@misc{MuellerBoeckmannKolgotinetal.2016, author = {M{\"u}ller, Detlef and B{\"o}ckmann, Christine and Kolgotin, Alexei and Schneidenbach, Lars and Chemyakin, Eduard and Rosemann, Julia and Znak, Pavel and Romanov, Anton}, title = {Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {565}, issn = {1866-8372}, doi = {10.25932/publishup-41193}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411934}, pages = {29}, year = {2016}, abstract = {We present a summary on the current status of two inversion algorithms that are used in EARLINET (European Aerosol Research Lidar Network) for the inversion of data collected with EARLINET multiwavelength Raman lidars. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. Development of these two algorithms started in 2000 when EARLINET was founded. The algorithms are based on a manually controlled inversion of optical data which allows for detailed sensitivity studies. The algorithms allow us to derive particle effective radius as well as volume and surface area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light absorption needs to be known with high accuracy. It is an extreme challenge to retrieve the real part with an accuracy better than 0.05 and the imaginary part with accuracy better than 0.005-0.1 or +/- 50 \%. Single-scattering albedo can be computed from the retrieved microphysical parameters and allows us to categorize aerosols into high-and low-absorbing aerosols. On the basis of a few exemplary simulations with synthetic optical data we discuss the current status of these manually operated algorithms, the potentially achievable accuracy of data products, and the goals for future work. One algorithm was used with the purpose of testing how well microphysical parameters can be derived if the real part of the complex refractive index is known to at least 0.05 or 0.1. The other algorithm was used to find out how well microphysical parameters can be derived if this constraint for the real part is not applied. The optical data used in our study cover a range of Angstrom exponents and extinction-to-backscatter (lidar) ratios that are found from lidar measurements of various aerosol types. We also tested aerosol scenarios that are considered highly unlikely, e.g. the lidar ratios fall outside the commonly accepted range of values measured with Raman lidar, even though the underlying microphysical particle properties are not uncommon. The goal of this part of the study is to test the robustness of the algorithms towards their ability to identify aerosol types that have not been measured so far, but cannot be ruled out based on our current knowledge of aerosol physics. We computed the optical data from monomodal logarithmic particle size distributions, i.e. we explicitly excluded the more complicated case of bimodal particle size distributions which is a topic of ongoing research work. Another constraint is that we only considered particles of spherical shape in our simulations. We considered particle radii as large as 7-10 mu m in our simulations where the Potsdam algorithm is limited to the lower value. We considered optical-data errors of 15\% in the simulation studies. We target 50\% uncertainty as a reasonable threshold for our data products, though we attempt to obtain data products with less uncertainty in future work.}, language = {en} } @misc{FeldmannLevermann2016, author = {Feldmann, Johannes and Levermann, Anders}, title = {Similitude of ice dynamics against scaling of geometry and physical parameters}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {564}, issn = {1866-8372}, doi = {10.25932/publishup-41244}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412441}, pages = {1753 -- 1769}, year = {2016}, abstract = {The concept of similitude is commonly employed in the fields of fluid dynamics and engineering but rarely used in cryospheric research. Here we apply this method to the problem of ice flow to examine the dynamic similitude of isothermal ice sheets in shallow-shelf approximation against the scaling of their geometry and physical parameters. Carrying out a dimensional analysis of the stress balance we obtain dimensionless numbers that characterize the flow. Requiring that these numbers remain the same under scaling we obtain conditions that relate the geometric scaling factors, the parameters for the ice softness, surface mass balance and basal friction as well as the ice-sheet intrinsic response time to each other. We demonstrate that these scaling laws are the same for both the (two-dimensional) flow-line case and the three-dimensional case. The theoretically predicted ice-sheet scaling behavior agrees with results from numerical simulations that we conduct in flow-line and three-dimensional conceptual setups. We further investigate analytically the implications of geometric scaling of ice sheets for their response time. With this study we provide a framework which, under several assumptions, allows for a fundamental comparison of the ice-dynamic behavior across different scales. It proves to be useful in the design of conceptual numerical model setups and could also be helpful for designing laboratory glacier experiments. The concept might also be applied to real-world systems, e.g., to examine the response times of glaciers, ice streams or ice sheets to climatic perturbations.