The occurrence of permanently frozen ground - permafrost, is a common phenomenon on Mars and it shows multiple morphological analogies with terrestrial permafrost. Despite the extreme inhospitable conditions, highly diverse microbial communities inhabit terrestrial permafrost in large numbers. Among these are methanogenic archaea, which are anaerobic chemotrophic microorganisms that meet many of the metabolic and physiological requirements for survival on the martian subsurface. Moreover, methanogens from Siberian permafrost are extremely resistant against different types of physiological stresses as well as simulated martian thermo-physical and subsurface conditions, making them promising model organisms for potential life on Mars. The main aims of this investigation are to assess the survival of methanogenic archaea under Mars conditions, focusing on methanogens from Siberian permafrost, and to characterize their biosignatures by means of Raman spectroscopy, a powerful technology for microbial identification that will be used in the ExoMars mission. For this purpose, methanogens from Siberian permafrost and non-permafrost habitats were subjected to simulated martian desiccation by exposure to an ultra-low subfreezing temperature (-80ºC) and to Mars regolith (S-MRS and P-MRS) and atmospheric analogues. They were also exposed to different concentrations of perchlorate, a strong oxidant found in martian soils. Moreover, the biosignatures of methanogens were characterized at the single-cell level using confocal Raman microspectroscopy (CRM). The results showed survival and methane production in all methanogenic strains under simulated martian desiccation. After exposure to subfreezing temperatures, Siberian permafrost strains had a faster metabolic recovery, whereas the membranes of non-permafrost methanogens remained intact to a greater extent. The strain Methanosarcina soligelidi SMA-21 from Siberian permafrost showed significantly higher methane production rates than all other strains after the exposure to martian soil and atmospheric analogues, and all strains survived the presence of perchlorate at the concentration on Mars. Furthermore, CRM analyses revealed remarkable differences in the overall chemical composition of permafrost and non-permafrost strains of methanogens, regardless of their phylogenetic relationship. The convergence of the chemical composition in non-sister permafrost strains may be the consequence of adaptations to the environment, and could explain their greater resistance compared to the non-permafrost strains. As part of this study, Raman spectroscopy was evaluated as an analytical technique for remote detection of methanogens embedded in a mineral matrix. This thesis contributes to the understanding of the survival limits of methanogenic archaea under simulated martian conditions to further assess the hypothetical existence of life similar to methanogens on the martian subsurface. In addition, the overall chemical composition of methanogens was characterized for the first time by means of confocal Raman microspectroscopy, with potential implications for astrobiological research.}, language = {en} } @phdthesis{Seul2008, author = {Seul, Anait}, title = {Tailspike interactions in bacteriophage P22}, address = {Potsdam}, pages = {65, [9], 5 Bl. : Ill., graph. Darst.}, year = {2008}, language = {en} } @phdthesis{ShahnejatBushehri2016, author = {Shahnejat-Bushehri, Sara}, title = {Unravelling the role of the Arabidopsis NAC transcription factor JUNGBRUNNEN1 (JUB1) for the regulation of growth and stress responses}, school = {Universit{\"a}t Potsdam}, pages = {155}, year = {2016}, language = {en} } @phdthesis{Sharma2008, author = {Sharma, Reeta}, title = {Molecular genetic analysis of Bengal tiger (Panthera tigris tigres) population and its implication in conservation and wildlife forensics}, address = {Potsdam}, pages = {101 Bl. : gtaph. Darst. Kt.}, year = {2008}, language = {en} } @phdthesis{Sharma2011, author = {Sharma, Tripti}, title = {Regulation of potassium channels in plants : biophysical mechanisms and physiological implacations}, address = {Potsdam}, pages = {104 S.}, year = {2011}, language = {en} } @phdthesis{Shen2022, author = {Shen, Yawen}, title = {Functional characterization of the gene regulatory network of C2H2-type zine finger protein ZAT8 in Arabidopsis thaliana}, pages = {124}, year = {2022}, language = {en} } @phdthesis{Shevtsova2022, author = {Shevtsova, Iuliia}, title = {Recent and future vegetation change in the treeline region of Chukotka (NE Russia) inferred from field data, satellite data and modelling}, doi = {10.25932/publishup-54845}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548452}, school = {Universit{\"a}t Potsdam}, pages = {149}, year = {2022}, abstract = {Vegetation change at high latitudes is one of the central issues nowadays with respect to ongoing climate changes and triggered potential feedback. At high latitude ecosystems, the expected changes include boreal treeline advance, compositional, phenological, physiological (plants), biomass (phytomass) and productivity changes. However, the rate and the extent of the changes under climate change are yet poorly understood and projections are necessary for effective adaptive strategies and forehanded minimisation of the possible negative feedbacks. The vegetation itself and environmental conditions, which are playing a great role in its development and distribution are diverse throughout the Subarctic to the Arctic. Among the least investigated areas is central Chukotka in North-Eastern Siberia, Russia. Chukotka has mountainous terrain and a wide variety of vegetation types on the gradient from treeless tundra to northern taiga forests. The treeline there in contrast to subarctic North America and north-western and central Siberia is represented by a deciduous conifer, Larix cajanderi Mayr. The vegetation varies from prostrate lichen Dryas octopetala L. tundra to open graminoid (hummock and non-hummock) tundra to tall Pinus pumila (Pall.) Regel shrublands to sparse and dense larch forests. Hence, this thesis presents investigations on recent compositional and above-ground biomass (AGB) changes, as well as potential future changes in AGB in central Chukotka. The aim is to assess how tundra-taiga vegetation develops under changing climate conditions particularly in Fareast Russia, central Chukotka. Therefore, three main research questions were considered: 1) What changes in vegetation composition have recently occurred in central Chukotka? 2) How have the above-ground biomass AGB rates and distribution changed in central Chukotka? 3) What are the spatial dynamics and rates of tree AGB change in the upcoming millennia in the northern tundra-taiga of central Chukotka? Remote sensing provides information on the spatial and temporal variability of vegetation. I used Landsat satellite data together with field data (foliage projective cover and AGB) from two expeditions in 2016 and 2018 to Chukotka to upscale vegetation types and AGB for the study area. More specifically, I used Landsat spectral indices (Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI) and Normalised Difference Snow Index (NDSI)) and constrained ordination (Redundancy analysis, RDA) for further k-means-based land-cover classification and general additive model (GAM)-based AGB maps for 2000/2001/2002 and 2016/2017. I also used Tandem-X DEM data for a topographical correction of the Landsat satellite data and to derive slope, aspect, and Topographical Wetness Index (TWI) data for forecasting AGB. Firstly, in 2016, taxa-specific projective cover data were collected during a Russian-German expedition. I processed the field data and coupled them with Landsat spectral Indices in the RDA model that was used for k-means classification. I could establish four meaningful land-cover classes: (1) larch closed-canopy forest, (2) forest tundra and shrub tundra, (3) graminoid tundra and (4) prostrate herb tundra and barren areas, and accordingly, I produced the land cover maps for 2000/2001/2002 and 2016/20017. Changes in land-cover classes between the beginning of the century (2000/2001/2002) and the present time (2016/2017) were estimated and interpreted as recent compositional changes in central Chukotka. The transition from graminoid tundra to forest tundra and shrub tundra was interpreted as shrubification and amounts to a 20\% area increase in the tundra-taiga zone and 40\% area increase in the northern taiga. Major contributors of shrubification are alder, dwarf birch and some species of the heather family. Land-cover change from the forest tundra and shrub tundra class to the larch closed-canopy forest class is interpreted as tree infilling and is notable in the northern taiga. We find almost no land-cover changes in the present treeless tundra. Secondly, total AGB state and change were investigated for the same areas. In addition to the total vegetation AGB, I provided estimations for the different taxa present at the field sites. As an outcome, AGB in the study region of central Chukotka ranged from 0 kg m-2 at barren areas to 16 kg m-2 in closed-canopy forests with the larch trees contributing the highest. A comparison of changes in AGB within the investigated period from 2000 to 2016 shows that the greatest changes (up to 1.25 kg m 2 yr 1) occurred in the northern taiga and in areas where land cover changed to larch closed-canopy forest. Our estimations indicate a general increase in total AGB throughout the investigated tundra-taiga and northern taiga, whereas the tundra showed no evidence of change in AGB within the 15 years from 2002 to 2017. In the third manuscript, potential future AGB changes were estimated based on the results of simulations of the individual-based spatially explicit vegetation model LAVESI using different climate