@phdthesis{Kamranfar2015, author = {Kamranfar, Iman}, title = {Functional analysis of gene regulatory networks controlled by stress responsive transcription factors in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2015}, language = {en} } @phdthesis{Orf2016, author = {Orf, Isabel}, title = {Photorespiratory metabolism in the cyanobacterial model Synechocystis sp. strain PCC 6803}, school = {Universit{\"a}t Potsdam}, pages = {90}, year = {2016}, language = {en} } @phdthesis{Reinecke2016, author = {Reinecke, Antje Adriana}, title = {Impact of protein structure on the mechanics and assembly of mytilus byssal threads}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2016}, language = {en} } @phdthesis{Sakschewski2015, author = {Sakschewski, Boris}, title = {Impacts of major anthropogenic pressures on the terrestrial biosphere and its resilience to global change}, school = {Universit{\"a}t Potsdam}, pages = {159}, year = {2015}, language = {en} } @phdthesis{Breuer2016, author = {Breuer, David}, title = {The plant cytoskeleton as a transportation network}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93583}, school = {Universit{\"a}t Potsdam}, pages = {164}, year = {2016}, abstract = {The cytoskeleton is an essential component of living cells. It is composed of different types of protein filaments that form complex, dynamically rearranging, and interconnected networks. The cytoskeleton serves a multitude of cellular functions which further depend on the cell context. In animal cells, the cytoskeleton prominently shapes the cell's mechanical properties and movement. In plant cells, in contrast, the presence of a rigid cell wall as well as their larger sizes highlight the role of the cytoskeleton in long-distance intracellular transport. As it provides the basis for cell growth and biomass production, cytoskeletal transport in plant cells is of direct environmental and economical relevance. However, while knowledge about the molecular details of the cytoskeletal transport is growing rapidly, the organizational principles that shape these processes on a whole-cell level remain elusive. This thesis is devoted to the following question: How does the complex architecture of the plant cytoskeleton relate to its transport functionality? The answer requires a systems level perspective of plant cytoskeletal structure and transport. To this end, I combined state-of-the-art confocal microscopy, quantitative digital image analysis, and mathematically powerful, intuitively accessible graph-theoretical approaches. This thesis summarizes five of my publications that shed light on the plant cytoskeleton as a transportation network: (1) I developed network-based frameworks for accurate, automated quantification of cytoskeletal structures, applicable in, e.g., genetic or chemical screens; (2) I showed that the actin cytoskeleton displays properties of efficient transport networks, hinting at its biological design principles; (3) Using multi-objective optimization, I demonstrated that different plant cell types sustain cytoskeletal networks with cell-type specific and near-optimal organization; (4) By investigating actual transport of organelles through the cell, I showed that properties of the actin cytoskeleton are predictive of organelle flow and provided quantitative evidence for a coordination of transport at a cellular level; (5) I devised a robust, optimization-based method to identify individual cytoskeletal filaments from a given network representation, allowing the investigation of single filament properties in the network context. The developed methods were made publicly available as open-source software tools. Altogether, my findings and proposed frameworks provide quantitative, system-level insights into intracellular transport in living cells. Despite my focus on the plant cytoskeleton, the established combination of experimental and theoretical approaches is readily applicable to different organisms. Despite the necessity of detailed molecular studies, only a complementary, systemic perspective, as presented here, enables both understanding of cytoskeletal function in its evolutionary context as well as its future technological control and utilization.}, language = {en} } @phdthesis{Makower2016, author = {Makower, Katharina}, title = {The roles of secondary metabolites in microcystis inter-strain interactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93916}, school = {Universit{\"a}t Potsdam}, pages = {X, 131}, year = {2016}, abstract = {Among the bloom-forming and potentially harmful cyanobacteria, the genus Microcystis represents a most diverse taxon, on the genomic as well as on morphological and secondary metabolite levels. Microcystis communities are composed of a variety of diversified strains. The focus of this study lies on potential interactions between Microcystis representatives and the roles of secondary metabolites in these interaction processes. The role of secondary metabolites functioning as signaling molecules in the investigated interactions is demonstrated exemplary for the prevalent hepatotoxin microcystin. The extracellular and intracellular roles of microcystin are tested in microarray-based transcriptomic approaches. While an extracellular effect of microcystin on Microcystis transcription is confirmed and connected to a specific gene cluster of another secondary metabolite in this study, the intracellularly occurring microcystin is related with several pathways of the primary metabolism. A clear correlation of a microcystin knockout and the SigE-mediated regulation of carbon metabolism is found. According to the acquired transcriptional data, a model is proposed that postulates the regulating effect of microcystin on transcriptional regulators such as the alternative sigma factor SigE, which in return captures an essential role in sugar catabolism and redox-state regulation. For the purpose of simulating community conditions as found in the field, Microcystis colonies are isolated from the eutrophic lakes near Potsdam, Germany and established as stably growing under laboratory conditions. In co-habitation simulations, the recently isolated field strain FS2 is shown to specifically induce nearly immediate aggregation reactions in the axenic lab strain Microcystis aeruginosa PCC 7806. In transcriptional studies via microarrays, the induced expression program in PCC 7806 after aggregation induction is shown to involve the reorganization of cell envelope structures, a highly altered nutrient uptake balance and the reorientation of the aggregating cells to a heterotrophic carbon utilization, e.g. via glycolysis. These transcriptional changes are discussed as mechanisms of niche adaptation and acclimation in order to prevent competition for resources.}, language = {en} } @phdthesis{Laemke2015, author = {L{\"a}mke, J{\"o}rn}, title = {Determining the future in the past}, school = {Universit{\"a}t Potsdam}, pages = {149}, year = {2015}, language = {en} } @phdthesis{ShahnejatBushehri2016, author = {Shahnejat-Bushehri, Sara}, title = {Unravelling the role of the Arabidopsis NAC transcription factor JUNGBRUNNEN1 (JUB1) for the regulation of growth and stress responses}, school = {Universit{\"a}t Potsdam}, pages = {155}, year = {2016}, language = {en} } @phdthesis{Paijmans2015, author = {Paijmans, Johanna L. A.}, title = {Application of hybridisation capture to investigate complete mitogenomes from ancient samples}, school = {Universit{\"a}t Potsdam}, pages = {207}, year = {2015}, language = {en} } @phdthesis{Balk2015, author = {Balk, Maria}, title = {3D structured shape-memory hydrogels with enzymatically-induced shape shifting}, school = {Universit{\"a}t Potsdam}, pages = {128}, year = {2015}, language = {en} } @phdthesis{Bartholomaeus2016, author = {Bartholom{\"a}us, Alexander}, title = {Analyzing Transcriptional and Translational Control in E. coli using Deep-Seq Data}, school = {Universit{\"a}t Potsdam}, pages = {179}, year = {2016}, language = {en} } @phdthesis{Apelt2015, author = {Apelt, Federico}, title = {Implementation of an imaging-based approach using a 3D light-field camera to analyse plant growth behaviour}, school = {Universit{\"a}t Potsdam}, pages = {227}, year = {2015}, language = {en} } @phdthesis{Ploetner2015, author = {Pl{\"o}tner, Bj{\"o}rn}, title = {F2 hybrid chlorosis in a cross between the Arabidopsis thaliana accessions Shahdara and Lovvik-5}, school = {Universit{\"a}t Potsdam}, pages = {99}, year = {2015}, language = {en} } @phdthesis{Laux2016, author = {Laux, Eva-Maria}, title = {Electric field-assisted immobilization and alignment of biomolecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90271}, school = {Universit{\"a}t Potsdam}, pages = {IX, 120}, year = {2016}, abstract = {In this dissertation, an electric field-assisted method was developed and applied to achieve immobilization and alignment of biomolecules on metal electrodes in a simple one-step experiment. Neither modifications of the biomolecule nor of the electrodes were needed. The two major electrokinetic effects that lead to molecule motion in the chosen electrode configurations used were identified as dielectrophoresis and AC electroosmotic flow. To minimize AC electroosmotic flow, a new 3D electrode configuration was designed. Thus, the influence of experimental parameters on the dielectrophoretic force and the associated molecule movement could be studied. Permanent immobilization of proteins was examined and quantified absolutely using an atomic force microscope. By measuring the volumes of the immobilized protein deposits, a maximal number of proteins contained therein was calculated. This was possible since the proteins adhered to the tungsten electrodes even after switching off the electric field. The permanent immobilization of functional proteins on surfaces or electrodes is one crucial prerequisite for the fabrication of biosensors. Furthermore, the biofunctionality of the proteins must be retained after immobilization. Due to the chemical or physical modifications on the proteins caused by immobilization, their biofunctionality is sometimes hampered. The activity of dielectrophoretically immobilized proteins, however, was proven here for an enzyme for the first time. The enzyme horseradish peroxidase was used exemplarily, and its activity was demonstrated with the oxidation of dihydrorhodamine 123, a non-fluorescent precursor of the fluorescence dye rhodamine 123. Molecular alignment and immobilization - reversible and permanent - was achieved under the influence of inhomogeneous AC electric fields. For orientational investigations, a fluorescence microscope setup, a reliable experimental procedure and an evaluation protocol were developed and validated using self-made control samples of aligned acridine orange molecules in a liquid crystal. Lambda-DNA strands were stretched and aligned temporarily between adjacent interdigitated electrodes, and the orientation of PicoGreen molecules, which intercalate into the DNA strands, was determined. Similarly, the aligned immobilization of enhanced Green Fluorescent Protein was demonstrated exploiting the protein's fluorescence and structural properties. For this protein, the angle of the chromophore with respect to the protein's geometrical axis was determined in good agreement with X-ray crystallographic data. Permanent immobilization with simultaneous alignment of the proteins was achieved along the edges, tips and on the surface of interdigitated electrodes. This was the first demonstration of aligned immobilization of proteins by electric fields. Thus, the presented electric field-assisted immobilization method is promising with regard to enhanced antibody binding capacities and enzymatic activities, which is a requirement for industrial biosensor production, as well as for general interaction studies of proteins.}, language = {en} } @phdthesis{Olszewska2015, author = {Olszewska, Agata}, title = {Forming magnetic chain with the help of biological organisms}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89767}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2015}, abstract = {Magnetite nanoparticles and their assembly comprise a new area of development for new technologies. The magnetic particles can interact and assemble in chains or networks. Magnetotactic bacteria are one of the most interesting microorganisms, in which the assembly of nanoparticles occurs. These microorganisms are a heterogeneous group of gram negative prokaryotes, which all show the production of special magnetic organelles called magnetosomes, consisting of a magnetic nanoparticle, either magnetite (Fe3O4) or greigite (Fe3S4), embedded in a membrane. The chain is assembled along an actin-like scaffold made of MamK protein, which makes the magnetosomes to arrange in mechanically stable chains. The chains work as a compass needle in order to allow cells to orient and swim along the magnetic field of the Earth. The formation of magnetosomes is known to be controlled at the molecular level. The physico-chemical conditions of the surrounding environment also influence biomineralization. The work presented in this manuscript aims to understand how such external conditions, in particular the extracellular oxidation reduction potential (ORP) influence magnetite formation in the strain Magnetospirillum magneticum AMB-1. A controlled cultivation of the microorganism was developed in a bioreactor and the formation of magnetosomes was characterized. Different techniques have been applied in order to characterize the amount of iron taken up by the bacteria and in consequence the size of magnetosomes produced at different ORP conditions. By comparison of iron uptake, morphology of bacteria, size and amount of magnetosomes per cell at different ORP, the formation of magnetosomes was inhibited at ORP 0 mV, whereas reduced conditions, ORP - 500 mV facilitate biomineralization process. Self-assembly of magnetosomes occurring in magnetotactic bacteria became an inspiration to learn from nature and to construct nanoparticles assemblies by using the bacteriophage M13 as a template. The M13 bacteriophage is an 800 nm long filament with encapsulated single-stranded DNA that has been recently used as a scaffold for nanoparticle assembly. I constructed two types of assemblies based on bacteriophages and magnetic nanoparticles. A chain - like assembly was first formed where magnetite nanoparticles are attached along the phage filament. A sperm - like construct was also built with a magnetic head and a tail formed by phage filament. The controlled assembly of magnetite nanoparticles on the phage template was possible due to two different mechanism of nanoparticle assembly. The first one was based on the electrostatic interactions between positively charged polyethylenimine coated magnetite nanoparticles and negatively charged phages. The second phage -nanoparticle assembly was achieved by bioengineered recognition sites. A mCherry protein is displayed on the phage and is was used as a linker to a red binding nanobody (RBP) that is fused to the one of the proteins surrounding the magnetite crystal of a magnetosome. Both assemblies were actuated in water by an external magnetic field showing their swimming behavior and potentially enabling further usage of such structures for medical applications. The speed of the phage - nanoparticles assemblies are relatively slow when compared to those of microswimmers previously published. However, only the largest phage-magnetite assemblies could be imaged and it is therefore still unclear how fast these structures can be in their smaller version.}, language = {en} } @phdthesis{Quast2015, author = {Quast, Robert B.}, title = {Synthesis and site-directed modification of membrane proteins using non-canonical amino acids in a cell-free system derived from cultured Spodoptera frugiperda cells}, school = {Universit{\"a}t Potsdam}, pages = {87}, year = {2015}, language = {en} } @phdthesis{Lischke2015, author = {Lischke, Betty}, title = {Food web regulation under different forcing regimes in shallow lakes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89149}, school = {Universit{\"a}t Potsdam}, pages = {131}, year = {2015}, abstract = {The standing stock and production of organismal biomass depends strongly on the organisms' biotic environment, which arises from trophic and non-trophic interactions among them. The trophic interactions between the different groups of organisms form the food web of an ecosystem, with the autotrophic and bacterial production at the basis and potentially several levels of consumers on top of the producers. Feeding interactions can regulate communities either by severe grazing pressure or by shortage of resources or prey production, termed top-down and bottom-up control, respectively. The limitations of all communities conglomerate in the food web regulation, which is subject to abiotic and biotic forcing regimes arising from external and internal constraints. This dissertation presents the effects of alterations in two abiotic, external forcing regimes, terrestrial matter input and long-lasting low temperatures in winter. Diverse methodological approaches, a complex ecosystem model study and the analysis of two whole-lake measurements, were performed to investigate effects for the food web regulation and the resulting consequences at the species, community and ecosystem scale. Thus, all types of organisms, autotrophs and heterotrophs, at all trophic levels were investigated to gain a comprehensive overview of the effects of the two mentioned altered forcing regimes. In addition, an extensive evaluation of the trophic interactions and resulting carbon fluxes along the pelagic and benthic food web was performed to display the efficiencies of the trophic energy transfer within the food webs. All studies were conducted in shallow lakes, which is worldwide the most abundant type of lakes. The specific morphology of shallow lakes allows that the benthic production contributes substantially to the whole-lake production. Further, as shallow lakes are often small they are especially sensitive to both, changes in the input of terrestrial organic matter and the atmospheric temperature. Another characteristic of shallow lakes is their appearance in alternative stable states. They are either in a clear-water or turbid state, where macrophytes and phytoplankton dominate, respectively. Both states can stabilize themselves through various mechanisms. These two alternative states and stabilizing mechanisms are integrated in the complex ecosystem model PCLake, which was used to investigate the effects of the enhanced terrestrial particulate organic matter (t-POM) input to lakes. The food web regulation was altered by three distinct pathways: (1) Zoobenthos received more food, increased in biomass which favored benthivorous fish and those reduced the available light due to bioturbation. (2) Zooplankton substituted autochthonous organic matter in their diet by suspended t-POM, thus the autochthonous organic matter remaining in the water reduced its transparency. (3) T-POM suspended into the water and reduced directly the available light. As macrophytes are more light-sensitive than phytoplankton they suffered the most from the lower transparency. Consequently, the resilience of the clear-water state was reduced by enhanced t-POM inputs, which makes the turbid state more likely at a given nutrient concentration. In two subsequent winters long-lasting low temperatures and a concurrent long duration of ice coverage was observed which resulted in low overall adult fish biomasses in the two study lakes - Schulzensee and Gollinsee, characterized by having and not having submerged macrophytes, respectively. Before the partial winterkill of fish Schulzensee allowed for a higher proportion of piscivorous fish than Gollinsee. However, the partial winterkill of fish aligned both communities as piscivorous fish are more sensitive to low oxygen concentrations. Young of the year fish benefitted extremely from the absence of adult fish due to lower predation pressure. Therefore, they could exert a strong top-down control on crustaceans, which restructured the entire zooplankton community leading to low crustacean biomasses and a community composition characterized by copepodites and nauplii. As a result, ciliates were released from top-down control, increased to high biomasses compared to lakes of various trophic states and depths and dominated the zooplankton community. While being very abundant in the study lakes and having the highest weight specific grazing rates among the zooplankton, ciliates exerted potentially a strong top-down control on small phytoplankton and particle-attached bacteria. This resulted in a higher proportion of large phytoplankton compared to other lakes. Additionally, the phytoplankton community was evenly distributed presumably due to the numerous fast growing and highly specific ciliate grazers. Although, the pelagic food web was completely restructured after the subsequent partial winterkills of fish, both lakes were resistant to effects of this forcing regime at the ecosystem scale. The consistently high predation pressure on phytoplankton prevented that Schulzensee switched from the clear-water to the turbid state. Further mechanisms, which potentially stabilized the clear-water state, were allelopathic effects by macrophytes and nutrient limitation in summer. The pelagic autotrophic and bacterial production was an order of magnitude more efficient transferred to animal consumers than the respective benthic production, despite the alterations of the food web structure after the partial winterkill of fish. Thus, the compiled mass-balanced whole-lake food webs suggested that the benthic bacterial and autotrophic production, which exceeded those of the pelagic habitat, was not used by animal consumers. This holds even true if the food quality, additional consumers such as ciliates, benthic protozoa and meiobenthos, the pelagic-benthic link and the potential oxygen limitation of macrobenthos were considered. Therefore, low benthic efficiencies suggest that lakes are primarily pelagic systems at least at the animal consumer level. Overall, this dissertation gives insights into the regulation of organism groups in the pelagic and benthic habitat at each trophic level under two different forcing regimes and displays the efficiency of the carbon transfer in both habitats. The results underline that the alterations of external forcing regimes affect all hierarchical level including the ecosystem.