}, language = {en} } @misc{Ette2016, author = {Ette, Ottmar}, title = {Magic screens}, series = {Postprints der Universit{\"a}t Potsdam : Philosophische Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Philosophische Reihe}, number = {156}, issn = {1866-8380}, doi = {10.25932/publishup-41366}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413669}, pages = {12}, year = {2016}, abstract = {Garcilaso de la Vega el Inca, for several centuries doubtlessly the most discussed and most eminent writer of Andean America in the 16th and 17th centuries, throughout his life set the utmost value on the fact that he descended matrilineally from Atahualpa Yupanqui and from the last Inca emperor, Huayna Capac. Thus, both in his person and in his creative work he combined different cultural worlds in a polylogical way. (1) Two painters boasted that very same Inca descent - they were the last two great masters of the Cuzco school of painting, which over several generations of artists had been an institution of excellent renown and prestige, and whose economic downfall and artistic marginalization was vividly described by the French traveller Paul Mancoy in 1837.(2) While, during the 18th century, Cuzco school paintings were still much cherished and sought after, by the beginning of the following century the elite of Lima regarded them as behind the times and provincial, committed to an 'indigenous' painting style. The artists from up-country - such was the reproach - could not keep up with the modern forms of seeing and creating, as exemplified by European paragons. Yet, just how 'provincial', truly, was this art?}, language = {en} } @misc{BoettleRybskiKropp2016, author = {Boettle, Markus and Rybski, Diego and Kropp, J{\"u}rgen}, title = {Quantifying the effect of sea level rise and flood defence}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {559}, issn = {1866-8372}, doi = {10.25932/publishup-41240}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412405}, pages = {18}, year = {2016}, abstract = {In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal the complex interplay of the involved parameters and allow conclusions of fundamental relevance. For instance, we show that the damage typically increases faster than the sea level rise itself. This in turn can be of great importance for the assessment of sea level rise impacts on the global scale. Our results are accompanied by an assessment of uncertainty, which reflects the stochastic nature of extreme events. While the absolute value of uncertainty about the flood damage increases with rising mean sea levels, we find that it decreases in relation to the expected damage.}, language = {en} } @misc{ChaykovskaHeunischvonEinemetal.2016, author = {Chaykovska, Lyubov and Heunisch, Fabian and von Einem, Gina and Alter, Markus L. and Hocher, Carl-Friedrich and Tsuprykov, Oleg and Dschietzig, Thomas and Kretschmer, Axel and Hocher, Berthold}, title = {Urinary vitamin D binding protein and KIM-1 are potent new biomarkers of major adverse renal events in patients undergoing coronary angiography}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {558}, issn = {1866-8372}, doi = {10.25932/publishup-41192}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411928}, pages = {11}, year = {2016}, abstract = {Background Vitamin-D-binding protein (VDBP) is a low molecular weight protein that is filtered through the glomerulus as a 25-(OH) vitamin D 3/VDBP complex. In the normal kidney VDBP is reabsorbed and catabolized by proximal tubule epithelial cells reducing the urinary excretion to trace amounts. Acute tubular injury is expected to result in urinary VDBP loss. The purpose of our study was to explore the potential role of urinary VDBP as a biomarker of an acute renal damage. Method We included 314 patients with diabetes mellitus or mild renal impairment undergoing coronary angiography and collected blood and urine before and 24 hours after the CM application. Patients were followed for 90 days for the composite endpoint major adverse renal events (MARE: need for dialysis, doubling of serum creatinine after 90 days, unplanned emergency rehospitalization or death). Results Increased urine VDBP concentration 24 hours after contrast media exposure was predictive for dialysis