scenarios, depending on Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5 and RCP 8.5 with or without cooling after 2300 CE. LAVESI-based AGB was simulated for the current state until 3000 CE for the northern tundra-taiga study area for larch species because we expect the most notable changes to occur will be associated with forest expansion in the treeline ecotone. The spatial distribution and current state of tree AGB was validated against AGB field data, AGB extracted from Landsat satellite data and a high spatial resolution image with distinctive trees visible. The simulation results are indicating differences in tree AGB dynamics plot wise, depending on the distance to the current treeline. The simulated tree AGB dynamics are in concordance with fundamental ecological (emigrational and successional) processes: tree stand formation in simulated results starts with seed dispersion, tree stand establishment, tree stand densification and episodic thinning. Our results suggest mostly densification of existing tree stands in the study region within the current century in the study region and a lagged forest expansion (up to 39\% of total area in the RCP 8.5) under all considered climate scenarios without cooling in different local areas depending on the closeness to the current treeline. In scenarios with cooling air temperature after 2300 CE, forests stopped expanding at 2300 CE (up to 10\%, RCP 8.5) and then gradually retreated to their pre-21st century position. The average tree AGB rates of increase are the strongest in the first 300 years of the 21st century. The rates depend on the RCP scenario, where the highest are as expected under RCP 8.5. Overall, this interdisciplinary thesis shows a successful integration of field data, satellite data and modelling for tracking recent and predicting future vegetation changes in mountainous subarctic regions. The obtained results are unique for the focus area in central Chukotka and overall, for mountainous high latitude ecosystems.}, language = {en} } @phdthesis{Shikangalah2016, author = {Shikangalah, Rosemary Ndawapeka}, title = {An ecohydrological impact assessment in urban areas}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102356}, school = {Universit{\"a}t Potsdam}, pages = {ii, 105}, year = {2016}, abstract = {Over the last decades, the world's population has been growing at a faster rate, resulting in increased urbanisation, especially in developing countries. More than half of the global population currently lives in urbanised areas with an increasing tendency. The growth of cities results in a significant loss of vegetation cover, soil compaction and sealing of the soil surface which in turn results in high surface runoff during high-intensity storms and causes the problem of accelerated soil water erosion on streets and building grounds. Accelerated soil water erosion is a serious environmental problem in cities as it gives rise to the contamination of aquatic bodies, reduction of ground water recharge and increase in land degradation, and also results in damages to urban infrastructures, including drainage systems, houses and roads. Understanding the problem of water erosion in urban settings is essential for the sustainable planning and management of cities prone to water erosion. However, in spite of the vast existence of scientific literature on water erosion in rural regions, a concrete understanding of the underlying dynamics of urban erosion still remains inadequate for the urban dryland environments. This study aimed at assessing water erosion and the associated socio-environmental determinants in a typical dryland urban area and used the city of Windhoek, Namibia, as a case study. The study used a multidisciplinary approach to assess the problem of water erosion. This included an in depth literature review on current research approaches and challenges of urban erosion, a field survey method for the quantification of the spatial extent of urban erosion in the dryland city of Windhoek, and face to face interviews by using semi-structured questionnaires to analyse the perceptions of stakeholders on urban erosion. The review revealed that around 64\% of the literatures reviewed were conducted in the developed world, and very few researches were carried out in regions with extreme climate, including dryland regions. Furthermore, the applied methods for erosion quantification and monitoring are not inclusive of urban typical features and they are not specific for urban areas. The reviewed literature also lacked aspects aimed at addressing the issues of climate change and policies regarding erosion in cities. In a field study, the spatial extent and severity of an urban dryland city, Windhoek, was quantified and the results show that nearly 56\% of the city is affected by water erosion showing signs of accelerated erosion in the form of rills and gullies, which occurred mainly in the underdeveloped, informal and semi-formal areas of the city. Factors influencing the extent of erosion in Windhoek included vegetation cover and type, socio-urban factors and to a lesser extent slope estimates. A comparison of an interpolated field survey erosion map with a conventional erosion assessment tool (the Universal Soil Loss Equation) depicted a large deviation in spatial patterns, which underlines the inappropriateness of traditional non-urban erosion tools to urban settings and emphasises the need to develop new erosion assessment and management methods for urban environments. It was concluded that measures for controlling water erosion in the city need to be site-specific as the extent of erosion varied largely across the city. The study also analysed the perceptions and understanding of stakeholders of urban water erosion in Windhoek, by interviewing 41 stakeholders using semi-structured questionnaires. The analysis addressed their understanding of water erosion dynamics, their perceptions with regards to the causes and the seriousness of erosion damages, and their attitudes towards the responsibilities for urban erosion. The results indicated that there is less awareness of the process as a phenomenon, instead there is more awareness of erosion damages and the factors contributing to the damages. About 69\% of the stakeholders considered erosion damages to be ranging from moderate to very serious. However, there were notable disparities between the private householders and public authority groups. The study further found that the stakeholders have no clear understanding of their responsibilities towards the management of the control measures and payment for the damages. The private householders and local authority sectors pointed fingers at each other for the responsibilities for erosion damage payments and for putting up prevention measures. The reluctance to take responsibility could create a predicament for areas affected, specifically in the informal settlements where land management is not carried out by the local authority and land is not owned by the occupants. The study concluded that in order to combat urban erosion, it is crucial to understand diverse dynamics aggravating the process of urbanisation from different scales. Accordingly, the study suggests that there is an urgent need for the development of urban-specific approaches that aim at: (a) incorporating the diverse socio-economic-environmental aspects influencing erosion, (b) scientifically improving natural cycles that influence water storages and nutrients for plants in urbanised dryland areas in order to increase the amount of vegetation cover, (c) making use of high resolution satellite images to improve the adopted methods for assessing urban erosion, (d) developing water erosion policies, and (e) continuously monitoring the impact of erosion and the influencing processes from local, national and international levels.}, language = {en} } @phdthesis{Shirokova2005, author = {Shirokova, Elena}, title = {Functional genomics of olfactory and pheromone receptors by reconstitution of their signal transduction in human HeLa cells}, address = {Potsdam}, pages = {83 S. : graph. Darst.}, year = {2005}, language = {en} } @phdthesis{Shivanand2015, author = {Shivanand, Lathe Rahul}, title = {DUF1068 protein family members are involved in cell wall formation in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {393}, year = {2015}, language = {en} } @phdthesis{Siddiqui2008, author = {Siddiqui, Hamad}, title = {Isolation and functional characterization of novel NAC genes playing a crucial role in leaf senescence in Arabidopsis thaliana (L.) Heynh}, address = {Potsdam}, pages = {VI, 177 S. S. VII-XI : Ill., graph. Darst.