}, language = {en} } @phdthesis{Liput2015, author = {Liput, Magdalena}, title = {Investigation of the biogenesis and use of ribosomes in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {158}, year = {2015}, language = {en} } @phdthesis{Fuenfgeld2015, author = {F{\"u}nfgeld, Maximilian}, title = {Compartmentation of adenine nucleotide metabolism}, school = {Universit{\"a}t Potsdam}, pages = {113}, year = {2015}, language = {en} } @phdthesis{Herde2015, author = {Herde, Antje}, title = {Individual differences and seasonal variation in behaviour}, school = {Universit{\"a}t Potsdam}, pages = {111}, year = {2015}, language = {en} } @phdthesis{Arabi2015, author = {Arabi, Fayezeh}, title = {Functional characterization of Sulfur Deficiency Induced genes, SDI1 and SDI2, in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {97}, year = {2015}, language = {en} } @phdthesis{Kabelitz2015, author = {Kabelitz, Tina}, title = {Natural and induced variation in the silencing of a Mutator-like transposon from Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {188}, year = {2015}, language = {en} } @phdthesis{Olas2015, author = {Olas, Justyna Jadwiga}, title = {Nutrients regulate flowering time}, school = {Universit{\"a}t Potsdam}, pages = {190}, year = {2015}, language = {en} } @phdthesis{Menke2015, author = {Menke, Sebastian}, title = {Investigating the impact of intrinsic and extrinsic factors on gut bacterial communities in Namibian wildlife species using a large-scale next-generation sequencing approach}, school = {Universit{\"a}t Potsdam}, pages = {109}, year = {2015}, language = {en} } @phdthesis{Lamanna2015, author = {Lamanna, Francesco}, title = {Adaptive radiation and speciation in African weakly-electric fish}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80097}, school = {Universit{\"a}t Potsdam}, pages = {114}, year = {2015}, abstract = {The rise of evolutionary novelties is one of the major drivers of evolutionary diversification. African weakly-electric fishes (Teleostei, Mormyridae) have undergone an outstanding adaptive radiation, putatively owing to their ability to communicate through species-specific Electric Organ Discharges (EODs) produced by a novel, muscle-derived electric organ. Indeed, such EODs might have acted as effective pre-zygotic isolation mechanisms, hence favoring ecological speciation in this group of fishes. Despite the evolutionary importance of this organ, genetic investigations regarding its origin and function have remained limited. The ultimate aim of this study is to better understand the genetic basis of EOD production by exploring the transcriptomic profiles of the electric organ and of its ancestral counterpart, the skeletal muscle, in the genus Campylomormyrus. After having established a set of reference transcriptomes using "Next-Generation Sequencing" (NGS) technologies, I performed in silico analyses of differential expression, in order to identify sets of genes that might be responsible for the functional differences observed between these two kinds of tissues. The results of such analyses indicate that: i) the loss of contractile activity and the decoupling of the excitation-contraction processes are reflected by the down-regulation of the corresponding genes in the electric organ; ii) the metabolic activity of the electric organ might be specialized towards the production and turnover of membrane structures; iii) several ion channels are highly expressed in the electric organ in order to increase excitability, and iv) several myogenic factors might be down-regulated by transcription repressors in the EO. A secondary task of this study is to improve the genus level phylogeny of Campylomormyrus by applying new methods of inference based on the multispecies coalescent model, in order to reduce the conflict among gene trees and to reconstruct a phylogenetic tree as closest as possible to the actual species-tree. By using 1 mitochondrial and 4 nuclear markers, I was able to resolve the phylogenetic relationships among most of the currently described Campylomormyrus species. Additionally, I applied several coalescent-based species delimitation methods, in order to test the hypothesis that putatively cryptic species, which are distinguishable only from their EOD, belong to independently evolving lineages. The results of this analysis were additionally validated by investigating patterns of diversification at 16 microsatellite loci. The results suggest the presence of a new, yet undescribed species of Campylomormyrus.}, language = {en} } @phdthesis{Weits2015, author = {Weits, Daniel}, title = {Regulation of the molecular response to low oxygen in plants}, school = {Universit{\"a}t Potsdam}, pages = {113}, year = {2015}, language = {en} } @phdthesis{Thieme2015, author = {Thieme, Christoph J.}, title = {Sequence and structure determinants of microRNA maturation and the elucidation of RNA transport in plants}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2015}, language = {en} } @phdthesis{Heyneke2015, author = {Heyneke, Elmien}, title = {The role of the calcineurin B-like interacting protein kinase, CIPK14 in regulating plant nutrient metabolism}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2015}, language = {en} } @phdthesis{Shivanand2015, author = {Shivanand, Lathe Rahul}, title = {DUF1068 protein family members are involved in cell wall formation in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {393}, year = {2015}, language = {en} } @phdthesis{Timofeeva2015, author = {Timofeeva, Nadezda}, title = {Effect of ions and amino-acid sequence on collagen structure}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2015}, language = {en} } @phdthesis{Swiadek2015, author = {Swiadek, Magdalena Agnieszka}, title = {Hybrid necrosis in local populations of Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {109}, year = {2015}, language = {en} } @phdthesis{Grune2015, author = {Grune, Jana}, title = {Effects of a novel non-steroidal mineralocorticoid receptor antagonist on cardiac hypertrophy}, school = {Universit{\"a}t Potsdam}, pages = {98}, year = {2015}, language = {en} } @phdthesis{Krishnamoorthy2015, author = {Krishnamoorthy, Praveen}, title = {Regulatory roles of Ptdlns(4,5)P2 in trafficking of the cellulose synthase complex and identification of distinct plasma membrane localisation patterns of Arabidopsis PiP5-kinases}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2015}, language = {en} } @phdthesis{Pfestorf2015, author = {Pfestorf, Hans}, title = {Land use intensity and insect root herbivores}, school = {Universit{\"a}t Potsdam}, pages = {161}, year = {2015}, language = {en} } @phdthesis{Zupok2015, author = {Zupok, Arkadiusz}, title = {The psbB-operon is a major locus for plastome-genome incompatibility in Oenothera}, school = {Universit{\"a}t Potsdam}, pages = {108}, year = {2015}, language = {en} } @phdthesis{Adamla2015, author = {Adamla, Frauke}, title = {Polyglutamine- and aging-dependent aberrancies in transcription and translation}, school = {Universit{\"a}t Potsdam}, pages = {109}, year = {2015}, language = {en} } @phdthesis{Alseekh2015, author = {Alseekh, Saleh}, title = {Identification and mode of inheritance of quantitative trait loci (QTL) for metabolite abundance in tomato}, school = {Universit{\"a}t Potsdam}, pages = {134}, year = {2015}, language = {en} } @phdthesis{Mueller2014, author = {M{\"u}ller, J{\"o}rg}, title = {Response of bryophyte diversity to land-use and management in forest and grassland habitats}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2014}, language = {en} } @phdthesis{Soja2014, author = {Soja, Aleksandra Maria}, title = {Transcriptomic and metabolomic analysis of Arabidopsis thaliana during abiotic stress}, pages = {134}, year = {2014}, language = {en} } @phdthesis{Sklodowski2015, author = {Sklodowski, Kamil}, title = {Regulation of plant potassium channels}, school = {Universit{\"a}t Potsdam}, pages = {115}, year = {2015}, language = {en} } @phdthesis{Zhao2015, author = {Zhao, Liming}, title = {Characterization genes involved in leaf development and senescence of arabidopsis}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2015}, language = {en} } @phdthesis{Eggers2014, author = {Eggers, Ute}, title = {Environmental impacts on white stork (Ciconia ciconia) breeding success}, school = {Universit{\"a}t Potsdam}, pages = {164}, year = {2014}, language = {en} } @phdthesis{Wettstein2015, author = {Wettstein, Christoph}, title = {Cytochrome c-DNA and cytochrome c-enzyme interactions for the construction of analytical signal chains}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78367}, school = {Universit{\"a}t Potsdam}, pages = {120}, year = {2015}, abstract = {Electron transfer (ET) reactions play a crucial role in the metabolic pathways of all organisms. In biotechnological approaches, the redox properties of the protein cytochrome c (cyt c), which acts as an electron shuttle in the respiratory chain, was utilized to engineer ET chains on electrode surfaces. With the help of the biopolymer DNA, the redox protein assembles into electro active multilayer (ML) systems, providing a biocompatible matrix for the entrapment of proteins. In this study the characteristics of the cyt c and DNA interaction were defined on the molecular level for the first time and the binding sites of DNA on cyt c were identified. Persistent cyt c/DNA complexes were formed in solution under the assembly conditions of ML architectures, i.e. pH 5.0 and low ionic strength. At pH 7.0, no agglomerates were formed, permitting the characterization of the NMR spectroscopy. Using transverse relaxation-optimized spectroscopy (TROSY)-heteronuclear single quantum coherence (HSQC) experiments, DNAs' binding sites on the protein were identified. In particular, negatively charged AA residues, which are known interaction sites in cyt c/protein binding were identified as the main contact points of cyt c and DNA. Moreover, the sophisticated task of arranging proteins on electrode surfaces to create functional ET chains was addressed. Therefore, two different enzyme types, the flavin dependent fructose dehydrogenase (FDH) and the pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH), were tested as reaction partners of freely diffusing cyt c and cyt c immobilized on electrodes in mono- and MLs. The characterisation of the ET processes was performed by means of electrochemistry and the protein deposition was monitored by microgravimetric measurements. FDH and PQQ-GDH were found to be generally suitable for combination with the cyt c/DNA ML system, since both enzymes interact with cyt c in solution and in the immobilized state. The immobilization of FDH and cyt c was achieved with the enzyme on top of a cyt c monolayer electrode without the help of a polyelectrolyte. Combining FDH with the cyt c/DNA ML system did not succeed, yet. However, the basic conditions for this protein-protein interaction were defined. PQQ-GDH was successfully coupled with the ML system, demonstrating that that the cyt c/DNA ML system provides a suitable interface for enzymes and that the creation of signal chains, based on the idea of co-immobilized proteins is feasible. Future work may be directed to the investigation of cyt c/DNA interaction under the precise conditions of ML assembly. Therefore, solid state NMR or X-ray crystallography may be required. Based on the results of this study, the combination of FDH with the ML system should be addressed. Moreover, alternative types of enzymes may be tested as catalytic component of the ML assembly, aiming on the development of innovative biosensor applications.}, language = {en} } @phdthesis{Pinchasik2015, author = {Pinchasik, Bat-El Shani}, title = {Manipulaton of Microbubbles Inspired by Bubble Use in Nature}, school = {Universit{\"a}t Potsdam}, pages = {123}, year = {2015}, language = {en} } @phdthesis{Prill2015, author = {Prill, Sebastian}, title = {Real-Time in vitro toxicity monotoring in a microfluidic bioreactor for drug and chemical safety assessment}, pages = {119}, year = {2015}, language = {en} } @phdthesis{Czesnick2014, author = {Czesnick, Hj{\"o}rdis}, title = {Functional specialization of Arabidopsis poly(A) polymerases in relation to flowering time and stress}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78015}, school = {Universit{\"a}t Potsdam}, pages = {157}, year = {2014}, abstract = {Polyadenylation is a decisive 3' end processing step during the maturation of pre-mRNAs. The length of the poly(A) tail has an impact on mRNA stability, localization and translatability. Accordingly, many eukaryotic organisms encode several copies of canonical poly(A) polymerases (cPAPs). The disruption of cPAPs in mammals results in lethality. In plants, reduced cPAP activity is non-lethal. Arabidopsis encodes three nuclear cPAPs, PAPS1, PAPS2 and PAPS4, which are constitutively expressed throughout the plant. Recently, the detailed analysis of Arabidopsis paps1 mutants revealed a subset of genes that is preferentially polyadenylated by the cPAP isoform PAPS1 (Vi et al. 2013). Thus, the specialization of cPAPs might allow the regulation of different sets of genes in order to optimally face developmental or environmental challenges. To gain insights into the cPAP-based gene regulation in plants, the phenotypes of Arabidopsis cPAPs mutants under different conditions are characterized in detail in the following work. An involvement of all three cPAPs in flowering time regulation and stress response regulation is shown. While paps1 knockdown mutants flower early, paps4 and paps2 paps4 knockout mutants exhibit a moderate late-flowering phenotype. PAPS1 promotes the expression of the major flowering inhibitor FLC, supposedly by specific polyadenylation of an FLC activator. PAPS2 and PAPS4 exhibit partially overlapping functions and ensure timely flowering by repressing FLC and at least one other unidentified flowering inhibitor. The latter two cPAPs act in a novel regulatory pathway downstream of the autonomous pathway component FCA and act independently from the polyadenylation factors and flowering time regulators CstF64 and FY. Moreover, PAPS1 and PAPS2/PAPS4 are implicated in different stress response pathways in Arabidopsis. Reduced activity of the poly(A) polymerase PAPS1 results in enhanced resistance to osmotic and oxidative stress. Simultaneously, paps1 mutants are cold-sensitive. In contrast, PAPS2/PAPS4 are not involved in the regulation of osmotic or cold stress, but paps2 paps4 loss-of-function mutants exhibit enhanced sensitivity to oxidative stress provoked in the chloroplast. Thus, both PAPS1 and PAPS2/PAPS4 are required to maintain a balanced redox state in plants. PAPS1 seems to fulfil this function in concert with CPSF30, a polyadenylation factor that regulates alternative polyadenylation and tolerance to oxidative stress. The individual paps mutant phenotypes and the cPAP-specific genetic interactions support the model of cPAP-dependent polyadenylation of selected mRNAs. The high similarity of the polyadenylation machineries in yeast, mammals and plants suggests that similar regulatory mechanisms might be present in other organism groups. The cPAP-dependent developmental and physiological pathways identified in this work allow the design of targeted experiments to better understand the ecological and molecular context underlying cPAP-specialization.}, language = {en} } @phdthesis{Pagel2014, author = {Pagel, J{\"o}rn}, title = {Statistical process-based models for the understanding and prediction of range dynamics}, pages = {VII, 147}, year = {2014}, language = {en} } @phdthesis{Sprenger2014, author = {Sprenger, Heike}, title = {Characterization of drought tolerance in potato cultivars for identification of molecular markers}, pages = {146}, year = {2014}, language = {en} } @phdthesis{Rajasundaram2015, author = {Rajasundaram, Dhivyaa}, title = {Integrative analysis of heterogeneous plant cell wall related data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77652}, school = {Universit{\"a}t Potsdam}, pages = {xii, 205}, year = {2015}, abstract = {Plant cell walls are complex structures that underpin plant growth and are widely exploited in diverse human activities thus placing them with a central importance in biology. Cell walls have been a prominent area of research for a long time, but the chemical complexity and diversity of cell walls not just between species, but also within plants, between cell-types, and between cell wall micro-domains pose several challenges. Progress accelerated several-fold in cell wall biology owing to advances in sequencing technology, aided soon thereafter by advances in omics and imaging technologies. This development provides additional perspectives of cell walls across a rapidly growing number of species, highlighting a myriad of architectures, compositions, and functions. Furthermore, rather than the component centric view, integrative analysis of the different cell wall components across system-levels help to gain a more in-depth understanding of the structure and biosynthesis of the cell envelope and its interactions with the environment. To this end, in this work three case studies are detailed, all pertaining to the integrative analysis of heterogeneous cell wall related data arising from different system-levels and analytical techniques. A detailed account of multiblock methods is provided and in particular canonical correlation and regression methods of data integration are discussed. In the first integrative analysis, by employing canonical correlation analysis - a multivariate statistical technique to study the association between two datasets - novel insight to the relationship between glycans and phenotypic traits is gained. In addition, sparse partial least squares regression approach that adapts Lasso penalization and allows for the selection of a subset of variables was employed. The second case study focuses on an integrative analysis of images obtained from different spectroscopic techniques. By employing yet another multiblock approach - multiple co-inertia analysis, insitu biochemical composition of cell walls from different cell-types is studied thereby highlighting the common and complementary parts of the two hyperspectral imaging techniques. Finally, the third integrative analysis facilitates gene expression analysis of the Arabidopsis root transcriptome and translatome for the identification of cell wall related genes and compare expression patterns of cell wall synthesis genes. The computational analysis considered correlation and variation of expression across cell-types at both system-levels, and also provides insight into the degree of co-regulatory relationships that are preserved between the two processes. The integrative analysis of glycan data and phenotypic traits in cotton fibers using canonical methods led to the identification of specific polysaccharides which may play a major role during fiber development for the final fiber characteristics. Furthermore, this analysis provides a base for future studies on glycan arrays in case of developing cotton fibers. The integrative analysis of images from infrared and Raman spectroscopic approaches allowed the coupling of different analytical techniques to characterize complex biological material, thereby, representing various facets of their chemical properties. Moreover, the results from the co-inertia analysis demonstrated that the study was well adapted as it is relevant for coupling data tables in a symmetric way. Several indicators are proposed to investigate how the global and block scores are related. In addition, studying the root cells of \textit{Arabidopsis thaliana} allowed positing a novel pipeline to systematically investigate and integrate the different levels of information available at the global and single-cell level. The conducted analysis also confirms that previously identified key transcriptional activators of secondary cell wall development display highly conserved patterns of transcription and translation across the investigated cell-types. Moreover, the biological processes that display conserved and divergent patterns based on the cell-type-specific expression and translation levels are identified.}, language = {en} } @phdthesis{Fronton2014, author = {Fronton, Ludivine}, title = {Modeling approaches to characterize the disposition of monoclonal antibodies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76537}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 133}, year = {2014}, abstract = {Monoclonal antibodies (mAbs) are engineered immunoglobulins G (IgG) used for more than 20 years as targeted therapy in oncology, infectious diseases and (auto-)immune disorders. Their protein nature greatly influences their pharmacokinetics (PK), presenting typical linear and non-linear behaviors. While it is common to use empirical modeling to analyze clinical PK data of mAbs, there is neither clear consensus nor guidance to, on one hand, select the structure of classical compartment models and on the other hand, interpret mechanistically PK parameters. The mechanistic knowledge present in physiologically-based PK (PBPK) models is likely to support rational classical model selection and thus, a methodology to link empirical and PBPK models is desirable. However, published PBPK models for mAbs are quite diverse in respect to the physiology of distribution spaces and the parameterization of the non-specific elimination involving the neonatal Fc receptor (FcRn) and endogenous IgG (IgGendo). The remarkable discrepancy between the simplicity of biodistribution data and the complexity of published PBPK models translates in parameter identifiability issues. In this thesis, we address this problem with a simplified PBPK model—derived from a hierarchy of more detailed PBPK models and based on simplifications of tissue distribution model. With the novel tissue model, we are breaking new grounds in mechanistic modeling of mAbs disposition: We demonstrate that binding to FcRn is indeed linear and that it is not possible to infer which tissues are involved in the unspecific elimination of wild-type mAbs. We also provide a new approach to predict tissue partition coefficients based on mechanistic insights: We directly link tissue partition coefficients (Ktis) to data-driven and species-independent published antibody biodistribution coefficients (ABCtis) and thus, we ensure the extrapolation from pre-clinical species to human with the simplified PBPK model. We further extend the simplified PBPK model to account for a target, relevant to characterize the non-linear clearance due to mAb-target interaction. With model reduction techniques, we reduce the dimensionality of the simplified PBPK model to design 2-compartment models, thus guiding classical model development with physiological and mechanistic interpretation of the PK parameters. We finally derive a new scaling approach for anatomical and physiological parameters in PBPK models that translates the inter-individual variability into the design of mechanistic covariate models with direct link to classical compartment models, specially useful for PK population analysis during clinical development.