need (no dialysis: 113.06 +/- 299.61ng/ml, n = 303; need for dialysis: 613.07 +/- 700.45 ng/ml, n = 11, Mean +/- SD, p < 0.001), death (no death during follow-up: 121.41 +/- 324.45 ng/ml, n = 306; death during follow-up: 522.01 +/- 521.86 ng/ml, n = 8; Mean +/- SD, p < 0.003) and MARE (no MARE: 112.08 +/- 302.00ng/ml, n = 298; MARE: 506.16 +/- 624.61 ng/ml, n = 16, Mean +/- SD, p < 0.001) during the follow-up of 90 days after contrast media exposure. Correction of urine VDBP concentrations for creatinine excretion confirmed its predictive value and was consistent with increased levels of urinary Kidney Injury Molecule1 (KIM-1) and baseline plasma creatinine in patients with above mentioned complications. The impact of urinary VDBP and KIM-1 on MARE was independent of known CIN risk factors such as anemia, preexisting renal failure, preexisting heart failure, and diabetes. Conclusions Urinary VDBP is a promising novel biomarker of major contrast induced nephropathy-associated events 90 days after contrast media exposure.}, language = {en} } @misc{ZieglerHeidbachReineckeretal.2016, author = {Ziegler, Moritz O. and Heidbach, Oliver and Reinecker, John and Przybycin, Anna M. and Scheck-Wenderoth, Magdalena}, title = {A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {556}, issn = {1866-8372}, doi = {10.25932/publishup-40980}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409806}, pages = {18}, year = {2016}, abstract = {The knowledge of the contemporary in situ stress state is a key issue for safe and sustainable subsurface engineering. However, information on the orientation and magnitudes of the stress state is limited and often not available for the areas of interest. Therefore 3-D geomechanical-numerical modelling is used to estimate the in situ stress state and the distance of faults from failure for application in subsurface engineering. The main challenge in this approach is to bridge the gap in scale between the widely scattered data used for calibration of the model and the high resolution in the target area required for the application. We present a multi-stage 3-D geomechanical-numerical approach which provides a state-of-the-art model of the stress field for a reservoir-scale area from widely scattered data records. Therefore, we first use a large-scale regional model which is calibrated by available stress data and provides the full 3-D stress tensor at discrete points in the entire model volume. The modelled stress state is used subsequently for the calibration of a smaller-scale model located within the large-scale model in an area without any observed stress data records. We exemplify this approach with two-stages for the area around Munich in the German Molasse Basin. As an example of application, we estimate the scalar values for slip tendency and fracture potential from the model results as measures for the criticality of fault reactivation in the reservoir-scale model. The modelling results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing S-Hmax magnitude estimates needed for a more reliable model calibration. This leads to the conclusion that at this stage the model's reliability depends only on the amount and quality of available stress information rather than on the modelling technique itself or on local details of the model geometry. Any improvements in modelling and increases in model reliability can only be achieved using more high-quality data for calibration.}, language = {en} } @misc{KellermannSchoenbergerThieken2016, author = {Kellermann, Patric and Sch{\"o}nberger, Christine and Thieken, Annegret}, title = {Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {555}, issn = {1866-8372}, doi = {10.25932/publishup-41191}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411915}, pages = {15}, year = {2016}, abstract = {Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than EUR 100 million due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate (1) the expected structural flood damage and (2) the resulting repair costs of railway infrastructure due to a 30-, 100- and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.