}, year = {2008}, language = {en} } @phdthesis{Siebler2024, author = {Siebler, Lara}, title = {Identifying novel regulators of heat stress memory in Arabidopsis thaliana}, doi = {10.25932/publishup-63447}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-634477}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2024}, abstract = {Heat stress (HS) is a major abiotic stress that negatively affects plant growth and productivity. However, plants have developed various adaptive mechanisms to cope with HS, including the acquisition and maintenance of thermotolerance, which allows them to respond more effectively to subsequent stress episodes. HS memory includes type II transcriptional memory which is characterized by enhanced re-induction of a subset of HS memory genes upon recurrent HS. In this study, new regulators of HS memory in A. thaliana were identified through the characterization of rein mutants. The rein1 mutant carries a premature stop in CYCLIN-DEPENDENT-KINASE 8 (CDK8) which is part of the cyclin kinase module of the Mediator complex. Rein1 seedlings show impaired type II transcriptional memory in multiple heat-responsive genes upon re-exposure to HS. Additionally, the mutants exhibit a significant deficiency in HS memory at the physiological level. Interaction studies conducted in this work indicate that CDK8 associates with the memory HEAT SHOCK FACTORs HSAF2 and HSFA3. The results suggest that CDK8 plays a crucial role in HS memory in plants together with other memory HSFs, which may be potential targets of the CDK8 kinase function. Understanding the role and interaction network of the Mediator complex during HS-induced transcriptional memory will be an exciting aspect of future HS memory research. The second characterized mutant, rein2, was selected based on its strongly impaired pAPX2::LUC re-induction phenotype. In gene expression analysis, the mutant revealed additional defects in the initial induction of HS memory genes. Along with this observation, basal thermotolerance was impaired similarly as HS memory at the physiological level in rein2. Sequencing of backcrossed bulk segregants with subsequent fine mapping narrowed the location of REIN2 to a 1 Mb region on chromosome 1. This interval contains the At1g65440 gene, which encodes the histone chaperone SPT6L. SPT6L interacts with chromatin remodelers and bridges them to the transcription machinery to regulate nucleosome and Pol II occupancy around the transcriptional start site. The EMS-induced missense mutation in SPT6L may cause altered HS-induced gene expression in rein2, possibly triggered by changes in the chromatin environment resulting from altered histone chaperone function. Expanding research on screen-derived factors that modify type II transcriptional memory has the potential to enhance our understanding of HS memory in plants. Discovering connections between previously identified memory factors will help to elucidate the underlying network of HS memory. This knowledge can initiate new approaches to improve heat resilience in crops.}, language = {en} } @phdthesis{Siemiatkowska2020, author = {Siemiatkowska, Beata}, title = {Redox signalling in plants}, doi = {10.25932/publishup-48911}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489119}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2020}, abstract = {Once proteins are synthesized, they can additionally be modified by post-translational modifications (PTMs). Proteins containing reactive cysteine thiols, stabilized in their deprotonated form due to their local environment as thiolates (RS-), serve as redox sensors by undergoing a multitude of oxidative PTMs (Ox-PTMs). Ox-PTMs such as S-nitrosylation or formation of inter- or intra-disulfide bridges induce functional changes in these proteins. Proteins containing cysteines, whose thiol oxidation state regulates their functions, belong to the so-called redoxome. Such Ox-PTMs are controlled by site-specific cellular events that play a crucial role in protein regulation, affecting enzyme catalytic sites, ligand binding affinity, protein-protein interactions or protein stability. Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in all photosynthetic organisms. Therefore, studying PTMs will remain crucial for understanding plant adaptation to external stimuli like fluctuating light conditions. Optimizing methods suitable for studying plants Ox-PTMs is of high importance for elucidation of the redoxome in plants. This study focusses on thiol modifications occurring in plant and provides novel insight into in vivo redoxome of Arabidopsis thaliana in response to light vs. dark. This was achieved by utilizing a resin-assisted thiol enrichment approach. Furthermore, confirmation of candidates on the single protein level was carried out by a differential labelling approach. The thiols and disulfides were differentially labelled, and the protein levels were detected using immunoblot analysis. Further analysis was focused on light-reduced proteins. By the enrichment approach many well studied redox-regulated proteins were identified. Amongst those were fructose 1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) which have previously been described as thioredoxin system targeted enzymes. The redox regulated proteins identified in the current study were compared to several published, independent results showing redox regulated proteins in Arabidopsis leaves, root, mitochondria and specifically S-nitrosylated proteins. These proteins were excluded as potential new candidates but remain as a proof-of-concept to the enrichment experiments to be effective. Additionally, CSP41A and CSP41B proteins, which emerged from this study as potential targets of redox-regulation, were analyzed by Ribo-Seq. The active translatome study of csp41a mutant vs. wild-type showed most of the significant changes at end of the night, similarly as csp41b. Yet, in both mutants only several chloroplast-encoded genes were altered. Further studies of CSP41A and CSP41B proteins are needed to reveal their functions and elucidate the role of redox regulation of these proteins.}, language = {en} } @phdthesis{Siewert2011, author = {Siewert, Katharina}, title = {Autoaggressive human t cell receptorrs and their antigen specificities}, address = {Potsdam}, pages = {145 S.}, year = {2011}, language = {en} } @phdthesis{SilvaIturriza2008, author = {Silva Iturriza, Adriana Maria}, title = {Evolutionary relationships between haemosporidian parasites and Philippine birds}, address = {Potsdam}, pages = {130 Bl. : graph. Darst.}, year = {2008}, language = {en} } @phdthesis{SimonRosin2001, author = {Simon-Rosin, Ulrike}, title = {Isolation and characterisation of ammonium transporters from the module legumen : lotus japanicus}, pages = {85 S.}, year = {2001}, language = {en} } @phdthesis{Sin2016, author = {Sin, Celine}, title = {Post-transcriptional control of gene expression}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102469}, school = {Universit{\"a}t Potsdam}, pages = {xxv, 238}, year = {2016}, abstract = {Gene expression describes the process of making functional gene products (e.g. proteins or special RNAs) from instructions encoded in the genetic information (e.g. DNA). This process is heavily regulated, allowing cells to produce the appropriate gene products necessary for cell survival, adapting production as necessary for different cell environments. Gene expression is subject to regulation at several levels, including transcription, mRNA degradation, translation and protein degradation. When intact, this system maintains cell homeostasis, keeping the cell alive and adaptable to different environments. Malfunction in the system can result in disease states and cell death. In this dissertation, we explore several aspects of gene expression control by analyzing data from biological experiments. Most of the work following uses a common mathematical model framework based on Markov chain models to test hypotheses, predict system dynamics or elucidate network topology. Our work lies in the intersection between mathematics and biology and showcases the power of statistical data analysis and math modeling for validation and discovery of biological phenomena.}, language = {en} } @phdthesis{Skirycz2007, author = {Skirycz, Aleksandra}, title = {Functional analysis of selected DOF transcription factors in the model plant Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16987}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Transcription factors (TFs) are global regulators of gene expression playing essential roles in almost all biological processes, and are therefore of great scientific and biotechnological interest. This project focused on functional characterisation of three DNA-binding-with-one-zinc-finger (DOF) TFs from the genetic model plant Arabidopsis thaliana, namely OBP1, OBP2 and AtDOF4;2. These genes were selected due to severe growth phenotypes conferred upon their constitutive over-expression. To identify biological processes regulated by OBP1, OBP2 and AtDOF4;2 in detail molecular and physiological characterization of transgenic plants with modified levels of OBP1, OBP2 and AtDOF4;2 expression (constitutive and inducible over-expression, RNAi) was performed using both targeted and profiling technologies. Additionally expression patterns of studied TFs and their target genes were analyzed using promoter-GUS lines and publicly available microarray data. Finally selected target genes were confirmed by chromatin immuno-precipitation and electrophoretic-mobility shift assays. This combinatorial approach revealed distinct biological functions of OBP1, OBP2 and AtDOF4;2. Specifically OBP2 controls indole glucosinolate / auxin homeostasis by directly regulating the enzyme at the branch of these pathways; CYP83B1 (Skirycz et al., 2006). Glucosinolates are secondary compounds important for defence against herbivores and pathogens in the plants order Caparales (e.g. Arabidopsis, canola and broccoli) whilst auxin is an essential plant hormone. Hence OBP2 is important for both response to biotic stress and plant growth. Similarly to OBP2 also AtDOF4;2 is involved in the regulation of plant secondary metabolism and affects production of various phenylpropanoid compounds in a tissue and environmental specific manner. It was found that under certain stress conditions AtDOF4;2 negatively regulates flavonoid biosynthetic genes whilst in certain tissues it activates hydroxycinnamic acid production. It was hypothesized that this dual function is most likely related to specific interactions with other proteins; perhaps other TFs (Skirycz et al., 2007). Finally OBP1 regulates both cell proliferation and cell expansion. It was shown that OBP1 controls cell cycle activity by directly targeting the expression of core cell cycle genes (CYCD3;3 and KRP7), other TFs and components of the replication machinery. Evidence for OBP1 mediated activation of cell cycle during embryogenesis and germination will be presented. Additionally and independently on its effects on cell proliferation OBP1 negatively affects cell expansion via reduced expression of cell wall loosening enzymes. Summing up this work provides an important input into our knowledge on DOF TFs function. Future work will concentrate on establishing exact regulatory networks of OBP1, OBP2 and AtDOF4;2 and their possible biotechnological applications.