}, language = {en} } @phdthesis{Schmitt2014, author = {Schmitt, Clemens Nikolaus Zeno}, title = {The role of protein metal complexes in the mechanics of Mytilus californianus byssal threads}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74216}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 93}, year = {2014}, abstract = {Protein-metal coordination complexes are well known as active centers in enzymatic catalysis, and to contribute to signal transduction, gas transport, and to hormone function. Additionally, they are now known to contribute as load-bearing cross-links to the mechanical properties of several biological materials, including the jaws of Nereis worms and the byssal threads of marine mussels. The primary aim of this thesis work is to better understand the role of protein-metal cross-links in the mechanical properties of biological materials, using the mussel byssus as a model system. Specifically, the focus is on histidine-metal cross-links as sacrificial bonds in the fibrous core of the byssal thread (Chapter 4) and L-3,4-dihydroxyphenylalanine (DOPA)-metal bonds in the protective thread cuticle (Chapter 5). Byssal threads are protein fibers, which mussels use to attach to various substrates at the seashore. These relatively stiff fibers have the ability to extend up to about 100 \% strain, dissipating large amounts of mechanical energy from crashing waves, for example. Remarkably, following damage from cyclic loading, initial mechanical properties are subsequently recovered by a material-intrinsic self-healing capability. Histidine residues coordinated to transition metal ions in the proteins comprising the fibrous thread core have been suggested as reversible sacrificial bonds that contribute to self-healing; however, this remains to be substantiated in situ. In the first part of this thesis, the role of metal coordination bonds in the thread core was investigated using several spectroscopic methods. In particular, X-ray absorption spectroscopy (XAS) was applied to probe the coordination environment of zinc in Mytilus californianus threads at various stages during stretching and subsequent healing. Analysis of the extended X-ray absorption fine structure (EXAFS) suggests that tensile deformation of threads is correlated with the rupture of Zn-coordination bonds and that self-healing is connected with the reorganization of Zn-coordination bond topologies rather than the mere reformation of Zn-coordination bonds. These findings have interesting implications for the design of self-healing metallopolymers. The byssus cuticle is a protective coating surrounding the fibrous thread core that is both as hard as an epoxy and extensible up to 100 \% strain before cracking. It was shown previously that cuticle stiffness and hardness largely depend on the presence of Fe-DOPA coordination bonds. However, the byssus is known to concentrate a large variety of metals from seawater, some of which are also capable of binding DOPA (e.g. V). Therefore, the question arises whether natural variation of metal composition can affect the mechanical performance of the byssal thread cuticle. To investigate this hypothesis, nanoindentation and confocal Raman spectroscopy were applied to the cuticle of native threads, threads with metals removed (EDTA treated), and threads in which the metal ions in the native tissue were replaced by either Fe or V. Interestingly, replacement of metal ions with either Fe or V leads to the full recovery of native mechanical properties with no statistical difference between each other or the native properties. This likely indicates that a fixed number of metal coordination sites are maintained within the byssal thread cuticle - possibly achieved during thread formation - which may provide an evolutionarily relevant mechanism for maintaining reliable mechanics in an unpredictable environment. While the dynamic exchange of bonds plays a vital role in the mechanical behavior and self-healing in the thread core by allowing them to act as reversible sacrificial bonds, the compatibility of DOPA with other metals allows an inherent adaptability of the thread cuticle to changing circumstances. The requirements to both of these materials can be met by the dynamic nature of the protein-metal cross-links, whereas covalent cross-linking would fail to provide the adaptability of the cuticle and the self-healing of the core. In summary, these studies of the thread core and the thread cuticle serve to underline the important and dynamic roles of protein-metal coordination in the mechanical function of load-bearing protein fibers, such as the mussel byssus.}, language = {en} } @phdthesis{Omidbakhshfard2014, author = {Omidbakhshfard, Mohammad Amin}, title = {Functional analysis of the role of GRF9 in leaf development and establishment of Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) in Arabidopsis thaliana}, pages = {XI, 162}, year = {2014}, language = {en} } @phdthesis{Omranian2014, author = {Omranian, Nooshin}, title = {Inferring gene regulatory networks and cellular phases from time-resolved transcriptomics data}, pages = {vii, 96}, year = {2014}, language = {en} } @phdthesis{Jueppner2014, author = {J{\"u}ppner, Jessica}, title = {Characterization of metabolomic dynamics in synchronized Chlamydomonas reinhardtii cell cultures and the impact of TOR inhibition on cell cycle, proliferation and growth}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76923}, school = {Universit{\"a}t Potsdam}, pages = {VI, 153}, year = {2014}, abstract = {The adaptation of cell growth and proliferation to environmental changes is essential for the surviving of biological systems. The evolutionary conserved Ser/Thr protein kinase "Target of Rapamycin" (TOR) has emerged as a major signaling node that integrates the sensing of numerous growth signals to the coordinated regulation of cellular metabolism and growth. Although the TOR signaling pathway has been widely studied in heterotrophic organisms, the research on TOR in photosynthetic eukaryotes has been hampered by the reported land plant resistance to rapamycin. Thus, the finding that Chlamydomonas reinhardtii is sensitive to rapamycin, establish this unicellular green alga as a useful model system to investigate TOR signaling in photosynthetic eukaryotes. The observation that rapamycin does not fully arrest Chlamydomonas growth, which is different from observations made in other organisms, prompted us to investigate the regulatory function of TOR in Chlamydomonas in context of the cell cycle. Therefore, a growth system that allowed synchronously growth under widely unperturbed cultivation in a fermenter system was set up and the synchronized cells were characterized in detail. In a highly resolved kinetic study, the synchronized cells were analyzed for their changes in cytological parameters as cell number and size distribution and their starch content. Furthermore, we applied mass spectrometric analysis for profiling of primary and lipid metabolism. This system was then used to analyze the response dynamics of the Chlamydomonas metabolome and lipidome to TOR-inhibition by rapamycin The results show that TOR inhibition reduces cell growth, delays cell division and daughter cell release and results in a 50\% reduced cell number at the end of the cell cycle. Consistent with the growth phenotype we observed strong changes in carbon and nitrogen partitioning in the direction of rapid conversion into carbon and nitrogen storage through an accumulation of starch, triacylglycerol and arginine. Interestingly, it seems that the conversion of carbon into triacylglycerol occurred faster than into starch after TOR inhibition, which may indicate a more dominant role of TOR in the regulation of TAG biosynthesis than in the regulation of starch. This study clearly shows, for the first time, a complex picture of metabolic and lipidomic dynamically changes during the cell cycle of Chlamydomonas reinhardtii and furthermore reveals a complex regulation and adjustment of metabolite pools and lipid composition in response to TOR inhibition.}, language = {en} } @phdthesis{Heise2014, author = {Heise, Robert}, title = {Estimation of photosynthetic carbon fluxes in intact plants}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, school = {Universit{\"a}t Potsdam}, pages = {178}, year = {2014}, language = {en} } @phdthesis{Liu2015, author = {Liu, Zengyu}, title = {Going off the rails? Guidance of the cellulose synthase complex by cortical microtubules in Arabidopsis}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, school = {Universit{\"a}t Potsdam}, pages = {III , 90}, year = {2015}, language = {en} } @phdthesis{Meissner2014, author = {Meissner, Sven}, title = {Implications of Microcystin Production in Microcystis aeruginosa PCC 7806}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75199}, school = {Universit{\"a}t Potsdam}, pages = {VII, 141}, year = {2014}, abstract = {Cyanobacteria produce about 40 percent of the world's primary biomass, but also a variety of often toxic peptides such as microcystin. Mass developments, so called blooms, can pose a real threat to the drinking water supply in many parts of the world. This study aimed at characterizing the biological function of microcystin production in one of the most common bloom-forming cyanobacterium Microcystis aeruginosa. In a first attempt, the effect of elevated light intensity on microcystin production and its binding to cellular proteins was studied. Therefore, conventional microcystin quantification techniques were combined with protein-biochemical methods. RubisCO, the key enzyme for primary carbon fixation was a major microcystin interaction partner. High light exposition strongly stimulated microcystin-protein interactions. Up to 60 percent of the total cellular microcystin was detected bound to proteins, i.e. inaccessible for standard quantification procedures. Underestimation of total microcystin contents when neglecting the protein fraction was also demonstrated in field samples. Finally, an immuno-fluorescence based method was developed to identify microcystin producing cyanobacteria in mixed populations. The high light induced microcystin interaction with proteins suggested an impact of the secondary metabolite on the primary metabolism of Microcystis by e.g. modulating the activity of enzymes. For addressing that question, a comprehensive GC/MS-based approach was conducted to compare the accumulation of metabolites in the wild-type of Microcystis aeruginosa PCC 7806 and the microcystin deficient ΔmcyB mutant. From all 501 detected non-redundant metabolites 85 (17 percent) accumulated significantly different in either of both genotypes upon high light exposition. Accumulation of compatible solutes in the ΔmcyB mutant suggests a role of microcystin in fine-tuning the metabolic flow to prevent stress related to excess light, high oxygen concentration and carbon limitation. Co-analysis of the widely used model cyanobacterium Synechocystis PCC 6803 revealed profound metabolic differences between species of cyanobacteria. Whereas Microcystis channeled more resources towards carbohydrate synthesis, Synechocystis invested more in amino acids. These findings were supported by electron microscopy of high light treated cells and the quantification of storage compounds. While Microcystis accumulated mainly glycogen to about 8.5 percent of its fresh weight within three hours, Synechocystis produced higher amounts of cyanophycin. The results showed that the characterization of species-specific metabolic features should gain more attention with regard to the biotechnological use of cyanobacteria.}, language = {en} } @phdthesis{Sachse2014, author = {Sachse, Rita}, title = {Biological membranes in cell-free systems}, pages = {111, XIX}, year = {2014}, language = {en} } @phdthesis{Emadpour2014, author = {Emadpour, Masoumeh}, title = {Development of tools for inducible gene expression in choroplasts}, pages = {viii}, year = {2014}, language = {en} } @phdthesis{Stech2014, author = {Stech, Marlitt}, title = {Investigations on the cell-free synthesis of single-chain antibody fragments using a cukaryotic translation system}, pages = {ix, 126}, year = {2014}, language = {en} } @phdthesis{Schirmack2015, author = {Schirmack, Janosch}, title = {Activity of methanogenic archaea under simulated Mars analog conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-73010}, school = {Universit{\"a}t Potsdam}, pages = {VI, 108}, year = {2015}, abstract = {Assumed comparable environmental conditions of early Mars and early Earth in 3.7 Ga ago - at a time when first fossil records of life on Earth could be found - suggest the possibility of life emerging on both planets in parallel. As conditions changed, the hypothetical life on Mars either became extinct or was able to adapt and might still exist in biological niches. The controversial discussed detection of methane on Mars led to the assumption, that it must have a recent origin - either abiotic through active volcanism or chemical processes, or through biogenic production. Spatial and seasonal variations in the detected methane concentrations and correlations between the presence of water vapor and geological features such as subsurface hydrogen, which are occurring together with locally increased detected concentrations of methane, gave fuel to the hypothesis of a possible biological source of the methane on Mars. Therefore the phylogenetically old methanogenic archaea, which have evolved under early Earth conditions, are often used as model-organisms in astrobiological studies to investigate the potential of life to exist in possible extraterrestrial habitats on our neighboring planet. In this thesis methanogenic archaea originating from two extreme environments on Earth were investigated to test their ability to be active under simulated Mars analog conditions. These extreme environments - the Siberian permafrost-affected soil and the chemoautotrophically based terrestrial ecosystem of Movile cave, Romania - are regarded as analogs for possible Martian (subsurface) habitats. Two novel species of methanogenic archaea isolated from these environments were described within the frame of this thesis. It could be shown that concentrations up to 1 wt\% of Mars regolith analogs added to the growth media had a positive influence on the methane production rates of the tested methanogenic archaea, whereas higher concentrations resulted in decreasing rates. Nevertheless it was possible for the organisms to metabolize when incubated on water-saturated soil matrixes made of Mars regolith analogs without any additional nutrients. Long-term desiccation resistance of more than 400 days was proven with reincubation and indirect counting of viable cells through a combined treatment with propidium monoazide (to inactivate DNA of destroyed cells) and quantitative PCR. Phyllosilicate rich regolith analogs seem to be the best soil mixtures for the tested methanogenic archaea to be active under Mars analog conditions. Furthermore, in a simulation chamber experiment the activity of the permafrost methanogen strain Methanosarcina soligelidi SMA-21 under Mars subsurface analog conditions could be proven. Through real-time wavelength modulation spectroscopy measurements the increase in the methane concentration at temperatures down to -5 °C could be detected. The results presented in this thesis contribute to the understanding of the activity potential of methanogenic archaea under Mars analog conditions and therefore provide insights to the possible habitability of present-day Mars (near) subsurface environments. Thus, it contributes also to the data interpretation of future life detection missions on that planet. For example the ExoMars mission of the European Space Agency (ESA) and Roscosmos which is planned to be launched in 2018 and is aiming to drill in the Martian subsurface.}, language = {en} } @phdthesis{Schulz2014, author = {Schulz, Elisa}, title = {The role of flavonols and anthocyanins in the cold an UV-B acclimation of Arabidopsis thaliana (L.)}, pages = {159}, year = {2014}, language = {en} } @phdthesis{Jin2015, author = {Jin, Chenyu}, title = {Theoretical and experimental study of capillary effect on melting}, pages = {97}, year = {2015}, language = {en} } @phdthesis{Paepke2014, author = {P{\"a}pke, Carola}, title = {Regulation of respiration during low oxygen availability}, school = {Universit{\"a}t Potsdam}, pages = {144}, year = {2014}, language = {en} } @phdthesis{Roethlein2014, author = {R{\"o}thlein, Christoph}, title = {Investigation of polyglutamine fibril structure using a novel FRET-based approach}, school = {Universit{\"a}t Potsdam}, pages = {V, 119}, year = {2014}, language = {en} } @phdthesis{Peng2015, author = {Peng, Lei}, title = {Electrochemistry and biocatalysis of new peroxide-activating enzymes}, school = {Universit{\"a}t Potsdam}, pages = {123}, year = {2015}, language = {en} } @phdthesis{Lotkowska2014, author = {Lotkowska, Magda Ewa}, title = {Functional analysis of MYB112 transcription factor in the model plant Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72131}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Transcription factors (TFs) are ubiquitous gene expression regulators and play essential roles in almost all biological processes. This Ph.D. project is primarily focused on the functional characterisation of MYB112 - a member of the R2R3-MYB TF family from the model plant Arabidopsis thaliana. This gene was selected due to its increased expression during senescence based on previous qRT-PCR expression profiling experiments of 1880 TFs in Arabidopsis leaves at three developmental stages (15 mm leaf, 30 mm leaf and 20\% yellowing leaf). MYB112 promoter GUS fusion lines were generated to further investigate the expression pattern of MYB112. Employing transgenic approaches in combination with metabolomics and transcriptomics we demonstrate that MYB112 exerts a major role in regulation of plant flavonoid metabolism. We report enhanced and impaired anthocyanin accumulation in MYB112 overexpressors and MYB112-deficient mutants, respectively. Expression profiling reveals that MYB112 acts as a positive regulator of the transcription factor PAP1 leading to increased anthocyanin biosynthesis, and as a negative regulator of MYB12 and MYB111, which both control flavonol biosynthesis. We also identify MYB112 early responsive genes using a combination of several approaches. These include gene expression profiling (Affymetrix ATH1 micro-arrays and qRT-PCR) and transactivation assays in leaf mesophyll cell protoplasts. We show that MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation coupled to qPCR (ChIP-qPCR) we demonstrate that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters revealing them as direct downstream target genes. MYB TFs were previously reported to play an important role in controlling flavonoid biosynthesis in plants. Many factors acting upstream of the anthocyanin biosynthesis pathway show enhanced expression levels during nitrogen limitation, or elevated sucrose content. In addition to the mentioned conditions, other environmental parameters including salinity or high light stress may trigger anthocyanin accumulation. In contrast to several other MYB TFs affecting anthocyanin biosynthesis pathway genes, MYB112 expression is not controlled by nitrogen limitation, or carbon excess, but rather is stimulated by salinity and high light stress. Thus, MYB112 constitutes a previously uncharacterised regulatory factor that modifies anthocyanin accumulation under conditions of abiotic stress.}, language = {en} } @phdthesis{Trost2014, author = {Trost, Gerda}, title = {Poly(A) Polymerase 1 (PAPS1) influences organ size and pathogen response in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72345}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Polyadenylation of pre-mRNAs is critical for efficient nuclear export, stability, and translation of the mature mRNAs, and thus for gene expression. The bulk of pre-mRNAs are processed by canonical nuclear poly(A) polymerase (PAPS). Both vertebrate and higher-plant genomes encode more than one isoform of this enzyme, and these are coexpressed in different tissues. However, in neither case is it known whether the isoforms fulfill different functions or polyadenylate distinct subsets of pre-mRNAs. This thesis shows that the three canonical nuclear PAPS isoforms in Arabidopsis are functionally specialized owing to their evolutionarily divergent C-terminal domains. A moderate loss-of-function mutant in PAPS1 leads to increase in floral organ size, whereas leaf size is reduced. A strong loss-of-function mutation causes a male gametophytic defect, whereas a weak allele leads to reduced leaf growth. By contrast, plants lacking both PAPS2 and PAPS4 function are viable with wild-type leaf growth. Polyadenylation of SMALL AUXIN UP RNA (SAUR) mRNAs depends specifically on PAPS1 function. The resulting reduction in SAUR activity in paps1 mutants contributes to their reduced leaf growth, providing a causal link between polyadenylation of specific pre-mRNAs by a particular PAPS isoform and plant growth. Additionally, opposite effects of PAPS1 on leaf and flower growth reflect the different identities of these organs. The overgrowth of paps1 mutant petals is due to increased recruitment of founder cells into early organ primordia whereas the reduced leaf size is due to an ectopic pathogen response. This constitutive immune response leads to increased resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis and reflects activation of the salicylic acid-independent signalling pathway downstream of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)/PHYTOALEXIN DEFICIENT4 (PAD4). Immune responses are accompanied by intracellular redox changes. Consistent with this, the redox-status of the chloroplast is altered in paps1-1 mutants. The molecular effects of the paps1-1 mutation were analysed using an RNA sequencing approach that distinguishes between long- and short tailed mRNA. The results shown here suggest the existence of an additional layer of regulation in plants and possibly vertebrate gene expression, whereby the relative activities of canonical nuclear PAPS isoforms control de novo synthesized poly(A) tail length and hence expression of specific subsets of mRNAs.}, language = {en} } @phdthesis{Arnold2014, author = {Arnold, Anne}, title = {Modeling photosynthesis and related metabolic processes : from detailed examination to consideration of the metabolic context}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72277}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Mathematical modeling of biological systems is a powerful tool to systematically investigate the functions of biological processes and their relationship with the environment. To obtain accurate and biologically interpretable predictions, a modeling framework has to be devised whose assumptions best approximate the examined scenario and which copes with the trade-off of complexity of the underlying mathematical description: with attention to detail or high coverage. Correspondingly, the system can be examined in detail on a smaller scale or in a simplified manner on a larger scale. In this thesis, the role of photosynthesis and its related biochemical processes in the context of plant metabolism was dissected by employing modeling approaches ranging from kinetic to stoichiometric models. The Calvin-Benson cycle, as primary pathway of carbon fixation in C3 plants, is the initial step for producing starch and sucrose, necessary for plant growth. Based on an integrative analysis for model ranking applied on the largest compendium of (kinetic) models for the Calvin-Benson cycle, those suitable for development of metabolic engineering strategies were identified. Driven by the question why starch rather than sucrose is the predominant transitory carbon storage in higher plants, the metabolic costs for their synthesis were examined. The incorporation of the maintenance costs for the involved enzymes provided a model-based support for the preference of starch as transitory carbon storage, by only exploiting the stoichiometry of synthesis pathways. Many photosynthetic organisms have to cope with processes which compete with carbon fixation, such as photorespiration whose impact on plant metabolism is still controversial. A systematic model-oriented review provided a detailed assessment for the role of this pathway in inhibiting the rate of carbon fixation, bridging carbon and nitrogen metabolism, shaping the C1 metabolism, and influencing redox signal transduction. The demand of understanding photosynthesis in its metabolic context calls for the examination of the related processes of the primary carbon metabolism. To this end, the Arabidopsis core model was assembled via a bottom-up approach. This large-scale model can be used to simulate photoautotrophic biomass production, as an indicator for plant growth, under so-called optimal, carbon-limiting and nitrogen-limiting growth conditions. Finally, the introduced model was employed to investigate the effects of the environment, in particular, nitrogen, carbon and energy sources, on the metabolic behavior. This resulted in a purely stoichiometry-based explanation for the experimental evidence for preferred simultaneous acquisition of nitrogen in both forms, as nitrate and ammonium, for optimal growth in various plant species. The findings presented in this thesis provide new insights into plant system's behavior, further support existing opinions for which mounting experimental evidences arise, and posit novel hypotheses for further directed large-scale experiments.