}, language = {en} } @misc{EmbersonHoviusGalyetal.2016, author = {Emberson, Robert and Hovius, Niels and Galy, Albert and Marc, Odin}, title = {Oxidation of sulfides and rapid weathering in recent landslides}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {553}, issn = {1866-8372}, doi = {10.25932/publishup-41232}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412326}, pages = {16}, year = {2016}, abstract = {Linking together the processes of rapid physical erosion and the resultant chemical dissolution of rock is a crucial step in building an overall deterministic understanding of weathering in mountain belts. Landslides, which are the most volumetrically important geomorphic process at these high rates of erosion, can generate extremely high rates of very localised weathering. To elucidate how this process works we have taken advantage of uniquely intense landsliding, resulting from Typhoon Morakot, in the T'aimali River and surrounds in southern Taiwan. Combining detailed analysis of landslide seepage chemistry with estimates of catchment-by-catchment landslide volumes, we demonstrate that in this setting the primary role of landslides is to introduce fresh, highly labile mineral phases into the surface weathering environment. There, rapid weathering is driven by the oxidation of pyrite and the resultant sulfuric-acid-driven dissolution of primarily carbonate rock. The total dissolved load correlates well with dissolved sulfate - the chief product of this style of weathering - in both landslides and streams draining the area (R-2 = 0.841 and 0.929 respectively; p < 0.001 in both cases), with solute chemistry in seepage from landslides and catchments affected by significant landsliding governed by the same weathering reactions. The predominance of coupled carbonate-sulfuric-acid-driven weathering is the key difference between these sites and previously studied landslides in New Zealand (Emberson et al., 2016), but in both settings increasing volumes of landslides drive greater overall solute concentrations in streams. Bedrock landslides, by excavating deep below saprolite-rock interfaces, create conditions for weathering in which all mineral phases in a lithology are initially unweathered within landslide deposits. As a result, the most labile phases dominate the weathering immediately after mobilisation and during a transient period of depletion. This mode of dissolution can strongly alter the overall output of solutes from catchments and their contribution to global chemical cycles if landslide-derived material is retained in catchments for extended periods after mass wasting.}, language = {en} } @misc{YanFriemelAloisietal.2016, author = {Yan, Robert and Friemel, Martin and Aloisi, Claudia and Huynen, Martijn and Taylor, Ian A. and Leimk{\"u}hler, Silke and Pastore, Annalisa}, title = {The eukaryotic-specific Isd11 is a complex- orphan protein with ability to bind the prokaryotic IscS}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {551}, issn = {1866-8372}, doi = {10.25932/publishup-41190}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411906}, pages = {14}, year = {2016}, abstract = {The eukaryotic protein Isd11 is a chaperone that binds and stabilizes the central component of the essential metabolic pathway responsible for formation of iron-sulfur clusters in mitochondria, the desulfurase Nfs1. Little is known about the exact role of Isd11. Here, we show that human Isd11 (ISD11) is a helical protein which exists in solution as an equilibrium between monomer, dimeric and tetrameric species when in the absence of human Nfs1 (NFS1). We also show that, surprisingly, recombinant ISD11 expressed in E. coli co-purifies with the bacterial orthologue of NFS1, IscS. Binding is weak but specific suggesting that, despite the absence of Isd11 sequences in bacteria, there is enough conservation between the two desulfurases to retain a similar mode of interaction. This knowledge may inform us on the conservation of the mode of binding of Isd11 to the desulfurase. We used evolutionary evidence to suggest Isd11 residues involved in the interaction.}, language = {en} } @misc{KayserAgtheManer2016, author = {Kayser, Daniela Niesta and Agthe, Maria and Maner, Jon K.}, title = {Strategic sexual signals}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwisseschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwisseschaftliche Reihe}, number = {513}, issn = {1866-8364}, doi = {10.25932/publishup-41188}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411880}, pages = {10}, year = {2016}, abstract = {The color red has special meaning in mating-relevant contexts. Wearing red can enhance perceptions of women's attractiveness and desirability as a potential romantic partner. Building on recent findings, the present study examined whether women's (N = 74) choice to display the color red is influenced by the attractiveness of an expected opposite-sex interaction partner. Results indicated that female participants who expected to interact with an attractive man displayed red (on clothing, accessories, and/or makeup) more often than a baseline consisting of women in a natural environment with no induced expectation. In contrast, when women expected to interact with an unattractive man, they eschewed red, displaying it less often than in the baseline condition. Findings are discussed with respect to evolutionary and cultural perspectives on mate evaluation and selection.}, language = {en} }