}, language = {en} } @phdthesis{Sklodowski2015, author = {Sklodowski, Kamil}, title = {Regulation of plant potassium channels}, school = {Universit{\"a}t Potsdam}, pages = {115}, year = {2015}, language = {en} } @phdthesis{Smirnova2012, author = {Smirnova, Julia}, title = {Carbohydrate-active enzymes metabolising maltose: kinetic and structural features}, address = {Potsdam}, pages = {162 S.}, year = {2012}, language = {en} } @phdthesis{Soja2014, author = {Soja, Aleksandra Maria}, title = {Transcriptomic and metabolomic analysis of Arabidopsis thaliana during abiotic stress}, pages = {134}, year = {2014}, language = {en} } @phdthesis{Sokolowska2016, author = {Sokolowska, Ewelina Maria}, title = {Implementation of a plasmodesmata gatekeeper system, and its effect on intercellular transport}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2016}, language = {en} } @phdthesis{Soltani2023, author = {Soltani, Ouad}, title = {BLF1-Mode of Action in Barley Leaf Size Control}, doi = {10.25932/publishup-60705}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-607054}, school = {Universit{\"a}t Potsdam}, pages = {110}, year = {2023}, abstract = {Establishment of final leaf size in plants represents a complex mechanism that relies on the precise regulation of two interconnected cellular processes, cell division and cell expansion. In previous work, the barley protein BROAD LEAF1 (BLF1) was identified as a novel negative regulator of cell proliferation, that mainly limits leaf growth in the width direction. Here I identified a novel RING/U-box protein that interacts with BLF1 through a yeast two hybrid screen. Using BiFC, Co-IP and FRET I confirmed the interaction of the two proteins in planta. Enrichment of the BLF1-mEGFP fusion protein and the increase of the FRET signal upon MG132 treatment of tobacco plants, together with an in vivo ubiquitylation assay in bacteria, confirmed that the RING/U-box E3 interacts with BLF1 to mediate its ubiquitylation and degradation by the 26S proteasome system. Consistent with regulation of endogenous BLF1 in barley by proteasomal degradation, inhibition of the proteasome by bortezomib treatment on BLF1-vYFP transgenic barley plants also resulted in an enrichment of the BLF1 protein. I thus demonstrated that RING/U-box E3 is colocalized with BLF1 in nuclei and negatively regulates BLF1 protein levels. Analysis of ring-e3_1 knock-out mutants suggested the involvement of the RING/U-box E3 gene in leaf growth control, although the effect was mainly on leaf length. Together, my results suggest that proteasomal degradation, possibly mediated by RING/U-box E3, contributes to fine-tuning BLF1 protein-level in barley.}, language = {en} } @phdthesis{Sperfeld2011, author = {Sperfeld, Erik}, title = {Effects of temperature and co-limiting nutritional components on life history traits of Daphnia magna and its biochemical composition}, address = {Potsdam}, pages = {157 S.}, year = {2011}, language = {en} } @phdthesis{Spinti2021, author = {Spinti, Daniela}, title = {Proteasomal protein turnover during defense priming in Arabidopsis}, doi = {10.25932/publishup-50590}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-505909}, school = {Universit{\"a}t Potsdam}, pages = {x, 164}, year = {2021}, abstract = {The ubiquitin-proteasome-system (UPS) is a cellular cascade involving three enzymatic steps for protein ubiquitination to target them to the 26S proteasome for proteolytic degradation. Several components of the UPS have been shown to be central for regulation of defense responses during infections with phytopathogenic bacteria. Upon recognition of the pathogen, local defense is induced which also primes the plant to acquire systemic resistance (SAR) for enhanced immune responses upon challenging infections. Here, ubiquitinated proteins were shown to accumulate locally and systemically during infections with Psm and after treatment with the SAR-inducing metabolites salicylic acid (SA) and pipecolic acid (Pip). The role of the 26S proteasome in local defense has been described in several studies, but the potential role during SAR remains elusive and was therefore investigated in this project by characterizing the Arabidopsis proteasome mutants rpt2a-2 and rpn12a-1 during priming and infections with Pseudomonas. Bacterial replication assays reveal decreased basal and systemic immunity in both mutants which was verified on molecular level showing impaired activation of defense- and SAR-genes. rpt2a-2 and rpn12a-1 accumulate wild type like levels of camalexin but less SA. Endogenous SA treatment restores local PR gene expression but does not rescue the SAR-phenotype. An RNAseq experiment of Col-0 and rpt2a-2 reveal weak or absent induction of defense genes in the proteasome mutant during priming. Thus, a functional 26S proteasome was found to be required for induction of SAR while compensatory mechanisms can still be initiated. E3-ubiquitin ligases conduct the last step of substrate ubiquitination and thereby convey specificity to proteasomal protein turnover. Using RNAseq, 11 E3-ligases were found to be differentially expressed during priming in Col-0 of which plant U-box 54 (PUB54) and ariadne 12 (ARI12) were further investigated to gain deeper understanding of their potential role during priming. PUB54 was shown to be expressed during priming and /or triggering with virulent Pseudomonas. pub54 I and pub54-II mutants display local and systemic defense comparable to Col-0. The heavy-metal associated protein 35 (HMP35) was identified as potential substrate of PUB54 in yeast which was verified in vitro and in vivo. PUB54 was shown to be an active E3-ligase exhibiting auto-ubiquitination activity and performing ubiquitination of HMP35. Proteasomal turnover of HMP35 was observed indicating that PUB54 targets HMP35 for ubiquitination and subsequent proteasomal degradation. Furthermore, hmp35-I benefits from increased resistance in bacterial replication assays. Thus, HMP35 is potentially a negative regulator of defense which is targeted and ubiquitinated by PUB54 to regulate downstream defense signaling. ARI12 is transcriptionally activated during priming or triggering and hyperinduced during priming and triggering. Gene expression is not inducible by the defense related hormone salicylic acid (SA) and is dampened in npr1 and fmo1 mutants consequently depending on functional SA- and Pip-pathways, respectively. ARI12 accumulates systemically after priming with SA, Pip or Pseudomonas. ari12 mutants are not altered in resistance but stable overexpression leads to increased resistance in local and systemic tissue. During priming and triggering, unbalanced ARI12 levels (i.e. knock out or overexpression) leads to enhanced FMO1 activation indicating a role of ARI12 in Pip-mediated SAR. ARI12 was shown to be an active E3-ligase with auto-ubiquitination activity likely required for activation with an identified ubiquitination site at K474. Mass spectrometrically identified potential substrates were not verified by additional experiments yet but suggest involvement of ARI12 in regulation of ROS in turn regulating Pip-dependent SAR pathways. Thus, data from this project provide strong indications about the involvement of the 26S proteasome in SAR and identified a central role of the two so far barely described E3-ubiquitin ligases PUB54 and ARI12 as novel components of plant defense.}, language = {en} } @phdthesis{Sprenger2014, author = {Sprenger, Heike}, title = {Characterization of drought tolerance in potato cultivars for identification of molecular markers}, pages = {146}, year = {2014}, language = {en} } @phdthesis{Spricigo2009, author = {Spricigo, Roberto}, title = {Investigations of sulfite oxidase and the molybdenum cofactor at surfaces}, address = {Potsdam}, pages = {VIII, 105 S. : Ill., graph. Darst.}, year = {2009}, language = {en} } @phdthesis{Stange2024, author = {Stange, Maike}, title = {A study on Coronin-A and Aip1 function in motility of Dictyostelium discoideum and on Aip1 interchangeability between Dictyostelium discoideum and Arabidopsis thaliana}, doi = {10.25932/publishup-62856}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-628569}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 168}, year = {2024}, abstract = {Actin is one of the most highly conserved proteins in eukaryotes and distinct actin-related proteins with filament-forming properties are even found in prokaryotes. Due to these commonalities, actin-modulating proteins of many species share similar structural properties and proposed functions. The polymerization and depolymerization of actin are critical processes for a cell as they can contribute to shape changes to adapt to its environment and to move and distribute nutrients and cellular components within the cell. However, to what extent functions of actin-binding proteins are conserved between distantly related species, has only been addressed in a few cases. In this work, functions of Coronin-A (CorA) and Actin-interacting protein 1 (Aip1), two proteins involved in actin dynamics, were characterized. In addition, the interchangeability and function of Aip1 were investigated in two phylogenetically distant model organisms. The flowering plant Arabidopsis thaliana (encoding two homologs, AIP1-1 and AIP1-2) and in the amoeba Dictyostelium discoideum (encoding one homolog, DdAip1) were chosen because the functions of their actin cytoskeletons may differ in many aspects. Functional analyses between species were conducted for AIP1 homologs as flowering