}, language = {en} } @phdthesis{Serrano2014, author = {Serrano, Paloma}, title = {Methanogens from Siberian permafrost as models for life on Mars : response to simulated martian conditions and biosignature characterization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72299}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Mars is one of the best candidates among planetary bodies for supporting life. The presence of water in the form of ice and atmospheric vapour together with the availability of biogenic elements and energy are indicators of the possibility of hosting life as we know it. The occurrence of permanently frozen ground - permafrost, is a common phenomenon on Mars and it shows multiple morphological analogies with terrestrial permafrost. Despite the extreme inhospitable conditions, highly diverse microbial communities inhabit terrestrial permafrost in large numbers. Among these are methanogenic archaea, which are anaerobic chemotrophic microorganisms that meet many of the metabolic and physiological requirements for survival on the martian subsurface. Moreover, methanogens from Siberian permafrost are extremely resistant against different types of physiological stresses as well as simulated martian thermo-physical and subsurface conditions, making them promising model organisms for potential life on Mars. The main aims of this investigation are to assess the survival of methanogenic archaea under Mars conditions, focusing on methanogens from Siberian permafrost, and to characterize their biosignatures by means of Raman spectroscopy, a powerful technology for microbial identification that will be used in the ExoMars mission. For this purpose, methanogens from Siberian permafrost and non-permafrost habitats were subjected to simulated martian desiccation by exposure to an ultra-low subfreezing temperature (-80ºC) and to Mars regolith (S-MRS and P-MRS) and atmospheric analogues. They were also exposed to different concentrations of perchlorate, a strong oxidant found in martian soils. Moreover, the biosignatures of methanogens were characterized at the single-cell level using confocal Raman microspectroscopy (CRM). The results showed survival and methane production in all methanogenic strains under simulated martian desiccation. After exposure to subfreezing temperatures, Siberian permafrost strains had a faster metabolic recovery, whereas the membranes of non-permafrost methanogens remained intact to a greater extent. The strain Methanosarcina soligelidi SMA-21 from Siberian permafrost showed significantly higher methane production rates than all other strains after the exposure to martian soil and atmospheric analogues, and all strains survived the presence of perchlorate at the concentration on Mars. Furthermore, CRM analyses revealed remarkable differences in the overall chemical composition of permafrost and non-permafrost strains of methanogens, regardless of their phylogenetic relationship. The convergence of the chemical composition in non-sister permafrost strains may be the consequence of adaptations to the environment, and could explain their greater resistance compared to the non-permafrost strains. As part of this study, Raman spectroscopy was evaluated as an analytical technique for remote detection of methanogens embedded in a mineral matrix. This thesis contributes to the understanding of the survival limits of methanogenic archaea under simulated martian conditions to further assess the hypothetical existence of life similar to methanogens on the martian subsurface. In addition, the overall chemical composition of methanogens was characterized for the first time by means of confocal Raman microspectroscopy, with potential implications for astrobiological research.}, language = {en} } @phdthesis{Girbig2014, author = {Girbig, Dorothee}, title = {Analysing concerted criteria for local dynamic properties of metabolic systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72017}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Metabolic systems tend to exhibit steady states that can be measured in terms of their concentrations and fluxes. These measurements can be regarded as a phenotypic representation of all the complex interactions and regulatory mechanisms taking place in the underlying metabolic network. Such interactions determine the system's response to external perturbations and are responsible, for example, for its asymptotic stability or for oscillatory trajectories around the steady state. However, determining these perturbation responses in the absence of fully specified kinetic models remains an important challenge of computational systems biology. Structural kinetic modeling (SKM) is a framework to analyse whether a metabolic steady state remains stable under perturbation, without requiring detailed knowledge about individual rate equations. It provides a parameterised representation of the system's Jacobian matrix in which the model parameters encode information about the enzyme-metabolite interactions. Stability criteria can be derived by generating a large number of structural kinetic models (SK-models) with randomly sampled parameter sets and evaluating the resulting Jacobian matrices. The parameter space can be analysed statistically in order to detect network positions that contribute significantly to the perturbation response. Because the sampled parameters are equivalent to the elasticities used in metabolic control analysis (MCA), the results are easy to interpret biologically. In this project, the SKM framework was extended by several novel methodological improvements. These improvements were evaluated in a simulation study using a set of small example pathways with simple Michaelis Menten rate laws. Afterwards, a detailed analysis of the dynamic properties of the neuronal TCA cycle was performed in order to demonstrate how the new insights obtained in this work could be used for the study of complex metabolic systems. The first improvement was achieved by examining the biological feasibility of the elasticity combinations created during Monte Carlo sampling. Using a set of small example systems, the findings showed that the majority of sampled SK-models would yield negative kinetic parameters if they were translated back into kinetic models. To overcome this problem, a simple criterion was formulated that mitigates such infeasible models and the application of this criterion changed the conclusions of the SKM experiment. The second improvement of this work was the application of supervised machine-learning approaches in order to analyse SKM experiments. So far, SKM experiments have focused on the detection of individual enzymes to identify single reactions important for maintaining the stability or oscillatory trajectories. In this work, this approach was extended by demonstrating how SKM enables the detection of ensembles of enzymes or metabolites that act together in an orchestrated manner to coordinate the pathways response to perturbations. In doing so, stable and unstable states served as class labels, and classifiers were trained to detect elasticity regions associated with stability and instability. Classification was performed using decision trees and relevance vector machines (RVMs). The decision trees produced good classification accuracy in terms of model bias and generalizability. RVMs outperformed decision trees when applied to small models, but encountered severe problems when applied to larger systems because of their high runtime requirements. The decision tree rulesets were analysed statistically and individually in order to explore the role of individual enzymes or metabolites in controlling the system's trajectories around steady states. The third improvement of this work was the establishment of a relationship between the SKM framework and the related field of MCA. In particular, it was shown how the sampled elasticities could be converted to flux control coefficients, which were then investigated for their predictive information content in classifier training. After evaluation on the small example pathways, the methodology was used to study two steady states of the neuronal TCA cycle with respect to their intrinsic mechanisms responsible for stability or instability. The findings showed that several elasticities were jointly coordinated to control stability and that the main source for potential instabilities were mutations in the enzyme alpha-ketoglutarate dehydrogenase.}, language = {en} } @phdthesis{Bortfeld2013, author = {Bortfeld, Silvia}, title = {Analysis of Medicago truncatula transcription factors involved in the arbuscular mycorrhizal symbiosis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70664}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {For the first time the transcriptional reprogramming of distinct root cortex cells during the arbuscular mycorrhizal (AM) symbiosis was investigated by combining Laser Capture Mirodissection and Affymetrix GeneChip® Medicago genome array hybridization. The establishment of cryosections facilitated the isolation of high quality RNA in sufficient amounts from three different cortical cell types. The transcript profiles of arbuscule-containing cells (arb cells), non-arbuscule-containing cells (nac cells) of Rhizophagus irregularis inoculated Medicago truncatula roots and cortex cells of non-inoculated roots (cor) were successfully explored. The data gave new insights in the symbiosis-related cellular reorganization processes and indicated that already nac cells seem to be prepared for the upcoming fungal colonization. The mycorrhizal- and phosphate-dependent transcription of a GRAS TF family member (MtGras8) was detected in arb cells and mycorrhizal roots. MtGRAS shares a high sequence similarity to a GRAS TF suggested to be involved in the fungal colonization processes (MtRAM1). The function of MtGras8 was unraveled upon RNA interference- (RNAi-) mediated gene silencing. An AM symbiosis-dependent expression of a RNAi construct (MtPt4pro::gras8-RNAi) revealed a successful gene silencing of MtGras8 leading to a reduced arbuscule abundance and a higher proportion of deformed arbuscules in root with reduced transcript levels. Accordingly, MtGras8 might control the arbuscule development and life-time. The targeting of MtGras8 by the phosphate-dependent regulated miRNA5204* was discovered previously (Devers et al., 2011). Since miRNA5204* is known to be affected by phosphate, the posttranscriptional regulation might represent a link between phosphate signaling and arbuscule development. In this work, the posttranscriptional regulation was confirmed by mis-expression of miRNA5204* in M. truncatula roots. The miRNA-mediated gene silencing affects the MtGras8 transcript abundance only in the first two weeks of the AM symbiosis and the mis-expression lines seem to mimic the phenotype of MtGras8-RNAi lines. Additionally, MtGRAS8 seems to form heterodimers with NSP2 and RAM1, which are known to be key regulators of the fungal colonization process (Hirsch et al., 2009; Gobbato et al., 2012). These data indicate that MtGras8 and miRNA5204* are linked to the sym pathway and regulate the arbuscule development in phosphate-dependent manner.}, language = {en} } @phdthesis{Tenenboim2014, author = {Tenenboim, Yehezkel}, title = {Characterization of a Chlamydomonas protein involved in cell division and autophagy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70650}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {The contractile vacuole (CV) is an osmoregulatory organelle found exclusively in algae and protists. In addition to expelling excessive water out of the cell, it also expels ions and other metabolites and thereby contributes to the cell's metabolic homeostasis. The interest in the CV reaches beyond its immediate cellular roles. The CV's function is tightly related to basic cellular processes such as membrane dynamics and vesicle budding and fusion; several physiological processes in animals, such as synaptic neurotransmission and blood filtration in the kidney, are related to the CV's function; and several pathogens, such as the causative agents of sleeping sickness, possess CVs, which may serve as pharmacological targets. The green alga Chlamydomonas reinhardtii has two CVs. They are the smallest known CVs in nature, and they remain relatively untouched in the CV-related literature. Many genes that have been shown to be related to the CV in other organisms have close homologues in C. reinhardtii. We attempted to silence some of these genes and observe the effect on the CV. One of our genes, VMP1, caused striking, severe phenotypes when silenced. Cells exhibited defective cytokinesis and aberrant morphologies. The CV, incidentally, remained unscathed. In addition, mutant cells showed some evidence of disrupted autophagy. Several important regulators of the cell cycle as well as autophagy were found to be underexpressed in the mutant. Lipidomic analysis revealed many meaningful changes between wild-type and mutant cells, reinforcing the compromised-autophagy observation. VMP1 is a singular protein, with homologues in numerous eukaryotic organisms (aside from fungi), but usually with no relatives in each particular genome. Since its first characterization in 2002 it has been associated with several cellular processes and functions, namely autophagy, programmed cell-death, secretion, cell adhesion, and organelle biogenesis. It has been implicated in several human diseases: pancreatitis, diabetes, and several types of cancer. Our results reiterate some of the observations in VMP1's six reported homologues, but, importantly, show for the first time an involvement of this protein in cell division. The mechanisms underlying this involvement in Chlamydomonas, as well as other key aspects, such as VMP1's subcellular localization and interaction partners, still await elucidation.}, language = {en} } @phdthesis{Dethloff2013, author = {Dethloff, Frederik}, title = {In vivo 13C stable isotope tracing of single leaf development in the cold}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70486}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Measuring the metabolite profile of plants can be a strong phenotyping tool, but the changes of metabolite pool sizes are often difficult to interpret, not least because metabolite pool sizes may stay constant while carbon flows are altered and vice versa. Hence, measuring the carbon allocation of metabolites enables a better understanding of the metabolic phenotype. The main challenge of such measurements is the in vivo integration of a stable or radioactive label into a plant without perturbation of the system. To follow the carbon flow of a precursor metabolite, a method is developed in this work that is based on metabolite profiling of primary metabolites measured with a mass spectrometer preceded by a gas chromatograph (Wagner et al. 2003; Erban et al. 2007; Dethloff et al. submitted). This method generates stable isotope profiling data, besides conventional metabolite profiling data. In order to allow the feeding of a 13C sucrose solution into the plant, a petiole and a hypocotyl feeding assay are developed. To enable the processing of large numbers of single leaf samples, their preparation and extraction are simplified and optimised. The metabolite profiles of primary metabolites are measured, and a simple relative calculation is done to gain information on carbon allocation from 13C sucrose. This method is tested examining single leaves of one rosette in different developmental stages, both metabolically and regarding carbon allocation from 13C sucrose. It is revealed that some metabolite pool sizes and 13C pools are tightly associated to relative leaf growth, i.e. to the developmental stage of the leaf. Fumaric acid turns out to be the most interesting candidate for further studies because pool size and 13C pool diverge considerably. In addition, the analyses are also performed on plants grown in the cold, and the initial results show a different metabolite pool size pattern across single leaves of one Arabidopsis rosette, compared to the plants grown under normal temperatures. Lastly, in situ expression of REIL genes in the cold is examined using promotor-GUS plants. Initial results suggest that single leaf metabolite profiles of reil2 differ from those of the WT.}, language = {en} } @phdthesis{May2013, author = {May, Felix}, title = {Spatial models of plant diversity and plant functional traits : towards a better understanding of plant community dynamics in fragmented landscapes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68444}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The fragmentation of natural habitat caused by anthropogenic land use changes is one of the main drivers of the current rapid loss of biodiversity. In face of this threat, ecological research needs to provide predictions of communities' responses to fragmentation as a prerequisite for the effective mitigation of further biodiversity loss. However, predictions of communities' responses to fragmentation require a thorough understanding of ecological processes, such as species dispersal and persistence. Therefore, this thesis seeks an improved understanding of community dynamics in fragmented landscapes. In order to approach this overall aim, I identified key questions on the response of plant diversity and plant functional traits to variations in species' dispersal capability, habitat fragmentation and local environmental conditions. All questions were addressed using spatially explicit simulations or statistical models. In chapter 2, I addressed scale-dependent relationships between dispersal capability and species diversity using a grid-based neutral model. I found that the ratio of survey area to landscape size is an important determinant of scale-dependent dispersal-diversity relationships. With small ratios, the model predicted increasing dispersal-diversity relationships, while decreasing dispersal-diversity relationships emerged, when the ratio approached one, i.e. when the survey area approached the landscape size. For intermediate ratios, I found a U-shaped pattern that has not been reported before. With this study, I unified and extended previous work on dispersal-diversity relationships. In chapter 3, I assessed the type of regional plant community dynamics for the study area in the Southern Judean Lowlands (SJL). For this purpose, I parameterised a multi-species incidence-function model (IFM) with vegetation data using approximate Bayesian computation (ABC). I found that the type of regional plant community dynamics in the SJL is best characterized as a set of isolated "island communities" with very low connectivity between local communities. Model predictions indicated a significant extinction debt with 33\% - 60\% of all species going extinct within 1000 years. In general, this study introduces a novel approach for combining a spatially explicit simulation model with field data from species-rich communities. In chapter 4, I first analysed, if plant functional traits in the SJL indicate trait convergence by habitat filtering and trait divergence by interspecific competition, as predicted by community assembly theory. Second, I assessed the interactive effects of fragmentation and the south-north precipitation gradient in the SJL on community-mean plant traits. I found clear evidence for trait convergence, but the evidence for trait divergence fundamentally depended on the chosen null-model. All community-mean traits were significantly associated with the precipitation gradient in the SJL. The trait associations with fragmentation indices (patch size and connectivity) were generally weaker, but statistically significant for all traits. Specific leaf area (SLA) and plant height were consistently associated with fragmentation indices along the precipitation gradient. In contrast, seed mass and seed number were interactively influenced by fragmentation and precipitation. In general, this study provides the first analysis of the interactive effects of climate and fragmentation on plant functional traits. Overall, I conclude that the spatially explicit perspective adopted in this thesis is crucial for a thorough understanding of plant community dynamics in fragmented landscapes. The finding of contrasting responses of local diversity to variations in dispersal capability stresses the importance of considering the diversity and composition of the metacommunity, prior to implementing conservation measures that aim at increased habitat connectivity. The model predictions derived with the IFM highlight the importance of additional natural habitat for the mitigation of future species extinctions. In general, the approach of combining a spatially explicit IFM with extensive species occupancy data provides a novel and promising tool to assess the consequences of different management scenarios. The analysis of plant functional traits in the SJL points to important knowledge gaps in community assembly theory with respect to the simultaneous consequences of habitat filtering and competition. In particular, it demonstrates the importance of investigating the synergistic consequences of fragmentation, climate change and land use change on plant communities. I suggest that the integration of plant functional traits and of species interactions into spatially explicit, dynamic simulation models offers a promising approach, which will further improve our understanding of plant communities and our ability to predict their dynamics in fragmented and changing landscapes.}, language = {en} } @phdthesis{Duensing2013, author = {Duensing, Nina}, title = {Transport processes in the arbuscular mycorrhizal symbiosis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68210}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The nutrient exchange between plant and fungus is the key element of the arbuscular mycorrhizal (AM) symbiosis. The fungus improves the plant's uptake of mineral nutrients, mainly phosphate, and water, while the plant provides the fungus with photosynthetically assimilated carbohydrates. Still, the knowledge about the mechanisms of the nutrient exchange between the symbiotic partners is very limited. Therefore, transport processes of both, the plant and the fungal partner, are investigated in this study. In order to enhance the understanding of the molecular basis underlying this tight interaction between the roots of Medicago truncatula and the AM fungus Rhizophagus irregularis, genes involved in transport processes of both symbiotic partners are analysed here. The AM-specific regulation and cell-specific expression of potential transporter genes of M. truncatula that were found to be specifically regulated in arbuscule-containing cells and in non-arbusculated cells of mycorrhizal roots was confirmed. A model for the carbon allocation in mycorrhizal roots is suggested, in which carbohydrates are mobilized in non-arbusculated cells and symplastically provided to the arbuscule-containing cells. New insights into the mechanisms of the carbohydrate allocation were gained by the analysis of hexose/H+ symporter MtHxt1 which is regulated in distinct cells of mycorrhizal roots. Metabolite profiling of leaves and roots of a knock-out mutant, hxt1, showed that it indeed does have an impact on the carbohydrate balance in the course of the symbiosis throughout the whole plant, and on the interaction with the fungal partner. The primary metabolite profile of M. truncatula was shown to be altered significantly in response to mycorrhizal colonization. Additionally, molecular mechanisms determining the progress of the interaction in the fungal partner of the AM symbiosis were investigated. The R. irregularis transcriptome in planta and in extraradical tissues gave new insight into genes that are differentially expressed in these two fungal tissues. Over 3200 fungal transcripts with a significantly altered expression level in laser capture microdissection-collected arbuscules compared to extraradical tissues were identified. Among them, six previously unknown specifically regulated potential transporter genes were found. These are likely to play a role in the nutrient exchange between plant and fungus. While the substrates of three potential MFS transporters are as yet unknown, two potential sugar transporters are might play a role in the carbohydrate flow towards the fungal partner. In summary, this study provides new insights into transport processes between plant and fungus in the course of the AM symbiosis, analysing M. truncatula on the transcript and metabolite level, and provides a dataset of the R. irregularis transcriptome in planta, providing a high amount of new information for future works.