plants do not harbor a CorA gene. In the first part of the study, the effect of four different mutation methods on the function of Coronin-A protein and the resulting phenotype in D. discoideum was revealed in two genetic knockouts, one RNAi knockdown and a sudden loss-of-function mutant created by chemical-induced dislocation (CID). The advantages and disadvantages of the different mutation methods on the motility, appearance and development of the amoebae were investigated, and the results showed that not all observed properties were affected with the same intensity. Remarkably, a new combination of Selection-Linked Integration and CID could be established. In the second and third parts of the thesis, the exchange of Aip1 between plant and amoeba was carried out. For A. thaliana, the two homologs (AIP1-1 and AIP1-2) were analyzed for functionality as well as in D. discoideum. In the Aip1-deficient amoeba, rescue with AIP1-1 was more effective than with AIP1-2. The main results in the plant showed that in the aip1-2 mutant background, reintroduced AIP1-2 displayed the most efficient rescue and A. thaliana AIP1-1 rescued better than DdAip1. The choice of the tagging site was important for the function of Aip1 as steric hindrance is a problem. The DdAip1 was less effective when tagged at the C-terminus, while the plant AIP1s showed mixed results depending on the tag position. In conclusion, the foreign proteins partially rescued phenotypes of mutant plants and mutant amoebae, despite the organisms only being very distantly related in evolutionary terms.}, language = {en} } @phdthesis{Stanke2023, author = {Stanke, Sandra}, title = {AC electrokinetic immobilization of influenza viruses and antibodies on nanoelectrode arrays for on-chip immunoassays}, doi = {10.25932/publishup-61716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617165}, school = {Universit{\"a}t Potsdam}, pages = {x, 115}, year = {2023}, abstract = {In the present thesis, AC electrokinetic forces, like dielectrophoresis and AC electroosmosis, were demonstrated as a simple and fast method to functionalize the surface of nanoelectrodes with submicrometer sized biological objects. These nanoelectrodes have a cylindrical shape with a diameter of 500 nm arranged in an array of 6256 electrodes. Due to its medical relevance influenza virus as well as anti-influenza antibodies were chosen as a model organism. Common methods to bring antibodies or proteins to biosensor surfaces are complex and time-consuming. In the present work, it was demonstrated that by applying AC electric fields influenza viruses and antibodies can be immobilized onto the nanoelectrodes within seconds without any prior chemical modification of neither the surface nor the immobilized biological object. The distribution of these immobilized objects is not uniform over the entire array, it exhibits a decreasing gradient from the outer row to the inner ones. Different causes for this gradient have been discussed, such as the vortex-shaped fluid motion above the nanoelectrodes generated by, among others, electrothermal fluid flow. It was demonstrated that parts of the accumulated material are permanently immobilized to the electrodes. This is a unique characteristic of the presented system since in the literature the AC electrokinetic immobilization is almost entirely presented as a method just for temporary immobilization. The spatial distribution of the immobilized viral material or the anti-influenza antibodies at the electrodes was observed by either the combination of fluorescence microscopy and deconvolution or by super-resolution microscopy (STED). On-chip immunoassays were performed to examine the suitability of the functionalized electrodes as a potential affinity-based biosensor. Two approaches were pursued: A) the influenza virus as the bio-receptor or B) the influenza virus as the analyte. Different sources of error were eliminated by ELISA and passivation experiments. Hence, the activity of the immobilized object was inspected by incubation with the analyte. This resulted in the successful detection of anti-influenza antibodies by the immobilized viral material. On the other hand, a detection of influenza virus particles by the immobilized anti-influenza antibodies was not possible. The latter might be due to lost activity or wrong orientation of the antibodies. Thus, further examinations on the activity of by AC electric fields immobilized antibodies should follow. When combined with microfluidics and an electrical read-out system, the functionalized chips possess the potential to serve as a rapid, portable, and cost-effective point-of-care (POC) device. This device can be utilized as a basis for diverse applications in diagnosing and treating influenza, as well as various other pathogens.}, language = {en} } @phdthesis{Stark2021, author = {Stark, Markus}, title = {Implications of local and regional processes on the stability of metacommunities in diverse ecosystems}, doi = {10.25932/publishup-52639}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526399}, school = {Universit{\"a}t Potsdam}, pages = {x, 167}, year = {2021}, abstract = {Anthropogenic activities such as continuous landscape changes threaten biodiversity at both local and regional scales. Metacommunity models attempt to combine these two scales and continuously contribute to a better mechanistic understanding of how spatial processes and constraints, such as fragmentation, affect biodiversity. There is a strong consensus that such structural changes of the landscape tend to negatively effect the stability of metacommunities. However, in particular the interplay of complex trophic communities and landscape structure is not yet fully understood. In this present dissertation, a metacommunity approach is used based on a dynamic and spatially explicit model that integrates population dynamics at the local scale and dispersal dynamics at the regional scale. This approach allows the assessment of complex spatial landscape components such as habitat clustering on complex species communities, as well as the analysis of population dynamics of a single species. In addition to the impact of a fixed landscape structure, periodic environmental disturbances are also considered, where a periodical change of habitat availability, temporally alters landscape structure, such as the seasonal drying of a water body. On the local scale, the model results suggest that large-bodied animal species, such as predator species at high trophic positions, are more prone to extinction in a state of large patch isolation than smaller species at lower trophic levels. Increased metabolic losses for species with a lower body mass lead to increased energy limitation for species on higher trophic levels and serves as an explanation for a predominant loss of these species. This effect is particularly pronounced for food webs, where species are more sensitive to increased metabolic losses through dispersal and a change in landscape structure. In addition to the impact of species composition in a food web for diversity, the strength of local foraging interactions likewise affect the synchronization of population dynamics. A reduced predation pressure leads to more asynchronous population dynamics, beneficial for the stability of population dynamics as it reduces the risk of correlated extinction events among habitats. On the regional scale, two landscape aspects, which are the mean patch isolation and the formation of local clusters of two patches, promote an increase in \$\beta\$-diversity. Yet, the individual composition and robustness of the local species community equally explain a large proportion of the observed diversity patterns. A combination of periodic environmental disturbance and patch isolation has a particular impact on population dynamics of a species. While the periodic disturbance has a synchronizing effect, it can even superimpose emerging asynchronous dynamics in a state of large patch isolation and unifies trends in synchronization between different species communities. In summary, the findings underline a large local impact of species composition and interactions on local diversity patterns of a metacommunity. In comparison, landscape structures such as fragmentation have a negligible effect on local diversity patterns, but increase their impact for regional diversity patterns. In contrast, at the level of population dynamics, regional characteristics such as periodic environmental disturbance and patch isolation have a particularly strong impact and contribute substantially to the understanding of the stability of population dynamics in a metacommunity. These studies demonstrate once again the complexity of our ecosystems and the need for further analysis for a better understanding of our surrounding environment and more targeted conservation of biodiversity.}, language = {en} } @phdthesis{Stech2014, author = {Stech, Marlitt}, title = {Investigations on the cell-free synthesis of single-chain antibody fragments using a cukaryotic translation system}, pages = {ix, 126}, year = {2014}, language = {en} } @phdthesis{Stein2008, author = {Stein, Claudia}, title = {Biodiversity and ecosystem functioning : regional and local determinants of plant diversity in montane grasslands}, series = {PhD dissertation / Helmholtz Centre for Environmental Research , UFZ}, volume = {2008, 11}, journal = {PhD dissertation / Helmholtz Centre for Environmental Research , UFZ}, publisher = {UFZ}, address = {Leipzig}, pages = {141 S.}, year = {2008}, language = {en} } @phdthesis{Steinhauser2004, author = {Steinhauser, Dirk}, title = {Inferring hypotheses from complex profile data - by means of CSB.DB, a comprehensive systems-biology database}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2467}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {The past decades are characterized by various efforts to provide complete sequence information of genomes regarding various organisms. The availability of full genome data triggered the development of multiplex high-throughput assays allowing simultaneous measurement of transcripts, proteins and metabolites. With genome information and profiling technologies now in hand a highly parallel experimental biology is offering opportunities to explore and discover novel principles governing biological systems. Understanding biological complexity through modelling cellular systems represents the driving force which today allows shifting from a component-centric focus to integrative and systems level investigations. The emerging field of systems biology integrates discovery and hypothesis-driven science to provide comprehensive knowledge via computational models of biological systems. Within the context of evolving systems biology, investigations were made in large-scale computational analyses on transcript co-response data through selected prokaryotic and plant model organisms. CSB.DB - a comprehensive systems-biology database - (http://csbdb.mpimp-golm.mpg.de/) was initiated to provide public and open access to the results of biostatistical analyses in conjunction with additional biological knowledge. The database tool CSB.DB enables potential users to infer hypothesis about functional interrelation of genes of interest and may serve as future basis for more sophisticated means of elucidating gene function. The co-response concept and the CSB.DB database tool were successfully applied to predict operons in Escherichia coli by using the chromosomal distance and transcriptional co-responses. Moreover, examples were shown which indicate that transcriptional co-response analysis allows identification of differential promoter activities under different experimental conditions. The co-response concept was successfully transferred to complex organisms with the focus on the eukaryotic plant model organism Arabidopsis thaliana. The investigations made enabled the discovery of novel genes regarding particular physiological processes and beyond, allowed annotation of gene functions which cannot be accessed by sequence homology. GMD - the Golm Metabolome Database - was initiated and implemented in CSB.DB to integrated metabolite information and metabolite profiles. This novel module will allow addressing complex biological questions towards transcriptional interrelation and extent the recent systems level quest towards phenotyping.}, subject = {Datenbank}, language = {en} } @phdthesis{Steinhauser2009, author = {Steinhauser, Marie-Caroline}, title = {Optimisation and application of enzyme activity assays to characterise carbohydrate metabolism in the fruit of different tomato genotypes}, address = {Potsdam}, pages = {122, XXXVII S. : Ill., graph. Darst.}, year = {2009}, language = {en} } @phdthesis{Stephan2023, author = {Stephan, Mareike Sophia}, title = {A bacterial mimetic system to study bacterial inactivation and infection}, school = {Universit{\"a}t Potsdam}, pages = {150}, year = {2023}, abstract = {The emerging threat of antibiotic-resistant bacteria has become a global challenge in the last decades, leading to a rising demand for alternative treatments for bacterial infections. One approach is to target the bacterial cell envelope, making understanding its biophysical properties crucial. Specifically, bacteriophages use the bacterial envelope as an entry point to initiate infection, and they are considered important building blocks of new antibiotic strategies against drug-resistant bacteria.. Depending on the structure of the cell wall, bacteria are classified as Gram-negative and Gram-positive. Gram-negative bacteria are equipped with a complex cell envelope composed of two lipid membranes enclosing a rigid peptidoglycan layer. The synthesis machinery of the Gram-negative cell envelope is the target of antimicrobial agents, including new physical sanitizing procedures addressing the outer membrane (OM). It is therefore very important to study the biophysical properties of the Gram-negative bacterial cell envelope. The high complexity of the Gram-negative OM sets the demand for a model system in which the contribution of individual components can be evaluated separately. In this respect, giant unilamellar vesicles (GUVs) are promising membrane systems to study membrane properties while controlling parameters such as membrane composition and surrounding medium conditions. The aim of this work was to develop methods and approaches for the preparation and characterization of a GUV-based membrane model that mimics the OM of the Gram-negative cell envelope. A major component of the OM is the lipopolysaccharide (LPS) on the outside of the OM heterobilayer. The vesicle model was designed to contain LPS in the outer leaflet and lipids in the inner leaflet. Furthermore, the interaction of the prepared LPS-GUVs with bacteriophages was tested. LPS containing GUVs were prepared by adapting the inverted emulsion technique to meet the challenging properties of LPS, namely their high self-aggregation rate in aqueous solutions. Notably, an additional emulsification step together with the adaption of solution conditions was employed to asymmetrically incorporate LPS containing long polysaccharide chains into the artificial membranes. GUV membrane asymmetry was verified with a fluorescence quenching assay. Since the necessary precautions for handling the quenching agent sodium dithionite are often underestimated and poorly described, important parameters were tested and identified to obtain a stable and reproducible assay. In the context of varied LPS incorporation, a microscopy-based technique was introduced to determine the LPS content on individual GUVs and to directly compare vesicle properties and LPS coverage. Diffusion coefficient measurements in the obtained GUVs showed that increasing LPS concentrations in the membranes resulted in decreased diffusivity. Employing LPS-GUVs we could demonstrate that a Salmonella bacteriophage bound with high specificity to its LPS receptor when presented at the GUV surface, and that the number of bound bacteriophages scaled with the amount of presented LPS receptor. In addition to binding, the bacteriophages were able to eject their DNA into the vesicle lumen. LPS-GUVs thus provide a starting platform for bottom-up approaches for the generation of more complex membranes, in which the effects of individual components on the membrane properties and the interaction with antimicrobial agents such as bacteriophages could be explored.}, language = {en} } @phdthesis{Stief2016, author = {Stief, Anna}, title = {Genetics and ecology of plant heat stress memory}, school = {Universit{\"a}t Potsdam}, pages = {175}, year = {2016}, language = {en} } @phdthesis{Stiegler2023, author = {Stiegler, Jonas}, title = {Mobile link functions in unpredictable agricultural landscapes}, doi = {10.25932/publishup-62202}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622023}, school = {Universit{\"a}t Potsdam}, pages = {155}, year = {2023}, abstract = {Animal movement is a crucial aspect of life, influencing ecological and evolutionary processes. It plays an important role in shaping biodiversity patterns, connecting habitats and ecosystems. Anthropogenic landscape changes, such as in agricultural environments, can impede the movement of animals by affecting their ability to locate resources during recurring movements within home ranges and, on a larger scale, disrupt migration or dispersal. Inevitably, these changes in movement behavior have far-reaching consequences on the mobile link functions provided by species inhabiting such extensively altered matrix areas. In this thesis, I investigate the movement characteristics and activity patterns of the European hare (Lepus europaeus), aiming to understand their significance as a pivotal species in fragmented agricultural landscapes. I reveal intriguing results that shed light on the importance of hares for seed dispersal, the influence of personality traits on behavior and space use, the sensitivity of hares to extreme weather conditions, and the impacts of GPS collaring on mammals' activity patterns and movement behavior. In Chapter I, I conducted a controlled feeding experiment to investigate the potential impact of hares on seed dispersal. By additionally utilizing GPS data of hares in two contrasting landscapes, I demonstrated that hares play a vital role, acting as effective mobile linkers for many plant species in small and isolated habitat patches. The analysis of seed intake and germination success revealed that distinct seed traits, such as density, surface area, and shape, profoundly affect hares' ability to disperse seeds through endozoochory. These findings highlight the interplay between hares and plant communities and thus provide valuable insights into seed dispersal mechanisms in fragmented landscapes. By employing standardized behavioral tests in Chapter II, I revealed consistent behavioral responses among captive hares while simultaneously examining the intricate connection between personality traits and spatial patterns within wild hare populations. This analysis provides insights into the ecological interactions and dynamics within hare populations in agricultural habitats. Examining the concept of animal personality, I established a link between personality traits and hare behavior. I showed that boldness, measured through standardized tests, influences individual exploration styles, with shy and bold hares exhibiting distinct space use patterns. In addition to providing valuable insights into the role of animal personality in heterogeneous environments, my research introduced a novel approach demonstrating the feasibility of remotely assessing personality types