}, language = {en} } @phdthesis{Brothers2013, author = {Brothers, Soren M.}, title = {Carbon gains, losses, and feedbacks in shallow, eutrophic lakes of phytoplankton and macrophyte dominance}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68200}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Lakes are increasingly being recognized as an important component of the global carbon cycle, yet anthropogenic activities that alter their community structure may change the way they transport and process carbon. This research focuses on the relationship between carbon cycling and community structure of primary producers in small, shallow lakes, which are the most abundant lake type in the world, and furthermore subject to intense terrestrial-aquatic coupling due to their high perimeter:area ratio. Shifts between macrophyte and phytoplankton dominance are widespread and common in shallow lakes, with potentially large consequences to regional carbon cycling. I thus compared a lake with clear-water conditions and a submerged macrophyte community to a turbid, phytoplankton-dominated lake, describing differences in the availability, processing, and export of organic and inorganic carbon. I furthermore examined the effects of increasing terrestrial carbon inputs on internal carbon cycling processes. Pelagic diel (24-hour) oxygen curves and independent fluorometric approaches of individual primary producers together indicated that the presence of a submerged macrophyte community facilitated higher annual rates of gross primary production than could be supported in a phytoplankton-dominated lake at similar nutrient concentrations. A simple model constructed from the empirical data suggested that this difference between regime types could be common in moderately eutrophic lakes with mean depths under three to four meters, where benthic primary production is a potentially major contributor to the whole-lake primary production. It thus appears likely that a regime shift from macrophyte to phytoplankton dominance in shallow lakes would typically decrease the quantity of autochthonous organic carbon available to lake food webs. Sediment core analyses indicated that a regime shift from macrophyte to phytoplankton dominance was associated with a four-fold increase in carbon burial rates, signalling a major change in lake carbon cycling dynamics. Carbon mass balances suggested that increasing carbon burial rates were not due to an increase in primary production or allochthonous loading, but instead were due to a higher carbon burial efficiency (carbon burial / carbon deposition). This, in turn, was associated with diminished benthic mineralization rates and an increase in calcite precipitation, together resulting in lower surface carbon dioxide emissions. Finally, a period of unusually high precipitation led to rising water levels, resulting in a feedback loop linking increasing concentrations of dissolved organic carbon (DOC) to severely anoxic conditions in the phytoplankton-dominated system. High water levels and DOC concentrations diminished benthic primary production (via shading) and boosted pelagic respiration rates, diminishing the hypolimnetic oxygen supply. The resulting anoxia created redox conditions which led to a major release of nutrients, DOC, and iron from the sediments. This further transformed the lake metabolism, providing a prolonged summertime anoxia below a water depth of 1 m, and leading to the near-complete loss of fish and macroinvertebrates. Pelagic pH levels also decreased significantly, increasing surface carbon dioxide emissions by an order of magnitude compared to previous years. Altogether, this thesis adds an important body of knowledge to our understanding of the significance of the benthic zone to carbon cycling in shallow lakes. The contribution of the benthic zone towards whole-lake primary production was quantified, and was identified as an important but vulnerable site for primary production. Benthic mineralization rates were furthermore found to influence carbon burial and surface emission rates, and benthic primary productivity played an important role in determining hypolimnetic oxygen availability, thus controlling the internal sediment loading of nutrients and carbon. This thesis also uniquely demonstrates that the ecological community structure (i.e. stable regime) of a eutrophic, shallow lake can significantly influence carbon availability and processing. By changing carbon cycling pathways, regime shifts in shallow lakes may significantly alter the role of these ecosystems with respect to the global carbon cycle.}, language = {en} } @phdthesis{Nitschke2013, author = {Nitschke, Felix}, title = {Phosphorylation of polyglycans, especially glycogen and starch}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67396}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Functional metabolism of storage carbohydrates is vital to plants and animals. The water-soluble glycogen in animal cells and the amylopectin which is the major component of water-insoluble starch granules residing in plant plastids are chemically similar as they consist of α-1,6 branched α-1,4 glucan chains. Synthesis and degradation of transitory starch and of glycogen are accomplished by a set of enzymatic activities that to some extend are also similar in plants and animals. Chain elongation, branching, and debranching are achieved by synthases, branching enzymes, and debranching enzymes, respectively. Similarly, both types of polyglucans contain low amounts of phosphate esters whose abundance varies depending on species and organs. Starch is selectively phosphorylated by at least two dikinases (GWD and PWD) at the glucosyl carbons C6 and C3 and dephosphorylated by the phosphatase SEX4 and SEX4-like enzymes. In Arabidopsis insufficiency in starch phosphorylation or dephosphorylation results in largely impaired starch turnover, starch accumulation, and often in retardation of growth. In humans the progressive neurodegenerative epilepsy, Lafora disease, is the result of a defective enzyme (laforin) that is functional equivalent to the starch phosphatase SEX4 and capable of glycogen dephosphorylation. Patients lacking laforin progressively accumulate unphysiologically structured insoluble glycogen-derived particles (Lafora bodies) in many tissues including brain. Previous results concerning the carbon position of glycogen phosphate are contradictory. Currently it is believed that glycogen is esterified exclusively at the carbon positions C2 and C3 and that the monophosphate esters, being incorporated via a side reaction of glycogen synthase (GS), lack any specific function but are rather an enzymatic error that needs to be corrected. In this study a versatile and highly sensitive enzymatic cycling assay was established that enables quantification of very small G6P amounts in the presence of high concentrations of non-target compounds as present in hydrolysates of polysaccharides, such as starch, glycogen, or cytosolic heteroglycans in plants. Following validation of the G6P determination by analyzing previously characterized starches G6P was quantified in hydrolysates of various glycogen samples and in plant heteroglycans. Interestingly, glucosyl C6 phosphate is present in all glycogen preparations examined, the abundance varying between glycogens of different sources. Additionally, it was shown that carbon C6 is severely hyperphosphorylated in glycogen of Lafora disease mouse model and that laforin is capable of removing C6 phosphate from glycogen. After enrichment of phosphoglucans from amylolytically degraded glycogen, several techniques of two-dimensional NMR were applied that independently proved the existence of 6-phosphoglucosyl residues in glycogen and confirmed the recently described phosphorylation sites C2 and C3. C6 phosphate is neither Lafora disease- nor species-, or organ-specific as it was demonstrated in liver glycogen from laforin-deficient mice and in that of wild type rabbit skeletal muscle. The distribution of 6-phosphoglucosyl residues was analyzed in glycogen molecules and has been found to be uneven. Gradual degradation experiments revealed that C6 phosphate is more abundant in central parts of the glycogen molecules and in molecules possessing longer glucan chains. Glycogen of Lafora disease mice consistently contains a higher proportion of longer chains while most short chains were reduced as compared to wild type. Together with results recently published (Nitschke et al., 2013) the findings of this work completely unhinge the hypothesis of GS-mediated phosphate incorporation as the respective reaction mechanism excludes phosphorylation of this glucosyl carbon, and as it is difficult to explain an uneven distribution of C6 phosphate by a stochastic event. Indeed the results rather point to a specific function of 6-phosphoglucosyl residues in the metabolism of polysaccharides as they are present in starch, glycogen, and, as described in this study, in heteroglycans of Arabidopsis. In the latter the function of phosphate remains unclear but this study provides evidence that in starch and glycogen it is related to branching. Moreover a role of C6 phosphate in the early stages of glycogen synthesis is suggested. By rejecting the current view on glycogen phosphate to be a stochastic biochemical error the results permit a wider view on putative roles of glycogen phosphate and on alternative biochemical ways of glycogen phosphorylation which for many reasons are likely to be mediated by distinct phosphorylating enzymes as it is realized in starch metabolism of plants. Better understanding of the enzymology underlying glycogen phosphorylation implies new possibilities of Lafora disease treatment.}, language = {en} } @phdthesis{Rietsch2013, author = {Rietsch, Katrin}, title = {Body composition especially external skeletal robustness in association with physical activity and recreation in pre-pubertal children : a national and international investigation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66913}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In children the way of life, nutrition and recreation changed in recent years and as a consequence body composition shifted as well. It is established that overweight belongs to a global problem. In addition, German children exhibit a less robust skeleton than ten years ago. These developments may elevate the risk of cardiovascular diseases and skeletal modifications. Heredity and environmental factors as nutrition, socioeconomic status, physical activity and inactivity influence fat accumulation and the skeletal system. Based on these negative developments associations between type of body shape, skeletal measures and physical activity; relations between external skeletal robustness, physical activity and inactivity, BMI and body fat and also the progress of body composition especially external skeletal robustness in comparison in Russian and German children were investigated. In a cross-sectional study 691 German boys and girls aged 6 to 10 years were examined. Anthropometric measurements were taken and questionnaires about physical activity and inactivity were answered by parents. Additionally, pedometers were worn to determinate the physical activity in children. To compare the body composition in Russian and German children data from the years 2000 and 2010 were used. The study has shown that pyknomorphic individuals exhibit the highest external skeletal robustness and leptomorphic ones the lowest. Leptomorphic children may have a higher risk for bone diseases in adulthood. Pyknomorphic boys are more physically active by tendency. This is assessed as positive because pyknomorphic types display the highest BMI and body fat. Results showed that physical activity may reduce BMI and body fat. In contrast physical inactivity may lead to an increase of BMI and body fat and may rise with increasing age. Physical activity encourages additionally a robust skeleton. Furthermore external skeletal robustness is associated with BMI in order that BMI as a measure of overweight should be consider critically. The international 10-year comparison has shown an increase of BMI in Russian children and German boys. Currently, Russian children exhibit a higher external skeletal robustness than the Germans. However, in Russian boys skeleton is less robust than ten years ago. This trend should be observed in the future as well in other countries. All in all, several measures should be used to describe health situation in children and adults. Furthermore, in children it is essential to support physical activity in order to reduce the risk of obesity and to maintain a robust skeleton. In this way diseases are able to prevent in adulthood.}, language = {en} } @phdthesis{Martin2013, author = {Martin, Benjamin}, title = {Linking individual-based models and dynamic energy budget theory : lessons for ecology and ecotoxicology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67001}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In the context of ecological risk assessment of chemicals, individual-based population models hold great potential to increase the ecological realism of current regulatory risk assessment procedures. However, developing and parameterizing such models is time-consuming and often ad hoc. Using standardized, tested submodels of individual organisms would make individual-based modelling more efficient and coherent. In this thesis, I explored whether Dynamic Energy Budget (DEB) theory is suitable for being used as a standard submodel in individual-based models, both for ecological risk assessment and theoretical population ecology. First, I developed a generic implementation of DEB theory in an individual-based modeling (IBM) context: DEB-IBM. Using the DEB-IBM framework I tested the ability of the DEB theory to predict population-level dynamics from the properties of individuals. We used Daphnia magna as a model species, where data at the individual level was available to parameterize the model, and population-level predictions were compared against independent data from controlled population experiments. We found that DEB theory successfully predicted population growth rates and peak densities of experimental Daphnia populations in multiple experimental settings, but failed to capture the decline phase, when the available food per Daphnia was low. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small- and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detecting gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology. In addition to theoretical explorations, we tested the potential of DEB theory combined with IBMs to extrapolate effects of chemical stress from the individual to population level. For this we used information at the individual level on the effect of 3,4-dichloroanailine on Daphnia. The individual data suggested direct effects on reproduction but no significant effects on growth. Assuming such direct effects on reproduction, the model was able to accurately predict the population response to increasing concentrations of 3,4-dichloroaniline. We conclude that DEB theory combined with IBMs holds great potential for standardized ecological risk assessment based on ecological models.}, language = {en} } @phdthesis{Axtner2012, author = {Axtner, Jan}, title = {Immune gene expression and diversity in relation to gastrointestinal parasite burden in small mammals}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65639}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {MHC genes encode proteins that are responsible for the recognition of foreign antigens and the triggering of a subsequent, adequate immune response of the organism. Thus they hold a key position in the immune system of vertebrates. It is believed that the extraordinary genetic diversity of MHC genes is shaped by adaptive selectional processes in response to the reoccurring adaptations of parasites and pathogens. A large number of MHC studies were performed in a wide range of wildlife species aiming to understand the role of immune gene diversity in parasite resistance under natural selection conditions. Methodically, most of this work with very few exceptions has focussed only upon the structural, i.e. sequence diversity of regions responsible for antigen binding and presentation. Most of these studies found evidence that MHC gene variation did indeed underlie adaptive processes and that an individual's allelic diversity explains parasite and pathogen resistance to a large extent. Nevertheless, our understanding of the effective mechanisms is incomplete. A neglected, but potentially highly relevant component concerns the transcriptional differences of MHC alleles. Indeed, differences in the expression levels MHC alleles and their potential functional importance have remained unstudied. The idea that also transcriptional differences might play an important role relies on the fact that lower MHC gene expression is tantamount with reduced induction of CD4+ T helper cells and thus with a reduced immune response. Hence, I studied the expression of MHC genes and of immune regulative cytokines as additional factors to reveal the functional importance of MHC diversity in two free-ranging rodent species (Delomys sublineatus, Apodemus flavicollis) in association with their gastrointestinal helminths under natural selection conditions. I established the method of relative quantification of mRNA on liver and spleen samples of both species in our laboratory. As there was no available information on nucleic sequences of potential reference genes in both species, PCR primer systems that were established in laboratory mice have to be tested and adapted for both non-model organisms. In the due course, sets of stable reference genes for both species were found and thus the preconditions for reliable measurements of mRNA levels established. For D. sublineatus it could be demonstrated that helminth infection elicits aspects of a typical Th2 immune response. Whereas mRNA levels of the cytokine interleukin Il4 increased with infection intensity by strongyle nematodes neither MHC nor cytokine expression played a significant role in D. sublineatus. For A. flavicollis I found a negative association between the parasitic nematode Heligmosomoides polygyrus and hepatic MHC mRNA levels. As a lower MHC expression entails a lower immune response, this could be evidence for an immune evasive strategy of the nematode, as it has been suggested for many micro-parasites. This implies that H. polygyrus is capable to interfere actively with the MHC transcription. Indeed, this parasite species has long been suspected to be immunosuppressive, e.g. by induction of regulatory T-helper cells that respond with a higher interleukin Il10 and tumor necrosis factor Tgfb production. Both cytokines in turn cause an abated MHC expression. By disabling recognition by the MHC molecule H. polygyrus might be able to prevent an activation of the immune system. Indeed, I found a strong tendency in animals carrying the allele Apfl-DRB*23 to have an increased infection intensity with H. polygyrus. Furthermore, I found positive and negative associations between specific MHC alleles and other helminth species, as well as typical signs of positive selection acting on the nucleic sequences of the MHC. The latter was evident by an elevated rate of non-synonymous to synonymous substitutions in the MHC sequences of exon 2 encoding the functionally important antigen binding sites whereas the first and third exons of the MHC DRB gene were highly conserved. In conclusion, the studies in this thesis demonstrate that valid procedures to quantify expression of immune relevant genes are also feasible in non-model wildlife organisms. In addition to structural MHC diversity, also MHC gene expression should be considered to obtain a more complete picture on host-pathogen coevolutionary selection processes. This is especially true if parasites are able to interfere with systemic MHC expression. In this case advantageous or disadvantageous effects of allelic binding motifs are abated. The studies could not define the role of MHC gene expression in antagonistic coevolution as such but the results suggest that it depends strongly on the specific parasite species that is involved.}, language = {en} } @phdthesis{FrankFahle2013, author = {Frank-Fahle, B{\´e}atrice A.}, title = {Methane-cycling microbial communities in permafrost affected soils on Herschel Island and the Yukon Coast, Western Canadian Arctic}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65345}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Permafrost-affected ecosystems including peat wetlands are among the most obvious regions in which current microbial controls on organic matter decomposition are likely to change as a result of global warming. Wet tundra ecosystems in particular are ideal sites for increased methane production because of the waterlogged, anoxic conditions that prevail in seasonally increasing thawed layers. The following doctoral research project focused on investigating the abundance and distribution of the methane-cycling microbial communities in four different polygons on Herschel Island and the Yukon Coast. Despite the relevance of the Canadian Western Arctic in the global methane budget, the permafrost microbial communities there have thus far remained insufficiently characterized. Through the study of methanogenic and methanotrophic microbial communities involved in the decomposition of permafrost organic matter and their potential reaction to rising environmental temperatures, the overarching goal of the ensuing thesis is to fill the current gap in understanding the fate of the organic carbon currently stored in Artic environments and its implications regarding the methane cycle in permafrost environments. To attain this goal, a multiproxy approach including community fingerprinting analysis, cloning, quantitative PCR and next generation sequencing was used to describe the bacterial and archaeal community present in the active layer of four polygons and to scrutinize the diversity and distribution of methane-cycling microorganisms at different depths. These methods were combined with soil properties analyses in order to identify the main physico-chemical variables shaping these communities. In addition a climate warming simulation experiment was carried-out on intact active layer cores retrieved from Herschel Island in order to investigate the changes in the methane-cycling communities associated with an increase in soil temperature and to help better predict future methane-fluxes from polygonal wet tundra environments in the context of climate change. Results showed that the microbial community found in the water-saturated and carbon-rich polygons on Herschel Island and the Yukon Coast was diverse and showed a similar distribution with depth in all four polygons sampled. Specifically, the methanogenic community identified resembled the communities found in other similar Arctic study sites and showed comparable potential methane production rates, whereas the methane oxidizing bacterial community differed from what has been found so far, being dominated by type-II rather than type-I methanotrophs. After being subjected to strong increases in soil temperature, the active-layer microbial community demonstrated the ability to quickly adapt and as a result shifts in community composition could be observed. These results contribute to the understanding of carbon dynamics in Arctic permafrost regions and allow an assessment of the potential impact of climate change on methane-cycling microbial communities. This thesis constitutes the first in-depth study of methane-cycling communities in the Canadian Western Arctic, striving to advance our understanding of these communities in degrading permafrost environments by establishing an important new observatory in the Circum-Arctic.