using animal-borne sensors without additional disturbance of the focal individual. While climate conditions severely impact the activity and, consequently, the fitness of wildlife species across the globe, in Chapter III, I uncovered the sensitivity of hares to temperature, humidity, and wind speed during their peak reproduction period. I found a strong response in activity to high temperatures above 25°C, with a particularly pronounced effect during temperature extremes of over 35°C. The non-linear relationship between temperature and activity was characterized by contrasting responses observed for day and night. These findings emphasize the vulnerability of hares to climate change and the potential consequences for their fitness and population dynamics with the ongoing rise of temperature. Since such insights can only be obtained through capturing and tagging free-ranging animals, I assessed potential impacts and the recovery process post-collar attachment in Chapter IV. For this purpose, I examined the daily distances moved and the temporal-associated activity of 1451 terrestrial mammals out of 42 species during their initial tracking period. The disturbance intensity and the speed of recovery varied across species, with herbivores, females, and individuals captured and collared in relatively secluded study areas experiencing more pronounced disturbances due to limited anthropogenic influences. Mobile linkers are essential for maintaining biodiversity as they influence the dynamics and resilience of ecosystems. Furthermore, their ability to move through fragmented landscapes makes them a key component for restoring disturbed sites. Individual movement decisions determine the scale of mobile links, and understanding variations in space use among individuals is crucial for interpreting their functions. Climate change poses further challenges, with wildlife species expected to adjust their behavior, especially in response to high-temperature extremes, and comprehending the anthropogenic influence on animal movements will remain paramount to effective land use planning and the development of successful conservation strategies. This thesis provides a comprehensive ecological understanding of hares in agricultural landscapes. My research findings underscore the importance of hares as mobile linkers, the influence of personality traits on behavior and spatial patterns, the vulnerability of hares to extreme weather conditions, and the immediate consequences of collar attachment on mammalian movements. Thus, I contribute valuable insights to wildlife conservation and management efforts, aiding in developing strategies to mitigate the impact of environmental changes on hare populations. Moreover, these findings enable the development of methodologies aimed at minimizing the impacts of collaring while also identifying potential biases in the data, thereby benefiting both animal welfare and the scientific integrity of localization studies.}, language = {en} } @phdthesis{StoofLeichsenring2011, author = {Stoof-Leichsenring, Kathleen Rosemarie}, title = {Genetic analysis of diatoms and rotifers in tropical Kenyan lake sediments}, address = {Potsdam}, year = {2011}, language = {en} } @phdthesis{Streffer2002, author = {Streffer, Katrin}, title = {Highly sensitive measurements of substrates and inhibitors on the basis of tyrosinase sensors and recycling systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000632}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Analytische Chemie heute meint nicht l{\"a}nger nur die große Messtechnik, die zeit- und kostenintensiv ist, die außerdem nur von qualifiziertem Personal zu bedienen ist und deren Resultate nur durch dieses Personal auswertbar sind. Meist erfordert diese sagen wir 'klassische analytische Messtechnik' auch noch spezielle R{\"a}umlichkeiten und oft eine relative große Menge an speziell vorbereiteten Proben. Neben dieser klassischen analytischen Messtechnik hat sich besonders in den letzten Jahren eine auf bestimmte Stoffgruppen und Anforderungen zugeschnittene Messtechnik durchgesetzt, die oft auch durch einen Laien bedient werden kann. Meist sind es sehr kleine Ger{\"a}te. Auch die ben{\"o}tigten Probenvolumina sind klein und eine spezielle Probenvorbereitung ist nicht erforderlich. Ausserdem sind die Ger{\"a}te einfach zu handhaben, billig sowohl in ihrer Herstellung als auch im Gebrauch und meist erlauben sie sogar eine kontinuierliche Messwerterfassung. Zahlreiche dieser in den letzten Jahren entwickelten Ger{\"a}te greifen zur{\"u}ck auf 40 Jahre Forschung auf dem Gebiet der Biosensorik. Seit Clark und Lyons im Jahr 1962 in der Lage waren, mit einer einfachen Sauerstoffelektrode, erg{\"a}nzt durch ein Enzym, Glucose zu messen, war die Entwicklung neuer Messtechnik nicht mehr aufzuhalten. Biosensoren, spezielle Messf{\"u}hler, die aus einer Kombination aus biologischer Komponente (erlaubt eine spezifische Erkennung des Analyten auch ohne vorherige Reinigung der Probe) und einem physikalischen Messf{\"u}hler (wandelt den prim{\"a}ren physikochemischen Effekt in ein elektronisch messbares Signal um) bestehen, eroberten den Markt. Im Rahmen dieser Doktorarbeit wurden verschiedene Tyrosinasesensoren entwickelt, die je nach Herkunft und Eigenschaften der verwendeten Tyrosinase unterschiedliche Anforderungen erf{\"u}llen. Beispielsweise wurde einer dieser Tyrosinasesensoren f{\"u}r die Bestimmung phenolischer Verbindungen in Fluss- und Seewasserproben eingesetzt, und die mit diesem Sensor gemessenen Ergebnisse konnten sehr gut mit dem entsprechenden DIN-Test zur Bestimmung phenolischer Verbindungen korreliert werden. Ein anderer entwickelter Sensor zeigte eine sehr hohe Empfindlichkeit f{\"u}r Catecholamine, Substanzen die speziell in der medizinischen Diagnostik von Wichtigkeit sind. Ausserdem zeigten die ebenfalls im Rahmen dieser Doktorarbeit durchgef{\"u}hrten Untersuchungen zweier verschiedener Tyrosinasen, dass, will man in Zukunft noch empfindlichere Tyrosinasesensoren entwickeln, eine spezielle Tyrosinase (Tyrosinase aus Streptomyces antibioticus) die bessere Wahl sein wird, als die bisher im Bereich der Biosensorforschung verwendete Tyrosinase aus Agaricus bisporus. Desweiteren wurden erste Erfolge auf molekularbiologischem Gebiet erreicht, das heisst, dass Tyrosinasemutanten mit speziellen, vorher {\"u}berlegten Eigenschaften, hergestellt werden sollen. Diese Erfolge k{\"o}nnen dazu genutzt werden, eine neue Generation an Tyrosinasesensoren zu entwickeln, Tyrosinasesensoren in denen Tyrosinase gerichtet gebunden werden kann, sowohl an den entsprechenden physikalischen Messf{\"u}hler oder auch an ein anderes Enzym. Davon verspricht man sich deutlich minimierte Wege, die die zu bestimmende Substanz (oder deren Produkt) sonst zur{\"u}cklegen m{\"u}sste, was am Ende zu einer deutlich erh{\"o}hten Empfindlichkeit des resultierenden Biosensors f{\"u}hren sollte.}, subject = {Enzymelektrode ; Monophenolmonooxygenase}, language = {en} } @phdthesis{Stoessel2018, author = {St{\"o}ßel, Daniel}, title = {Biomarker Discovery in Multiple Sclerosis and Parkinson's disease}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2018}, abstract = {Neuroinflammatory and neurodegenerative diseases such as Parkinson's (PD) and multiple sclerosis (MS) often result in a severe impairment of the patient´s quality of life. Effective therapies for the treatment are currently not available, which results in a high socio-economic burden. Due to the heterogeneity of the disease subtypes, stratification is particularly difficult in the early phase of the disease and is mainly based on clinical parameters such as neurophysiological tests and central nervous imaging. Due to good accessibility and stability, blood and cerebrospinal fluid metabolite markers could serve as surrogates for neurodegenerative processes. This can lead to an improved mechanistic understanding of these diseases and further be used as "treatment response" biomarkers in preclinical and clinical development programs. Therefore, plasma and CSF metabolite profiles will be identified that allow differentiation of PD from healthy controls, association of PD with dementia (PDD) and differentiation of PD subtypes such as akinetic rigid and tremor dominant PD patients. In addition, plasma metabolites for the diagnosis of primary progressive MS (PPMS) should be investigated and tested for their specificity to relapsing-remitting MS (RRMS) and their development during PPMS progression. By applying untargeted high-resolution metabolomics of PD patient samples and in using random forest and partial least square machine learning algorithms, this study identified 20 plasma metabolites and 14 CSF metabolite biomarkers. These differentiate against healthy individuals with an AUC of 0.8 and 0.9 in PD, respectively. We also identify ten PDD specific serum metabolites, which differentiate against healthy individuals and PD patients without dementia with an AUC of 1.0, respectively. Furthermore, 23 akinetic-rigid specific plasma markers were identified, which differentiate against tremor-dominant PD patients with an AUC of 0.94 and against healthy individuals with an AUC of 0.98. These findings also suggest more severe disease pathology in the akinetic-rigid PD than in tremor dominant PD. In the analysis of MS patient samples a partial least square analysis yielded predictive models for the classification of PPMS and resulted in 20 PPMS specific metabolites. In another MS study unknown changes in human metabolism were identified after administration of the multiple sclerosis drug dimethylfumarate, which is used for the treatment of RRMS. These results allow to describe and understand the hitherto completely unknown mechanism of action of this new drug and to use these findings for the further development of new drugs and targets against RRMS. In conclusion, these results have the potential for improved diagnosis of these diseases and improvement of mechanistic understandings, as multiple deregulated pathways were identified. Moreover, novel Dimethylfumarate targets can be used to aid drug development and treatment efficiency. Overall, metabolite profiling in combination with machine learning identified as a promising approach for biomarker discovery and mode of action elucidation.}, language = {en} } @phdthesis{Stuebler2023, author = {St{\"u}bler, Sabine}, title = {Mathematical model of the mucosal immune response to study inflammatory bowel diseases and their treatments}, doi = {10.25932/publishup-61230}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612301}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 194}, year = {2023}, abstract = {Inflammatory bowel diseases (IBD), characterised by a chronic inflammation of the gut wall, develop as consequence of an overreacting immune response to commensal bacteria, caused by a combination of genetic and environmental conditions. Large inter-individual differences in the outcome of currently available therapies complicate the decision for the best option for an individual patient. Predicting the prospects of therapeutic success for an individual patient is currently only possible to a limited extent; for this, a better understanding of possible differences between responders and non-responders is needed. In this thesis, we have developed a mathematical model describing the most important processes of the gut mucosal immune system on the cellular level. The model is based on literature data, which were on the one hand used (qualitatively) to choose which cell types and processes to incorporate and to derive the model structure, and on the other hand (quantitatively) to derive the parameter values. Using ordinary differential equations, it describes the concentration-time course of neutrophils, macrophages, dendritic cells, T cells and bacteria, each subdivided into different cell types and activation states, in the lamina propria and mesenteric lymph nodes. We evaluate the model by means of simulations of the healthy immune response to salmonella infection and mucosal injury. A virtual population includes IBD patients, which we define through their initially asymptomatic, but after a trigger chronically inflamed gut wall. We demonstrate the model's usefulness in different analyses: (i) The comparison of virtual IBD patients with virtual healthy individuals shows that the disease is elicited by many small or fewer large changes, and allows to make hypotheses about dispositions relevant for development of the disease. (ii) We simulate the effects of different therapeutic targets and make predictions about the therapeutic outcome based on the pre-treatment state. (iii) From the analysis of differences between virtual responders and non-responders, we derive hypotheses about reasons for the inter-individual variability in treatment outcome. (iv) For the example of anti-TNF-alpha therapy, we analyse, which alternative therapies are most promising in case of therapeutic failure, and which therapies are most suited for combination therapies: For drugs also directly targeting the cytokine levels or inhibiting the recruitment of innate immune cells, we predict a low probability of success when used as alternative treatment, but a large gain when used in a combination treatment. For drugs with direct effects on T cells, via modulation of the sphingosine-1-phosphate receptor or inhibition of T cell proliferation, we predict a considerably larger probability of success when used as alternative treatment, but only a small additional gain when used in a combination therapy.}, language = {en} } @phdthesis{Suchoszek2017, author = {Suchoszek, Monika}, title = {Characterization of inducible galactolipid biosynthesis mutants in tobacco}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2017}, abstract = {Chloroplast membranes have a unique composition characterized by very high contents of the galactolipids, MGDG and DGDG. Many studies on constitutive, galactolipid-deficient mutants revealed conflicting results about potential functions of galactolipids in photosynthetic membranes. Likely, this was caused by pleiotropic effects such as starvation artefacts because of impaired photosynthesis from early developmental stages of the plants onward. Therefore, an ethanol inducible RNAi-approach has been taken to suppress two key enzymes of galactolipid biosynthesis in the chloroplast, MGD1 and DGD1. Plants were allowed to develop fully functional source leaves prior to induction, which then could support plant growth. Then, after the ethanol induction, both young and mature leaves were investigated over time. Our studies revealed similar changes in both MGDG- and DGDG-deficient lines, however young and mature leaves of transgenic lines showed a different response to galactolipid deficiency. While no changes of photosynthetic parameters and minor changes in lipid content were observed in mature leaves of transgenic lines, strong reductions in total chlorophyll content and in the accumulation of all photosynthetic complexes and significant changes in contents of various lipid groups occurred in young leaves. Microscopy studies revealed an appearance of lipid droplets in the cytosol of young leaves in all transgenic lines which correlates with significantly higher levels of TAGs. Since in young leaves the production of membrane lipids is lowered, the excess of fatty acids is used for storage lipids production, resulting in the accumulation of TAGs. Our data indicate that both investigated galactolipids serve as structural lipids since changes in photosynthetic parameters were mainly the result of reduced amounts of all photosynthetic constituents. In response to restricted galactolipid synthesis, thylakoid biogenesis is precisely readjusted to keep the proper stoichiometry and functionality of the photosynthetic apparatus. Ultimately, the data revealed that downregulation of one galactolipid triggers changes not only in chloroplasts but also in the nucleus as shown by downregulation of nuclear encoded subunits of the photosynthetic complexes.}, language = {en} } @phdthesis{Sun2022, author = {Sun, Xianlei}, title = {Elasticity of fiber meshes derived from multiblock copolymers influences cell behaviors}, doi = {10.25932/publishup-53528}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-535285}, school = {Universit{\"a}t Potsdam}, pages = {96}, year = {2022}, abstract = {Objective: The behaviors of endothelial cells or mesenchymal stem cells are remarkably influenced by the mechanical properties of their surrounding microenvironments. Here, electrospun fiber meshes containing various mechanical characteristics were developed from polyetheresterurethane (PEEU) copolymers. The goal of this study was to explore how fiber mesh stiffness affected endothelial cell shape, growth, migration, and angiogenic potential of endothelial cells. Furthermore, the effects of the E-modulus of fiber meshes on human adipose-derived stem cells (hADSCs) osteogenic potential was investigated. Methods: Polyesteretherurethane (PEEU) polymers with various poly(p-dioxanone) (PPDO) to poly (ε-caprolactone) (PCL) weight percentages (40 wt.\%, 50 wt.\%, 60 wt.\%, and 70 wt.\%) were synthesized, termed PEEU40, PEEU50, PEEU60, and PEEU70, accordingly. The electrospinning method was used for the preparation of PEEU fiber meshes. The effects of PEEU fiber meshes with varying elasticities on the human umbilical vein endothelial cells (HUVECs) shape, growth, migration and angiogenic potential were characterized. To determine how the E-modulus of fiber meshes affects the osteogenic potential of hADSCs, the cellular and nuclear morphologies and osteogenic differentiation abilities were evaluated. Results: With the increasing stiffness of PEEU fiber meshes, the aspect ratios of HUVECs cultivated on PEEU materials increased. HUVECs cultivated on high stiffness fiber meshes (4.5 ± 0.8 MPa) displayed a considerably greater proliferation rate and migratory velocity, in addition demonstrating increased tube formation capability, compared with those of the cells cultivated on lower stiffness fiber meshes (2.6 ± 0.8 MPa). Furthermore, in comparison to those cultivated on lower stiffness fiber meshes, hADSCs adhered to the highest stiffness fiber meshes PEEU70 had an elongated shape. The hADSCs grown on the softer PEEU40 fiber meshes showed a reduced nuclear aspect ratio (width to height) than those cultivated on the stiffer fiber meshes. Culturing hADSCs on stiffer fibers improved their osteogenic differentiation potential. Compared with cells cultured on PEEU40, osteocalcin expression and alkaline phosphatase (ALP) activity increased by 73 ± 10\% and 43 ± 16\%, respectively, in cells cultured on PEEU70. Conclusion: The mechanical characteristics of the substrate are crucial in the modulation of cell behaviors. These findings indicate that adjusting the elasticity of fiber meshes might be a useful method for controlling the blood vessels development and regeneration. Furthermore, the mechanical characteristics of PEEU fiber meshes might be modified to control the osteogenic potential of hADSCs.}, language = {en} } @phdthesis{Sun2011, author = {Sun, Xiaoliang}, title = {Towards understanding the dynamics of biological systems from -Omics data}, address = {Potsdam}, pages = {114 S.}, year = {2011}, language = {en} } @phdthesis{Sviben2016, author = {Sviben, Sanja}, title = {Calcite biomineralization in coccolithophores}, school = {Universit{\"a}t Potsdam}, pages = {119}, year = {2016}, language = {en} } @phdthesis{Swart2017, author = {Swart, Corn{\´e}}, title = {Managing protein activity in A. thaliana}, school = {Universit{\"a}t Potsdam}, pages = {160}, year = {2017}, language = {en} }