}, language = {en} } @phdthesis{Lohmann2012, author = {Lohmann, Dirk}, title = {Sustainable management of semi-arid African savannas under environmental and political change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65069}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Drylands cover about 40\% of the earth's land surface and provide the basis for the livelihoods of 38\% of the global human population. Worldwide, these ecosystems are prone to heavy degradation. Increasing levels of dryland degradation result a strong decline of ecosystem services. In addition, in highly variable semi-arid environments changing future environmental conditions will potentially have severe consequences for productivity and ecosystem dynamics. Hence, global efforts have to be made to understand the particular causes and consequences of dryland degradation and to promote sustainable management options for semi-arid and arid ecosystems in a changing world. Here I particularly address the problem of semi-arid savanna degradation, which mostly occurs in form of woody plant encroachment. At this, I aim at finding viable sustainable management strategies and improving the general understanding of semi-arid savanna vegetation dynamics under conditions of extensive livestock production. Moreover, the influence of external forces, i.e. environmental change and land reform, on the use of savanna vegetation and on the ecosystem response to this land use is assessed. Based on this I identify conditions and strategies that facilitate a sustainable use of semi-arid savanna rangelands in a changing world. I extended an eco-hydrological model to simulate rangeland vegetation dynamics for a typical semi-arid savanna in eastern Namibia. In particular, I identified the response of semi-arid savanna vegetation to different land use strategies (including fire management) also with regard to different predicted precipitation, temperature and CO2 regimes. Not only environmental but also economic and political constraints like e.g. land reform programmes are shaping rangeland management strategies. Hence, I aimed at understanding the effects of the ongoing process of land reform in southern Africa on land use and the semi-arid savanna vegetation. Therefore, I developed and implemented an agent-based ecological-economic modelling tool for interactive role plays with land users. This tool was applied in an interdisciplinary empirical study to identify general patterns of management decisions and the between-farm cooperation of land reform beneficiaries in eastern Namibia. The eco-hydrological simulations revealed that the future dynamics of semi-arid savanna vegetation strongly depend on the respective climate change scenario. In particular, I found that the capacity of the system to sustain domestic livestock production will strongly depend on changes in the amount and temporal distribution of precipitation. In addition, my simulations revealed that shrub encroachment will become less likely under future climatic conditions although positive effects of CO2 on woody plant growth and transpiration have been considered. While earlier studies predicted a further increase in shrub encroachment due to increased levels of atmospheric CO2, my contrary finding is based on the negative impacts of temperature increase on the drought sensitive seedling germination and establishment of woody plant species. Further simulation experiments revealed that prescribed fires are an efficient tool for semi-arid rangeland management, since they suppress woody plant seedling establishment. The strategies tested have increased the long term productivity of the savanna in terms of livestock production and decreased the risk for shrub encroachment (i.e. savanna degradation). This finding refutes the views promoted by existing studies, which state that fires are of minor importance for the vegetation dynamics of semi-arid and arid savannas. Again, the difference in predictions is related to the bottleneck at the seedling establishment stage of woody plants, which has not been sufficiently considered in earlier studies. The ecological-economic role plays with Namibian land reform beneficiaries showed that the farmers made their decisions with regard to herd size adjustments according to economic but not according to environmental variables. Hence, they do not manage opportunistically by tracking grass biomass availability but rather apply conservative management strategies with low stocking rates. This implies that under the given circumstances the management of these farmers will not per se cause (or further worsen) the problem of savanna degradation and shrub encroachment due to overgrazing. However, as my results indicate that this management strategy is rather based on high financial pressure, it is not an indicator for successful rangeland management. Rather, farmers struggle hard to make any positive revenue from their farming business and the success of the Namibian land reform is currently disputable. The role-plays also revealed that cooperation between farmers is difficult even though obligatory due to the often small farm sizes. I thus propose that cooperation needs to be facilitated to improve the success of land reform beneficiaries.}, language = {en} } @phdthesis{Schad2012, author = {Schad, Julia}, title = {Evolution of major histocompatibility complex genes in New World bats and their functional importance in parasite resistance and life-history decisions in the lesser bulldog bat (Noctilio albiventris)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63513}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Immune genes of the major histocompatibility complex (MHC) constitute a central component of the adaptive immune system and play an essential role in parasite resistance and associated life-history strategies. In addition to pathogen-mediated selection also sexual selection mechanisms have been identified as the main drivers of the typically-observed high levels of polymorphism in functionally important parts of the MHC. The recognition of the individual MHC constitution is presumed to be mediated through olfactory cues. Indeed, MHC genes are in physical linkage with olfactory receptor genes and alter the individual body odour. Moreover, they are expressed on sperm and trophoplast cells. Thus, MHC-mediated sexual selection processes might not only act in direct mate choice decisions, but also through cryptic processes during reproduction. Bats (Chiroptera) represent the second largest mammalian order and have been identified as important vectors of newly emerging infectious diseases affecting humans and wildlife. In addition, they are interesting study subjects in evolutionary ecology in the context of olfactory communication, mate choice and associated fitness benefits. Thus, it is surprising that Chiroptera belong to the least studied mammalian taxa in terms of their MHC evolution. In my doctoral thesis I aimed to gain insights in the evolution and diversity pattern of functional MHC genes in some of the major New World bat families by establishing species-specific primers through genome-walking into unknown flanking parts of familiar sites. Further, I took a free-ranging population of the lesser bulldog bat (Noctilio albiventris) in Panama as an example to understand the functional importance of the individual MHC constitution in parasite resistance and reproduction as well as the possible underlying selective forces shaping the observed diversity. My studies indicated that the typical MHC characteristics observed in other mammalian orders, like evidence for balancing and positive selection as well as recombination and gene conversion events, are also present in bats shaping their MHC diversity. I found a wide range of copy number variation of expressed DRB loci in the investigated species. In Saccopteryx bilineata, a species with a highly developed olfactory communication system, I found an exceptionally high number of MHC loci duplications generating high levels of variability at the individual level, which has never been described for any other mammalian species so far. My studies included for the first time phylogenetic relationships of MHC genes in bats and I found signs for a family-specific independent mode of evolution of duplicated genes, regardless whether the highly variable exon 2 (coding for the antigen binding region of the molecule) or more conserved exons (3, 4; encoding protein stabilizing parts) were considered indicating a monophyletic origin of duplicated loci within families. This result questions the general assumed pattern of MHC evolution in mammals where duplicated genes of different families usually cluster together suggesting that duplication occurred before speciation took place, which implies a trans-species mode of evolution. However, I found a trans-species mode of evolution within genera (Noctilio, Myotis) based on exon 2 signified by an intermingled clustering of DRB alleles. The gained knowledge on MHC sequence evolution in major New World bat families will facilitate future MHC investigations in this order. In the N. albiventris study population, the single expressed MHC class II DRB gene showed high sequence polymorphism, moderate allelic variability and high levels of population-wide heterozygosity. Whereas demographic processes had minor relevance in shaping the diversity pattern, I found clear evidence for parasite-mediated selection. This was evident by historical positive Darwinian selection maintaining diversity in the functionally important antigen binding sites, and by specific MHC alleles which were associated with low and high ectoparasite burden according to predictions of the 'frequency dependent selection hypothesis'. Parasite resistance has been suggested to play an important role in mediating costly life history trade-offs leading to e.g. MHC- mediated benefits in sexual selection. The 'good genes model' predicts that males with a genetically well-adapted immune system in defending harmful parasites have the ability to allocate more resources to reproductive effort. I found support for this prediction since non-reproductive adult N. albiventris males carried more often an allele associated with high parasite loads, which differentiated them genetically from reproductively active males as well as from subadults, indicating a reduced transmission of this allele in subsequent generations. In addition, they suffered from increased ectoparasite burden which presumably reduced resources to invest in reproduction. Another sign for sexual selection was the observation of gender-specific difference in heterozygosity, with females showing lower levels of heterozygosity than males. This signifies that the sexes differ in their selection pressures, presumably through MHC-mediated molecular processes during reproduction resulting in a male specific heterozygosity advantage. My data make clear that parasite-mediated selection and sexual selection are interactive and operate together to form diversity at the MHC. Furthermore, my thesis is one of the rare studies contributing to fill the gap between MHC-mediated effects on co-evolutionary processes in parasite-host-interactions and on aspects of life-history evolution.}, language = {en} } @phdthesis{MatallanaRamirez2012, author = {Matallana-Ram{\´i}rez, Lilian Paola}, title = {Unraveling the ORE1 regulon in Arabidopsis thaliana : molecular and functional characterization of up- and down-stream components}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62646}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Leaf senescence is an active process required for plant survival, and it is flexibly controlled, allowing plant adaptation to environmental conditions. Although senescence is largely an age-dependent process, it can be triggered by environmental signals and stresses. Leaf senescence coordinates the breakdown and turnover of many cellular components, allowing a massive remobilization and recycling of nutrients from senescing tissues to other organs (e.g., young leaves, roots, and seeds), thus enhancing the fitness of the plant. Such metabolic coordination requires a tight regulation of gene expression. One important mechanism for the regulation of gene expression is at the transcriptional level via transcription factors (TFs). The NAC TF family (NAM, ATAF, CUC) includes various members that show elevated expression during senescence, including ORE1 (ANAC092/AtNAC2) among others. ORE1 was first reported in a screen for mutants with delayed senescence (oresara1, 2, 3, and 11). It was named after the Korean word "oresara," meaning "long-living," and abbreviated to ORE1, 2, 3, and 11, respectively. Although the pivotal role of ORE1 in controlling leaf senescence has recently been demonstrated, the underlying molecular mechanisms and the pathways it regulates are still poorly understood. To unravel the signaling cascade through which ORE1 exerts its function, we analyzed particular features of regulatory pathways up-stream and down-stream of ORE1. We identified characteristic spatial and temporal expression patterns of ORE1 that are conserved in Arabidopsis thaliana and Nicotiana tabacum and that link ORE1 expression to senescence as well as to salt stress. We proved that ORE1 positively regulates natural and dark-induced senescence. Molecular characterization of the ORE1 promoter in silico and experimentally suggested a role of the 5'UTR in mediating ORE1 expression. ORE1 is a putative substrate of a calcium-dependent protein kinase named CKOR (unpublished data). Promising data revealed a positive regulation of putative ORE1 targets by CKOR, suggesting the phosphorylation of ORE1 as a requirement for its regulation. Additionally, as part of the ORE1 up-stream regulatory pathway, we identified the NAC TF ATAF1 which was able to transactivate the ORE1 promoter in vivo. Expression studies using chemically inducible ORE1 overexpression lines and transactivation assays employing leaf mesophyll cell protoplasts provided information on target genes whose expression was rapidly induced upon ORE1 induction. First, a set of target genes was established and referred to as early responding in the ORE1 regulatory network. The consensus binding site (BS) of ORE1 was characterized. Analysis of some putative targets revealed the presence of ORE1 BSs in their promoters and the in vitro and in vivo binding of ORE1 to their promoters. Among these putative target genes, BIFUNCTIONAL NUCLEASE I (BFN1) and VND-Interacting2 (VNI2) were further characterized. The expression of BFN1 was found to be dependent on the presence of ORE1. Our results provide convincing data which support a role for BFN1 as a direct target of ORE1. Characterization of VNI2 in age-dependent and stress-induced senescence revealed ORE1 as a key up-stream regulator since it can bind and activate VNI2 expression in vivo and in vitro. Furthermore, VNI2 was able to promote or delay senescence depending on the presence of an activation domain located in its C-terminal region. The plasticity of this gene might include alternative splicing (AS) to regulate its function in different organs and at different developmental stages, particularly during senescence. A model is proposed on the molecular mechanism governing the dual role of VNI2 during senescence.}, language = {en} } @phdthesis{Branscheid2012, author = {Branscheid, Anja}, title = {Phosphate homeostasis and posttranscriptional gene regulation during arbuscular mycorrhizal symbiosis in Medicago truncatula}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62106}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Since available phosphate (Pi) resources in soil are limited, symbiotic interactions between plant roots and arbuscular mycorrhizal (AM) fungi are a widespread strategy to improve plant phosphate nutrition. The repression of AM symbiosis by a high plant Pi-status indicates a link between Pi homeostasis signalling and AM symbiosis development. This assumption is supported by the systemic induction of several microRNA399 (miR399) primary transcripts in shoots and a simultaneous accumulation of mature miR399 in roots of mycorrhizal plants. However, the physiological role of this miR399 expression pattern is still elusive and offers the question whether other miRNAs are also involved in AM symbiosis. Therefore, a deep sequencing approach was applied to investigate miRNA-mediated posttranscriptional gene regulation in M. truncatula mycorrhizal roots. Degradome analysis revealed that 185 transcripts were cleaved by miRNAs, of which the majority encoded transcription factors and disease resistance genes, suggesting a tight control of transcriptional reprogramming and a downregulation of defence responses by several miRNAs in mycorrhizal roots. Interestingly, 45 of the miRNA-cleaved transcripts showed a significant differentially regulated between mycorrhizal and non-mycorrhizal roots. In addition, key components of the Pi homeostasis signalling pathway were analyzed concerning their expression during AM symbiosis development. MtPhr1 overexpression and time course expression data suggested a strong interrelation between the components of the PHR1-miR399-PHO2 signalling pathway and AM symbiosis, predominantly during later stages of symbiosis. In situ hybridizations confirmed accumulation of mature miR399 in the phloem and in arbuscule-containing cortex cells of mycorrhizal roots. Moreover, a novel target of the miR399 family, named as MtPt8, was identified by the above mentioned degradome analysis. MtPt8 encodes a Pi-transporter exclusively transcribed in mycorrhizal roots and its promoter activity was restricted to arbuscule-containing cells. At a low Pi-status, MtPt8 transcript abundance inversely correlated with a mature miR399 expression pattern. Increased MtPt8 transcript levels were accompanied by elevated symbiotic Pi-uptake efficiency, indicating its impact on balancing plant and fungal Pi-acquisition. In conclusion, this study provides evidence for a direct link of the regulatory mechanisms of plant Pi-homeostasis and AM symbiosis at a cell-specific level. The results of this study, especially the interaction of miR399 and MtPt8 provide a fundamental step for future studies of plant-microbe-interactions with regard to agricultural and ecological aspects.}, language = {en} } @phdthesis{Basler2012, author = {Basler, Georg}, title = {Mass-balanced randomization : a significance measure for metabolic networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62037}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Complex networks have been successfully employed to represent different levels of biological systems, ranging from gene regulation to protein-protein interactions and metabolism. Network-based research has mainly focused on identifying unifying structural properties, including small average path length, large clustering coefficient, heavy-tail degree distribution, and hierarchical organization, viewed as requirements for efficient and robust system architectures. Existing studies estimate the significance of network properties using a generic randomization scheme - a Markov-chain switching algorithm - which generates unrealistic reactions in metabolic networks, as it does not account for the physical principles underlying metabolism. Therefore, it is unclear whether the properties identified with this generic approach are related to the functions of metabolic networks. Within this doctoral thesis, I have developed an algorithm for mass-balanced randomization of metabolic networks, which runs in polynomial time and samples networks almost uniformly at random. The properties of biological systems result from two fundamental origins: ubiquitous physical principles and a complex history of evolutionary pressure. The latter determines the cellular functions and abilities required for an organism's survival. Consequently, the functionally important properties of biological systems result from evolutionary pressure. By employing randomization under physical constraints, the salient structural properties, i.e., the smallworld property, degree distributions, and biosynthetic capabilities of six metabolic networks from all kingdoms of life are shown to be independent of physical constraints, and thus likely to be related to evolution and functional organization of metabolism. This stands in stark contrast to the results obtained from the commonly applied switching algorithm. In addition, a novel network property is devised to quantify the importance of reactions by simulating the impact of their knockout. The relevance of the identified reactions is verified by the findings of existing experimental studies demonstrating the severity of the respective knockouts. The results suggest that the novel property may be used to determine the reactions important for viability of organisms. Next, the algorithm is employed to analyze the dependence between mass balance and thermodynamic properties of Escherichia coli metabolism. The thermodynamic landscape in the vicinity of the metabolic network reveals two regimes of randomized networks: those with thermodynamically favorable reactions, similar to the original network, and those with less favorable reactions. The results suggest that there is an intrinsic dependency between thermodynamic favorability and evolutionary optimization. The method is further extended to optimizing metabolic pathways by introducing novel chemically feasibly reactions. The results suggest that, in three organisms of biotechnological importance, introduction of the identified reactions may allow for optimizing their growth. The approach is general and allows identifying chemical reactions which modulate the performance with respect to any given objective function, such as the production of valuable compounds or the targeted suppression of pathway activity. These theoretical developments can find applications in metabolic engineering or disease treatment. The developed randomization method proposes a novel approach to measuring the significance of biological network properties, and establishes a connection between large-scale approaches and biological function. The results may provide important insights into the functional principles of metabolic networks, and open up new possibilities for their engineering.}, language = {en} } @phdthesis{Bringmann2012, author = {Bringmann, Martin}, title = {Identification of novel components that connect cellulose synthases to the cytoskeleton}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61478}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Cellulose is the most abundant biopolymer on earth and the main load-bearing structure in plant cell walls. Cellulose microfibrils are laid down in a tight parallel array, surrounding plant cells like a corset. Orientation of microfibrils determines the direction of growth by directing turgor pressure to points of expansion (Somerville et al., 2004). Hence, cellulose deficient mutants usually show cell and organ swelling due to disturbed anisotropic cell expansion (reviewed in Endler and Persson, 2011). How do cellulose microfibrils gain their parallel orientation? First experiments in the 1960s suggested, that cortical microtubules aid the cellulose synthases on their way around the cell (Green, 1962; Ledbetter and Porter, 1963). This was proofed in 2006 through life cell imaging (Paredez et al., 2006). However, how this guidance was facilitated, remained unknown. Through a combinatory approach, including forward and reverse genetics together with advanced co-expression analysis, we identified pom2 as a cellulose deficient mutant. Map- based cloning revealed that the gene locus of POM2 corresponded to CELLULOSE SYNTHASE INTERACTING 1 (CSI1). Intriguingly, we previously found the CSI1 protein to interact with the putative cytosolic part of the primary cellulose synthases in a yeast-two-hybrid screen (Gu et al., 2010). Exhaustive cell biological analysis of the POM2/CSI1 protein allowed to determine its cellular function. Using spinning disc confocal microscopy, we could show that in the absence of POM2/CSI1, cellulose synthase complexes lose their microtubule-dependent trajectories in the plasma membrane. The loss of POM2/CSI1, however does not influence microtubule- dependent delivery of cellulose synthases (Bringmann et al., 2012). Consequently, POM2/CSI1 acts as a bridging protein between active cellulose synthases and cortical microtubules. This thesis summarizes three publications of the author, regarding the identification of proteins that connect cellulose synthases to the cytoskeleton. This involves the development of bioinformatics tools allowing candidate gene prediction through co-expression studies (Mutwil et al., 2009), identification of candidate genes through interaction studies (Gu et al., 2010), and determination of the cellular function of the candidate gene (Bringmann et al., 2012).}, language = {en} } @phdthesis{Hinz2012, author = {Hinz, Justyna}, title = {Factors modifying the aggregation of atrophin-1 acting in cis and in trans}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60385}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Ten polyQ (polyglutamine) diseases constitute a group of hereditary, neurodegenerative, lethal disorders, characterized by neuronal loss and motor and cognitive impairments. The only common molecular feature of polyQ disease-associated proteins is the homopolymeric polyglutamine repeat. The pathological expansion of polyQ tract invariably leads to protein misfolding and aggregation, resulting in formation of the fibrillar intraneuronal deposits (aggregates) of the disease protein. The polyQ-related cellular toxicity is currently attributed to early, small, soluble aggregate species (oligomers), whereas end-stage, fibrillar, insoluble aggregates are considered to be benign. In the complex cellular environment aggregation and toxicity of mutant polyQ proteins can be affected by both the sequences of the corresponding disease protein (factors acting in cis) and the cellular environment (factors acting in trans). Additionally, the nucleus has been suggested to be the primary site of toxicity in the polyQ-based neurodegeneration. In this study, the dynamics and structure of nuclear and cytoplasmic inclusions were examined to determine the intrinsic and extrinsic factors influencing the cellular aggregation of atrophin-1, a protein implicated in the pathology of dentatorubral-pallidoluysian atrophy (DRPLA), a polyQ-based disease with complex clinical features. Dynamic imaging, combined with biochemical and biophysical approaches revealed a large heterogeneity in the dynamics of atrophin-1 within the nuclear inclusions compared with the compact and immobile cytoplasmic aggregates. At least two types of inclusions of polyQ-expanded atrophin-1 with different mobility of the molecular species and ability to exchange with the surrounding monomer pool coexist in the nucleus of the model cell system, neuroblastoma N2a cells. Furthermore, our novel cross-seeding approach which allows for monitoring of the architecture of the aggregate core directly in the cell revealed an evolution of the aggregate core of the polyQ-expanded ATN1 from one composed of the sequences flanking the polyQ domain at early aggregation phases to one dominated by the polyQ stretch in the later aggregation phase. Intriguingly, these changes in the aggregate core architecture of nuclear and cytoplasmic inclusions mirrored the changes in the protein dynamics and physico-chemical properties of the aggregates in the aggregation time course. 2D-gel analyses followed by MALDI-TOF MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry) were used to detect alterations in the interaction partners of the pathological ATN1 variant compared to the non-pathological ATN1. Based on these results, we propose that the observed complexity in the dynamics of the nuclear inclusions provides a molecular explanation for the enhanced cellular toxicity of the nuclear aggregates in polyQ-based neurodegeneration.}, language = {en} } @phdthesis{Ivakov2011, author = {Ivakov, Alexander}, title = {Metabolic interactions in leaf development in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59730}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Das Wachstum und {\"U}berleben von Pflanzen basiert auf der Photosynthese in den Bl{\"a}ttern. Diese beinhaltet die Aufnahme von Kohlenstoffdioxid aus der Atmosph{\"a}re und das simultane Einfangen von Lichtenergie zur Bildung organischer Molek{\"u}le. Diese werden nach dem Eintritt in den Metabolismus in viele andere Komponenten umgewandelt, welche die Grundlage f{\"u}r die Zunahme der Biomasse bilden. Bl{\"a}tter sind Organe, die auf die Fixierung von Kohlenstoffdioxid spezialisiert sind. Die Funktionen der Bl{\"a}tter beinhalten vor allem die Optimierung und Feinregulierung vieler Prozesse, um eine effektive Nutzung von Ressourcen und eine maximale Photosynthese zu gew{\"a}hrleisten. Es ist bekannt, dass sich die Morphologie der Bl{\"a}tter den Wachstumsbedingungen der Pflanze anpasst und eine wichtige Rolle bei der Optimierung der Photosynthese spielt. Trotzdem ist die Regulation dieser Art der Anpassung bisher nicht verstanden. Die allgemeine Zielsetzung dieser vorliegenden Arbeit ist das Verst{\"a}ndnis wie das Wachstum und die Morphologie der Bl{\"a}tter im Modellorganismus Arabidopsis thaliana reguliert werden. Besondere Aufmerksamkeit wurde hierbei der M{\"o}glichkeit geschenkt, dass es interne metabolische Signale in der Pflanze geben k{\"o}nnte, die das Wachstum und die Entwicklung von Bl{\"a}ttern beeinflussen. Um diese Fragestellung zu untersuchen, muss das Wachstum und die Entwicklung von Bl{\"a}ttern oberhalb des Levels des einzelnen Organs und im Kontext der gesamten Pflanze betrachtet werden, weil Bl{\"a}tter nicht eigenst{\"a}ndig wachsen, sondern von Ressourcen und regulatorischen Einfl{\"u}ssen der ganzen Pflanze abh{\"a}ngig sind. Aufgrund der Komplexit{\"a}t dieser Fragestellung wurden drei komplement{\"a}re Ans{\"a}tze durchgef{\"u}hrt. Im ersten und spezifischsten Ansatz wurde untersucht ob eine flussabw{\"a}rts liegende Komponente des Zucker-Signalwegs, Trehalose-6-Phosphat (Tre-6-P), das Blattwachstum und die Blattentwicklung beinflussen kann. Um diese Frage zu beantworten wurden transgene Arabidopsis-Linien mit einem gest{\"o}rten Gehalt von Tre-6-P durch die Expression von bakteriellen Proteinen die in dem metabolismus von trehalose beteiligt sind. Die Pflanzen-Linien wurden unter Standard-Bendingungen in Erde angebaut und ihr Metabolismus und ihre Blattmorphologie untersucht. Diese Experimente f{\"u}hrten auch zu einem unerwarteten Projekt hinsichtlich einer m{\"o}glichen Rolle von Tre-6-P in der Regulation der Stomata. In einem zweiten, allgemeineren Ansatz wurde untersucht, ob {\"A}nderungen im Zucker-Gehalt der Pflanzen die Morphogenese der Bl{\"a}tter als Antwort auf Licht beeinflussen. Dazu wurden eine Reihe von Mutanten, die im Zentralmetabolismus beeintr{\"a}chtigt sind, in derselben Lichtbedingung angezogen und bez{\"u}glich ihrer Blattmorphologie analysiert. In einem dritten noch allgemeineren Ansatz wurde die nat{\"u}rliche Variation von morphologischen Auspr{\"a}gungen der Bl{\"a}tter und Rosette anhand von wilden Arabidopsis {\"O}kotypen untersucht, um zu verstehen wie sich die Blattmorphologie auf die Blattfunktion und das gesamte Pflanzenwachstum auswirkt und wie unterschiedliche Eigenschaften miteinander verkn{\"u}pft sind. Das Verh{\"a}ltnis der Blattanzahl zum Gesamtwachstum der Pflanze und Blattgr{\"o}ße wurde gesondert weiter untersucht durch eine Normalisierung der Blattanzahl auf das Frischgewicht der Rosette, um den Parameter „leafing Intensity" abzusch{\"a}tzen. Leafing Intensity integrierte Blattanzahl, Blattgr{\"o}ße und gesamtes Rosettenwachstum in einer Reihe von Kompromiss-Interaktionen, die in einem Wachstumsvorteil resultieren, wenn Pflanzen weniger, aber gr{\"o}ßere Bl{\"a}tter pro Einheit Biomasse ausbilden. Dies f{\"u}hrte zu einem theoretischen Ansatz in dem ein einfaches allometrisch mathematisches Modell konstruiert wurde, um Blattanzahl, Blattgr{\"o}ße und Pflanzenwachstum im Kontext der gesamten Pflanze Arabidopsis zu verkn{\"u}pfen.}, language = {en} } @phdthesis{Andres2012, author = {Andres, Dorothee}, title = {Biophysical chemistry of lipopolysaccharide specific bacteriophages}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59261}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Carbohydrate recognition is a ubiquitous principle underlying many fundamental biological processes like fertilization, embryogenesis and viral infections. But how carbohydrate specificity and affinity induce a molecular event is not well understood. One of these examples is bacteriophage P22 that binds and infects three distinct Salmonella enterica (S.) hosts. It recognizes and depolymerizes repetitive carbohydrate structures of O antigen in its host´s outer membrane lipopolysaccharide molecule. This is mediated by tailspikes, mainly β helical appendages on phage P22 short non contractile tail apparatus (podovirus). The O antigen of all three Salmonella enterica hosts is built from tetrasaccharide repeating units consisting of an identical main chain with a distinguished 3,6 dideoxyhexose substituent that is crucial for P22 tailspike recognition: tyvelose in S. Enteritidis, abequose in S. Typhimurium and paratose in S. Paratyphi. In the first study the complexes of P22 tailspike with its host's O antigen octasaccharide were characterized. S. Paratyphi octasaccharide binds less tightly (ΔΔG≈7 kJ/mol) to the tailspike than the other two hosts. Crystal structure analysis of P22 tailspike co crystallized with S. Paratyphi octasaccharides revealed different interactions than those observed before in tailspike complexes with S. Enteritidis and S. Typhimurium octasaccharides. These different interactions occur due to a structural rearrangement in the S. Paratyphi octasaccharide. It results in an unfavorable glycosidic bond Φ/Ψ angle combination that also had occurred when the S. Paratyphi octasaccharide conformation was analyzed in an aprotic environment. Contributions of individual protein surface contacts to binding affinity were analyzed showing that conserved structural waters mediate specific recognition of all three different Salmonella host O antigens. Although different O antigen structures possess distinct binding behavior on the tailspike surface, all are recognized and infected by phage P22. Hence, in a second study, binding measurements revealed that multivalent O antigen was able to bind with high avidity to P22 tailspike. Dissociation rates of the polymer were three times slower than for an octasaccharide fragment pointing towards high affinity for O antigen polysaccharide. Furthermore, when phage P22 was incubated with lipopolysaccharide aggregates before plating on S. Typhimurium cells, P22 infectivity became significantly reduced. Therefore, in a third study, the function of carbohydrate recognition on the infection process was characterized. It was shown that large S. Typhimurium lipopolysaccharide aggregates triggered DNA release from the phage capsid in vitro. This provides evidence that phage P22 does not use a second receptor on the Salmonella surface for infection. P22 tailspike binding and cleavage activity modulate DNA egress from the phage capsid. DNA release occurred more slowly when the phage possessed mutant tailspikes with less hydrolytic activity and was not induced if lipopolysaccharides contained tailspike shortened O antigen polymer. Furthermore, the onset of DNA release was delayed by tailspikes with reduced binding affinity. The results suggest a model for P22 infection induced by carbohydrate recognition: tailspikes position the phage on Salmonella enterica and their hydrolytic activity forces a central structural protein of the phage assembly, the plug protein, onto the host´s membrane surface. Upon membrane contact, a conformational change has to occur in the assembly to eject DNA and pilot proteins from the phage to establish infection. Earlier studies had investigated DNA ejection in vitro solely for viruses with long non contractile tails (siphovirus) recognizing protein receptors. Podovirus P22 in this work was therefore the first example for a short tailed phage with an LPS recognition organelle that can trigger DNA ejection in vitro. However, O antigen binding and cleaving tailspikes are widely distributed in the phage biosphere, for example in siphovirus 9NA. Crystal structure analysis of 9NA tailspike revealed a complete similar fold to P22 tailspike although they only share 36 \% sequence identity. Moreover, 9NA tailspike possesses similar enzyme activity towards S. Typhimurium O antigen within conserved amino acids. These are responsible for a DNA ejection process from siphovirus 9NA triggered by lipopolysaccharide aggregates. 9NA expelled its DNA 30 times faster than podovirus P22 although the associated conformational change is controlled with a similar high activation barrier. The difference in DNA ejection velocity mirrors different tail morphologies and their efficiency to translate a carbohydrate recognition signal into action.}, language = {en} } @phdthesis{Buchmann2012, author = {Buchmann, Carsten M.}, title = {Modelling the structuring of animal communities in heterogeneous landscapes : the role of individual home range formation, foraging movement, competition and habitat configuration}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59031}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {This thesis aims at a better mechanistic understanding of animal communities. Therefore, an allometry- and individual-based model has been developed which was used to simulate mammal and bird communities in heterogeneous landscapes, and to to better understand their response to landscape changes (habitat loss and fragmentation).}, language = {en} } @phdthesis{Frasca2012, author = {Frasca, Stefano}, title = {Biocatalysis on nanostructured surfaces : investigation and application of redox proteins using spectro-electrochemical methods}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-58131}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {In this thesis, different aspects within the research field of protein spectro- and electro-chemistry on nanostructured materials are addressed. On the one hand, this work is related to the investigation of nanostructured transparent and conductive metal oxides as platform for the immobilization of electroactive enzymes. On the other hand the second part of this work is related to the immobilization of sulfite oxidase on gold nanoparticles modified electrode. Finally direct and mediated spectroelectrochemistry protein with high structure complexity such as the xanthine dehydrogenase from Rhodobacter capsulatus and its high homologues the mouse aldehyde oxidase homolog 1. Stable immobilization and reversible electrochemistry of cytochrome c in a transparent and conductive tin-doped and tin-rich indium oxide film with a well-defined mesoporosity is reported. The transparency and good conductivity, in combination with the large surface area of these materials, allow the incorporation of a high amount of electroactive biomolecules (between 250 and 2500 pmol cm-2) and their electrochemical and spectroscopic investigation. Both, the electrochemical behavior and the immobilization of proteins are influenced by the geometric parameters of the porous material, such as the structure and pore shape, the surface chemistry, as well as the protein size and charge. UV-Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry, are employed for the characterization of cytochrome c immobilized in the mesoporous indium tin oxide and reveal no perturbation of the structural integrity of the redox protein. A long term protein immobilization is reached using these unmodified mesoporous indium oxide based materials, i.e. more than two weeks even at high ionic strength. The potential of this modified material as an amperometric biosensor for the detection of superoxide anions is demonstrated. A sensitivity of about 100 A M-1 m-2, in a linear measuring range of the superoxide concentration between 0.13 and 0.67 μM, is estimated. In addition an electrochemical switchable protein-based optical device is designed with the core part composed of cytochrome c immobilized on a mesoporous indium tin oxide film. A color developing redox sensitive dye is used as switchable component of the system. The cytochrome c-catalyzed oxidation of the dye by hydrogen peroxide is spectroscopically investigated. When the dye is co-immobilized with the protein, its redox state is easily controlled by application of an electrical potential at the supporting material. This enables to electrochemical reset the system to the initial state and repetitive signal generation. The case of negative charged proteins, which does not have a good interaction with the negative charged indium oxide based films, is also explored. The modification of an indium tin oxide film with a positive charged polymer and the employment of a antimony doped tin oxide film were investigated in this work in order to overcome the repulsion induced by similar charges of the protein and electrode. Human sulfite oxidase and its separated heme-containing domain are able to direct exchange electrons with the supporting material. A study of a new approach for sulfite biosensing, based on enhanced direct electron transfer of a human sulfite oxidase immobilized on a gold nanoparticles modified electrode is reported. The spherical gold nanoparticles were prepared via a novel method by reduction of HAuCl4 with branched poly(ethyleneimine) in an ionic liquid resulting in particles of about 10 nm in hydrodynamic diameter. These nanoparticles were covalently attached to a mercaptoundecanoic acid modified Au-electrode and act as platform where human sulfite oxidase is adsorbed. An enhanced interfacial electron transfer and electrocatalysis is therefore achieved. UV-Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry, were employed for the characterization of the system and reveal no perturbation of the structural integrity of the redox protein. The proposed biosensor exhibited a quick steady-state current response, within 2 s and a linear detection range between 0.5 and 5.4 μM with high sensitivity (1.85 nA μM-1). The investigated system provides remarkable advantages, since it works at low applied potential and at very high ionic strength. Therefore these properties could make the proposed system useful in the development of bioelectronic devices and its application in real samples. Finally protein with high structure complexity such as the xanthine dehydrogenase from Rhodobacter capsulatus and the mouse aldehyde oxidase homolog 1 were spectroelectrochemically studied. It could be demonstrated that different cofactors present in the protein structure, like the FAD and the molybdenum cofactor, are able to directly exchange electrons with an electrode and are displayed as a single peak in a square wave voltammogram. Protein mutants bearing a serine substituted to the cysteines, bounding to the most exposed iron sulfur cluster additionally showed direct electron transfer which can be attributable to this cluster. On the other hand a mediated spectroelectrochemical titration of the protein bound FAD cofactor was performed in presence of transparent iron and cobalt complex mediators. The results showed the formation of the stable semiquinone and the fully reduced flavin. Two formal potentials for each single electron exchange step were then determined.}, language = {en} } @phdthesis{Schuette2011, author = {Sch{\"u}tte, Moritz}, title = {Evolutionary fingerprints in genome-scale networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57483}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Mathematical modeling of biological phenomena has experienced increasing interest since new high-throughput technologies give access to growing amounts of molecular data. These modeling approaches are especially able to test hypotheses which are not yet experimentally accessible or guide an experimental setup. One particular attempt investigates the evolutionary dynamics responsible for today's composition of organisms. Computer simulations either propose an evolutionary mechanism and thus reproduce a recent finding or rebuild an evolutionary process in order to learn about its mechanism. The quest for evolutionary fingerprints in metabolic and gene-coexpression networks is the central topic of this cumulative thesis based on four published articles. An understanding of the actual origin of life will probably remain an insoluble problem. However, one can argue that after a first simple metabolism has evolved, the further evolution of metabolism occurred in parallel with the evolution of the sequences of the catalyzing enzymes. Indications of such a coevolution can be found when correlating the change in sequence between two enzymes with their distance on the metabolic network which is obtained from the KEGG database. We observe that there exists a small but significant correlation primarily on nearest neighbors. This indicates that enzymes catalyzing subsequent reactions tend to be descended from the same precursor. Since this correlation is relatively small one can at least assume that, if new enzymes are no "genetic children" of the previous enzymes, they certainly be descended from any of the already existing ones. Following this hypothesis, we introduce a model of enzyme-pathway coevolution. By iteratively adding enzymes, this model explores the metabolic network in a manner similar to diffusion. With implementation of an Gillespie-like algorithm we are able to introduce a tunable parameter that controls the weight of sequence similarity when choosing a new enzyme. Furthermore, this method also defines a time difference between successive evolutionary innovations in terms of a new enzyme. Overall, these simulations generate putative time-courses of the evolutionary walk on the metabolic network. By a time-series analysis, we find that the acquisition of new enzymes appears in bursts which are pronounced when the influence of the sequence similarity is higher. This behavior strongly resembles punctuated equilibrium which denotes the observation that new species tend to appear in bursts as well rather than in a gradual manner. Thus, our model helps to establish a better understanding of punctuated equilibrium giving a potential description at molecular level. From the time-courses we also extract a tentative order of new enzymes, metabolites, and even organisms. The consistence of this order with previous findings provides evidence for the validity of our approach. While the sequence of a gene is actually subject to mutations, its expression profile might also indirectly change through the evolutionary events in the cellular interplay. Gene coexpression data is simply accessible by microarray experiments and commonly illustrated using coexpression networks where genes are nodes and get linked once they show a significant coexpression. Since the large number of genes makes an illustration of the entire coexpression network difficult, clustering helps to show the network on a metalevel. Various clustering techniques already exist. However, we introduce a novel one which maintains control of the cluster sizes and thus assures proper visual inspection. An application of the method on Arabidopsis thaliana reveals that genes causing a severe phenotype often show a functional uniqueness in their network vicinity. This leads to 20 genes of so far unknown phenotype which are however suggested to be essential for plant growth. Of these, six indeed provoke such a severe phenotype, shown by mutant analysis. By an inspection of the degree distribution of the A.thaliana coexpression network, we identified two characteristics. The distribution deviates from the frequently observed power-law by a sharp truncation which follows after an over-representation of highly connected nodes. For a better understanding, we developed an evolutionary model which mimics the growth of a coexpression network by gene duplication which underlies a strong selection criterion, and slight mutational changes in the expression profile. Despite the simplicity of our assumption, we can reproduce the observed properties in A.thaliana as well as in E.coli and S.cerevisiae. The over-representation of high-degree nodes could be identified with mutually well connected genes of similar functional families: zinc fingers (PF00096), flagella, and ribosomes respectively. In conclusion, these four manuscripts demonstrate the usefulness of mathematical models and statistical tools as a source of new biological insight. While the clustering approach of gene coexpression data leads to the phenotypic characterization of so far unknown genes and thus supports genome annotation, our model approaches offer explanations for observed properties of the coexpression network and furthermore substantiate punctuated equilibrium as an evolutionary process by a deeper understanding of an underlying molecular mechanism.}, language = {en} } @phdthesis{Schoenheit2011, author = {Sch{\"o}nheit, J{\"o}rg}, title = {A phagocyte-specific Irf8 gene enhancer establishes early conventional dendritic cell commitment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55482}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Haematopoietic development is a complex process that is strictly hierarchically organized. Here, the phagocyte lineages are a very heterogeneous cell compartment with specialized functions in innate immunity and induction of adaptive immune responses. Their generation from a common precursor must be tightly controlled. Interference within lineage formation programs for example by mutation or change in expression levels of transcription factors (TF) is causative to leukaemia. However, the molecular mechanisms driving specification into distinct phagocytes remain poorly understood. In the present study I identify the transcription factor Interferon Regulatory Factor 8 (IRF8) as the specification factor of dendritic cell (DC) commitment in early phagocyte precursors. Employing an IRF8 reporter mouse, I showed the distinct Irf8 expression in haematopoietic lineage diversification and isolated a novel bone marrow resident progenitor which selectively differentiates into CD8α+ conventional dendritic cells (cDCs) in vivo. This progenitor strictly depends on Irf8 expression to properly establish its transcriptional DC program while suppressing a lineage-inappropriate neutrophile program. Moreover, I demonstrated that Irf8 expression during this cDC commitment-step depends on a newly discovered myeloid-specific cis-enhancer which is controlled by the haematopoietic transcription factors PU.1 and RUNX1. Interference with their binding leads to abrogation of Irf8 expression, subsequently to disturbed cell fate decisions, demonstrating the importance of these factors for proper phagocyte cell development. Collectively, these data delineate a transcriptional program establishing cDC fate choice with IRF8 in its center.}, language = {en} } @phdthesis{Giorgi2011, author = {Giorgi, Federico Manuel}, title = {Expression-based reverse engineering of plant transcriptional networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56760}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Regulation of gene transcription plays a major role in mediating cellular responses and physiological behavior in all known organisms. The finding that similar genes are often regulated in a similar manner (co-regulated or "co-expressed") has directed several "guilt-by-association" approaches in order to reverse-engineer the cellular transcriptional networks using gene expression data as a compass. This kind of studies has been considerably assisted in the recent years by the development of high-throughput transcript measurement platforms, specifically gene microarrays and next-generation sequencing. In this thesis, I describe several approaches for improving the extraction and interpretation of the information contained in microarray based gene expression data, through four steps: (1) microarray platform design, (2) microarray data normalization, (3) gene network reverse engineering based on expression data and (4) experimental validation of expression-based guilt-by-association inferences. In the first part test case is shown aimed at the generation of a microarray for Thellungiella salsuginea, a salt and drought resistant close relative to the model plant Arabidopsis thaliana; the transcripts of this organism are generated on the combination of publicly available ESTs and newly generated ad-hoc next-generation sequencing data. Since the design of a microarray platform requires the availability of highly reliable and non-redundant transcript models, these issues are addressed consecutively, proposing several different technical solutions. In the second part I describe how inter-array correlation artifacts are generated by the common microarray normalization methods RMA and GCRMA, together with the technical and mathematical characteristics underlying the problem. A solution is proposed in the form of a novel normalization method, called tRMA. The third part of the thesis deals with the field of expression-based gene network reverse engineering. It is shown how different centrality measures in reverse engineered gene networks can be used to distinguish specific classes of genes, in particular essential genes in Arabidopsis thaliana, and how the use of conditional correlation can add a layer of understanding over the information flow processes underlying transcript regulation. Furthermore, several network reverse engineering approaches are compared, with a particular focus on the LASSO, a linear regression derivative rarely applied before in global gene network reconstruction, despite its theoretical advantages in robustness and interpretability over more standard methods. The performance of LASSO is assessed through several in silico analyses dealing with the reliability of the inferred gene networks. In the final part, LASSO and other reverse engineering methods are used to experimentally identify novel genes involved in two independent scenarios: the seed coat mucilage pathway in Arabidopsis thaliana and the hypoxic tuber development in Solanum tuberosum. In both cases an interesting method complementarity is shown, which strongly suggests a general use of hybrid approaches for transcript expression-based inferences. In conclusion, this work has helped to improve our understanding of gene transcription regulation through a better interpretation of high-throughput expression data. Part of the network reverse engineering methods described in this thesis have been included in a tool (CorTo) for gene network reverse engineering and annotated visualization from custom transcription datasets.}, language = {en} } @phdthesis{CastroPrieto2011, author = {Castro Prieto, Aines del Carmen}, title = {Immunogenetics of free-ranging felids on Namibian farmlands}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55505}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Genetic variation is crucial for the long-term survival of the species as it provides the potential for adaptive responses to environmental changes such as emerging diseases. The Major Histocompatibility Complex (MHC) is a gene family that plays a central role in the vertebrate's immune system by triggering the adaptive immune response after exposure to pathogens. MHC genes have become highly suitable molecular markers of adaptive significance. They synthesize two primary cell surface molecules namely MHC class I and class II that recognize short fragments of proteins derived respectively from intracellular (e.g. viruses) and extracellular (e.g. bacteria, protozoa, arthropods) origins and present them to immune cells. High levels of MHC polymorphism frequently observed in natural populations are interpreted as an adaptation to detect and present a wide array of rapidly evolving pathogens. This variation appears to be largely maintained by positive selection driven mainly by pathogenic selective pressures. For my doctoral research I focused on MHC I and II variation in free-ranging cheetahs (Acinonyx jubatus) and leopards (Panthera pardus) on Namibian farmlands. Both felid species are sympatric thus subject to similar pathogenic pressures but differ in their evolutionary and demographic histories. The main aims were to investigate 1) the extent and patterns of MHC variation at the population level in both felids, 2) the association between levels of MHC variation and disease resistance in free-ranging cheetahs, and 3) the role of selection at different time scales in shaping MHC variation in both felids. Cheetahs and leopards represent the largest free-ranging carnivores in Namibia. They concentrate in unprotected areas on privately owned farmlands where domestic and other wild animals also occur and the risk of pathogen transmission is increased. Thus, knowledge on adaptive genetic variation involved in disease resistance may be pertinent to both felid species' conservation. The cheetah has been used as a classic example in conservation genetics textbooks due to overall low levels of genetic variation. Reduced variation at MHC genes has been associated with high susceptibility to infectious diseases in cheetahs. However, increased disease susceptibility has only been observed in captive cheetahs whereas recent studies in free-ranging Namibian cheetahs revealed a good health status. This raised the question whether the diversity at MHC I and II genes in free-ranging cheetahs is higher than previously reported. In this study, a total of 10 MHC I alleles and four MHC II alleles were observed in 149 individuals throughout Namibia. All alleles but one likely belong to functional MHC genes as their expression was confirmed. The observed alleles belong to four MHC I and three MHC II genes in the species as revealed by phylogenetic analyses. Signatures of historical positive selection acting on specific sites that interact directly with pathogen-derived proteins were detected in both MHC classes. Furthermore, a high genetic differentiation at MHC I was observed between Namibian cheetahs from east-central and north-central regions known to differ substantially in exposure to feline-specific viral pathogens. This suggests that the patterns of MHC I variation in the current population mirrors different pathogenic selective pressure imposed by viruses. Cheetahs showed low levels of MHC diversity compared with other mammalian species including felids, but this does not seem to influence the current immunocompetence of free-ranging cheetahs in Namibia and contradicts the previous conclusion that the cheetah is a paradigm species of disease susceptibility. However, it cannot be ruled out that the low MHC variation might limit a prosperous immunocompetence in the case of an emerging disease scenario because none of the remaining alleles might be able to recognize a novel pathogen. In contrast to cheetahs, leopards occur in most parts of Africa being perhaps the most abundant big cat in the continent. Leopards seem to have escaped from large-scale declines due to epizootics in the past in contrast to some free-ranging large carnivore populations in Africa that have been afflicted by epizootics. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, I characterized genetic variation at MHC I and MHC II genes in free-ranging leopards from Namibia. A total of six MHC I and six MHC II sequences were detected in 25 individuals from the east-central region. The maximum number of sequences observed per individual suggests that they likely correspond to at least three MHC I and three MHC II genes. Hallmarks of MHC evolution were confirmed such as historical positive selection, recombination and trans-species polymorphism. The low MHC variation detected in Namibian leopards is not conclusive and further research is required to assess the extent of MHC variation in different areas of its geographic range. Results from this thesis will contribute to better understanding the evolutionary significance of MHC and conservation implications in free-ranging felids. Translocation of wildlife is an increasingly used management tool for conservation purposes that should be conducted carefully as it may affect the ability of the translocated animals to cope with different pathogenic selective pressures.}, language = {en} } @phdthesis{Vosloh2011, author = {Vosloh, Daniel}, title = {Subcellular compartmentation of primary carbon metabolism in mesophyll cells of Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55534}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Metabolismus in Pflanzenzellen ist stark kompartimentiert. Viele Stoffwechselwege haben Reaktionen in mehr als einem Kompartiment. Zum Beispiel wird w{\"a}hrend der Photosynthese in pflanzlichen Mesophyllzellen Kohlenstoff in Form von St{\"a}rke in den Chloroplasten synthetisiert, w{\"a}hrend es im Zytosol in Form von Sacharose gebildet und in der Vakuole gespeichert wird. Diese Reaktionen sind strikt reguliert um ein Gleichgewicht der Kohlenstoffpools der verschiedenen Kompartimente aufrecht zu erhalten und die Energieversorgung aller Teile der Zelle f{\"u}r anabolische Reaktionen sicher zu stellen. Ich wende eine Methode an, bei der die Zellen unter nicht-w{\"a}ssrigen Bedingungen fraktioniert werden und daher der metabolische Status der w{\"a}hrend der Ernte herrschte {\"u}ber den ganzen Zeitraum der Auftrennung beibehalten wird. Durch die Kombination von nichtw{\"a}ssriger Fraktionierung und verschiedener Massenspektrometrietechniken (Fl{\"u}ssigchromotagraphie- und Gaschromotagraphie basierende Massenspekrometrie) ist es m{\"o}glich die intrazellul{\"a}re Verteilung der meisten Intermediate des photosynthetischen Kohlenstoffstoffwechsels und der Produkte der nachgelagerten metabolischen Reaktionen zu bestimmen. Das Wissen {\"u}ber die in vivo Konzentrationen dieser Metabolite wurde genutzt um die {\"A}nderung der freien Gibbs Energie in vivo zu bestimmen. Mit Hilfe dessen kann bestimmt werden, welche Reaktion sich in einem Gleichgewichtszustand befinden und welche davon entfernt sind. Die Konzentration der Enzyme und der Km Werte wurden mit den Konzentrationen der Metabolite in vivo verglichen, um festzustellen, welche Enzyme substratlimitiert sind und somit sensitiv gegen{\"u}ber {\"A}nderungen der Substratkonzentration sind. Verschiedene Intermediate des Calvin-Benson Zyklus sind gleichzeitig Substrate f{\"u}r andere Stoffwechselwege, als da w{\"a}ren Dihyroxyaceton-phosphat (DHAP, Saccharosesynthese), Fructose 6-phosphat (Fru6P, St{\"a}rkesynthese), Erythrose 4-phosphat (E4P, Shikimat Stoffwechselweg) und Ribose 5-phosphat (R5P, Nukleotidbiosynthese). Die Enzyme, die diese Intermediate verstoffwechseln, liegen an den Abzweigungspunkten zu diesen Stoffwechselwegen. Diese sind Trisose phosphat isomerase (DHAP), Transketolase (E4P), Sedoheptulose-1,7 biphosphat aldolase (E4P) und Ribose-5-phosphat isomerase (R5P), welche nicht mit ihren Substraten ges{\"a}ttigt sind, da die jeweilige Substratkonzentration geringer als der zugeh{\"o}rige Km Wert ist. F{\"u}r metabolische Kontrolle bedeutet dies, dass diese Schritte am sensitivsten gegen{\"u}ber {\"A}nderungen der Substratkonzentrationen sind. Im Gegensatz dazu sind die regulierten irreversiblen Schritte von Fructose-1,6.biphosphatase und Sedoheptulose-1,7-biphosphatase relativ insensitiv gegen{\"u}ber {\"A}nderungen der Substratkonzentration. F{\"u}r den Stoffwechselweg der Saccharosesynthese konnte gezeigt werden, dass die zytosolische Aldolase eine geringer Bindeseitenkonzentration als Substratkonzentration (DHAP) aufweist, und dass die Konzentration von Saccharose-6-phosphat geringer als der Km Wert des synthetisierenden Enzyms Saccharose-phosphatase ist. Sowohl die Saccharose-phosphat-synthase, also auch die Saccharose-phosphatase sind in vivo weit von einem Gleichgewichtszustand entfernt. In Wildtyp Arabidopsis thaliana Columbia-0 Bl{\"a}ttern wurde der gesamte Pool von ADPGlc im Chloroplasten gefunden. Das Enzyme ADPGlc pyrophosphorylase ist im Chloroplasten lokalisiert und synthetisiert ADPGlc aus ATP und Glc1P. Dieses Verteilungsmuster spricht eindeutig gegen die Hypothese von Pozueta-Romero und Kollegen, dass ADPGlc im Zytosol durch ADP vermittelte Spaltung von Saccharose durch die Saccharose Synthase erzeugt wird. Basierend auf dieser Beobachtung und anderen ver{\"o}ffentlichten Ergebnissen wurde geschlußfolgert, dass der generell akzeptierte Stoffwechselweg der St{\"a}rkesynthese durch ADPGlc Produktion via ADPGlc pyrophosphorylase in den Chloroplasten korrekt ist, und die Hypothese des alternativen Stoffwechselweges unhaltbar ist. Innerhalb des Stoffwechselweges der Saccharosesynthsese wurde festgestellt, dass die Konzentration von ADPGlc geringer als der Km Wert des St{\"a}rkesynthase ist, was darauf hindeutet, dass das Enzym substratlimitiert ist. Eine generelle Beobachtung ist, dass viele Enzmye des Calvin-Benson Zyklus {\"a}hnliche Bindeseitenkonzentrationen wie Metabolitkonzentrationen aufweisen, wohingegen in den Synthesewegen von Saccharose und St{\"a}rke die Bindeseitenkonzentrationen der Enzyme viel geringer als die Metabolitkonzentrationen sind.}, language = {en} } @phdthesis{Devers2011, author = {Devers, Emanuel}, title = {Phosphate homeostasis and novel microRNAs are involved in the regulation of the arbuscular mycorrhizal symbiosis in Medicago truncatula}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55572}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Die arbuskul{\"a}re Mykorrhiza ist die wahrscheinlich {\"a}lteste Form der Wurzelsymbiosen zwischen Pflanzen und Pilzen und hat sich vor 420 Millionen Jahren entwickelt. In dieser Symbiose, die zwischen nahezu allen Landpflanzen und Pilzen des Reiches Glomeromycota ausgebildet wird, versorgt der Pilz die Pflanze mit N{\"a}hrstoffen, wobei die verbesserte Versorgung mit Phosphat f{\"u}r die Pflanze sicher den gr{\"o}ßten Vorteil darstellt. Im Gegenzug erh{\"a}lt der Pilz Zucker, welche die Pflanze aus der Photosynthese bereitstellt. Zu hohe Phosphatkonzentrationen im Boden oder D{\"u}nger f{\"u}hren allerdings zu einer Verringerung in der Auspr{\"a}gung der arbuskul{\"a}ren Mykorrhiza. Diese Unterdr{\"u}ckung der Symbiose wird nicht durch eine lokale Reaktion der Wurzeln ausgel{\"o}st, sondern in erster Linie durch einen hohen Phosphatgehalt im Pflanzenspross. Somit handelt es sich also um eine systemische, also dem Gesamtsystem „Pflanze" betreffende Antwort. Die molekularen Mechanismen dieser Anpassung sind noch wenig bekannt und sind vor allem f{\"u}r die Agrarwirtschaft von besonderem Interesse. Eine Mikro-RNA (miRNA) des bereits bekannten Phosphathom{\"o}ostasesignalwegs (PHR1-miRNA399-PHO2 Signalweg) akkumuliert verst{\"a}rkt in mykorrhizierten Wurzeln. Das deutet daraufhin, dass dieser Signalweg und diese miRNA eine wichtige Rolle in der Regulation der arbuskul{\"a}ren Mykorrhiza spielen. Ziel dieser Studie war es neue Einblicke in die molekularen Mechanismen, die zur Unterdr{\"u}ckung der arbuskul{\"a}ren Mykorrhiza bei hohen Phosphatkonzentrationen f{\"u}hren, zu gewinnen. Dabei sollte der Einfluss von PHO2, sowie von miRNAs in dieser Symbiose genauer untersucht werden. Ein funktionelles Ortholog von PHO2, MtPho2, wurde in der Pflanze Medicago truncatula identifiziert. MtPho2-Mutanten, welche nicht mehr in der Lage waren ein funktionales PHO2 Protein zu exprimieren, zeigten schnellere Kolonisierung durch den AM-Pilz. Jedoch wurde auch in den mtpho2-Mutanten die Symbiose durch hohe Phosphatkonzentrationen unterdr{\"u}ckt. Dies bedeutet, dass PHO2 und somit der PHR1-miRNA399-PHO2 Signalweg eine wichtige Funktion w{\"a}hrend der fortschreitenden Kolonisierung der Wurzel durch den Pilz hat, aber und weitere Mechanismen in der Unterd{\"u}ckung der Symbiose bei hohen Phosphatkonzentrationen beteiligt sein m{\"u}ssen. Die Analyse von Transkriptionsprofilen von Spross- und Wurzeln mittels Microarrays zeigte, dass die Unterdr{\"u}ckung der AM Symbiose durch hohe Phosphatkonzentrationen m{\"o}glicherweise auf eine Unterdr{\"u}ckung der Expression einer Reihe symbiosespezifischer Gene im Spross der Pflanze beruht. Um die Rolle weiterer miRNA in der AM Symbiose zu untersuchen, wurden mittels einer Hochdurchsatz-Sequenzierung 243 neue und 181 aus anderen Pflanzen bekannte miRNAs in M. truncatula entdeckt. Zwei dieser miRNAs, miR5229 und miR160f*, sind ausschließlich w{\"a}hrend der arbuskul{\"a}ren Mykorrhiza zu finden und weitere miRNAs werden w{\"a}hrend dieser Symbiose verst{\"a}rkt gebildet. Interessanterweise f{\"u}hren einige dieser miRNAs zum Abbau von Transkripten, die eine wichtige Funktion in der arbuskul{\"a}ren Mykorrhiza und Wurzelkn{\"o}llchensymbiose besitzen. Die Ergebnisse dieser Studie liefern eine neue Grundlage f{\"u}r die Untersuchung von regulatorischen Netzwerken, die zur zellul{\"a}ren Umprogrammierung w{\"a}hrend der Interaktion zwischen Pflanzen und arbuskul{\"a}ren Mykorrhiza-Pilzen bei verschiedenen Phosphatbedingungen f{\"u}hren.}, language = {en} } @phdthesis{Winck2011, author = {Winck, Flavia Vischi}, title = {Nuclear proteomics and transcription factor profiling in Chlamydomonas reinhardtii}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53909}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The transcriptional regulation of the cellular mechanisms involves many different components and different levels of control which together contribute to fine tune the response of cells to different environmental stimuli. In some responses, diverse signaling pathways can be controlled simultaneously. One of the most important cellular processes that seem to possess multiple levels of regulation is photosynthesis. A model organism for studying photosynthesis-related processes is the unicellular green algae Chlamydomonas reinhardtii, due to advantages related to culturing, genetic manipulation and availability of genome sequence. In the present study, we were interested in understanding the regulatory mechanisms underlying photosynthesis-related processes. To achieve this goal different molecular approaches were followed. In order to indentify protein transcriptional regulators we optimized a method for isolation of nuclei and performed nuclear proteome analysis using shotgun proteomics. This analysis permitted us to improve the genome annotation previously published and to discover conserved and enriched protein motifs among the nuclear proteins. In another approach, a quantitative RT-PCR platform was established for the analysis of gene expression of predicted transcription factor (TF) and other transcriptional regulator (TR) coding genes by transcript profiling. The gene expression profiles for more than one hundred genes were monitored in time series experiments under conditions of changes in light intensity (200 µE m-2 s-1 to 700 µE m-2 s-1), and changes in concentration of carbon dioxide (5\% CO2 to 0.04\% CO2). The results indicate that many TF and TR genes are regulated in both environmental conditions and groups of co-regulated genes were found. Our findings also suggest that some genes can be common intermediates of light and carbon responsive regulatory pathways. These approaches together gave us new insights about the regulation of photosynthesis and revealed new candidate regulatory genes, helping to decipher the gene regulatory networks in Chlamydomonas. Further experimental studies are necessary to clarify the function of the candidate regulatory genes and to elucidate how cells coordinately regulate the assimilation of carbon and light responses.}, language = {en} }