@article{SiegVogelMerzetal.2019, author = {Sieg, Tobias and Vogel, Kristin and Merz, Bruno and Kreibich, Heidi}, title = {Seamless Estimation of Hydrometeorological Risk Across Spatial Scales}, series = {Earth's Future}, volume = {7}, journal = {Earth's Future}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken, NJ}, issn = {2328-4277}, doi = {10.1029/2018EF001122}, pages = {574 -- 581}, year = {2019}, abstract = {Hydrometeorological hazards caused losses of approximately 110 billion U.S. Dollars in 2016 worldwide. Current damage estimations do not consider the uncertainties in a comprehensive way, and they are not consistent between spatial scales. Aggregated land use data are used at larger spatial scales, although detailed exposure data at the object level, such as openstreetmap.org, is becoming increasingly available across the globe.We present a probabilistic approach for object-based damage estimation which represents uncertainties and is fully scalable in space. The approach is applied and validated to company damage from the flood of 2013 in Germany. Damage estimates are more accurate compared to damage models using land use data, and the estimation works reliably at all spatial scales. Therefore, it can as well be used for pre-event analysis and risk assessments. This method takes hydrometeorological damage estimation and risk assessments to the next level, making damage estimates and their uncertainties fully scalable in space, from object to country level, and enabling the exploitation of new exposure data.}, language = {en} } @article{SheikholeslamiOberhaensliGhassemi2019, author = {Sheikholeslami, Mohammad Reza and Oberh{\"a}nsli, Roland and Ghassemi, Mohammad R.}, title = {Transpression tectonics in the eastern Binalud Mountains, northeast Iran; Insight from finite strain analysis, vorticity and Ar-40/Ar-39 dating}, series = {Journal of Asian earth sciences}, volume = {179}, journal = {Journal of Asian earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {1367-9120}, doi = {10.1016/j.jseaes.2019.04.014}, pages = {219 -- 237}, year = {2019}, abstract = {Different tectonic episodes from Late Triassic to recent times in the eastern Binalud Mountains have resulted from convergence and transpression between the Turan and Central Iran plates. Heterogeneous deformation and variable portions of pure and simple shear, demonstrated by finite strain and vorticity analysis in the Mashhad metamorphic rocks, indicate strain partitioning during the first tectonic episode. Modern strain partitioning is characterized by reverse and strike-slip faulting along the Neyshabur fault system and Shandiz fault zone in the southern and northern flanks of the eastern Binalud, respectively. Time-transgressive regional deformation migrated from the hinterland of the belt into the foreland basin, from northeast to the southwest of the mountains. Different generations of deformation resulted in obliteration of the subduction-related accretionary wedge, and growth of an orogenic wedge resulted from collision between the Central Iran and Turan plates.}, language = {en} } @article{SerranoAlawideVeraetal.2019, author = {Serrano, Paloma and Alawi, Mashal and de Vera, Jean-Pierre Paul and Wagner, Dirk}, title = {Response of Methanogenic Archaea from Siberian Permafrost and Non-permafrost Environments to Simulated Mars-like Desiccation and the Presence of Perchlorate}, series = {Astrobiology}, volume = {19}, journal = {Astrobiology}, number = {2}, publisher = {Liebert}, address = {New Rochelle}, issn = {1531-1074}, doi = {10.1089/ast.2018.1877}, pages = {197 -- 208}, year = {2019}, abstract = {Numerous preflight investigations were necessary prior to the exposure experiment BIOMEX on the International Space Station to test the basic potential of selected microorganisms to resist or even to be active under Mars-like conditions. In this study, methanogenic archaea, which are anaerobic chemolithotrophic microorganisms whose lifestyle would allow metabolism under the conditions on early and recent Mars, were analyzed. Some strains from Siberian permafrost environments have shown a particular resistance. In this investigation, we analyzed the response of three permafrost strains (Methanosarcina soligelidi SMA-21, Candidatus Methanosarcina SMA-17, Candidatus Methanobacterium SMA-27) and two related strains from non-permafrost environments (Methanosarcina mazei, Methanosarcina barkeri) to desiccation conditions (-80 degrees C for 315 days, martian regolith analog simulants S-MRS and P-MRS, a 128-day period of simulated Mars-like atmosphere). Exposure of the different methanogenic strains to increasing concentrations of magnesium perchlorate allowed for the study of their metabolic shutdown in a Mars-relevant perchlorate environment. Survival and metabolic recovery were analyzed by quantitative PCR, gas chromatography, and a new DNA-extraction method from viable cells embedded in S-MRS and P-MRS. All strains survived the two Mars-like desiccating scenarios and recovered to different extents. The permafrost strain SMA-27 showed an increased methanogenic activity by at least 10-fold after deep-freezing conditions. The methanogenic rates of all strains did not decrease significantly after 128 days S-MRS exposure, except for SMA-27, which decreased 10-fold. The activity of strains SMA-17 and SMA-27 decreased after 16 and 60 days P-MRS exposure. Non-permafrost strains showed constant survival and methane production when exposed to both desiccating scenarios. All strains showed unaltered methane production when exposed to the perchlorate concentration reported at the Phoenix landing site (2.4 mM) or even higher concentrations. We conclude that methanogens from (non-)permafrost environments are suitable candidates for potential life in the martian subsurface and therefore are worthy of study after space exposure experiments that approach Mars-like surface conditions.}, language = {en} } @article{SchneiderHeinecke2019, author = {Schneider, Simon and Heinecke, Liv}, title = {The need to transform Science Communication from being multi-cultural via cross-cultural to intercultural}, series = {Advances in Geosciences}, journal = {Advances in Geosciences}, number = {46}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1680-7359}, doi = {10.5194/adgeo-46-11-2019}, pages = {11 -- 19}, year = {2019}, abstract = {When dealing with issues that are of high societal relevance, Earth sciences still face a lack of acceptance, which is partly rooted in insufficient communication strategies on the individual and local community level. To increase the efficiency of communication routines, science has to transform its outreach concepts to become more aware of individual needs and demands. The "encoding/decoding" concept as well as critical intercultural communication studies can offer pivotal approaches for this transformation.}, language = {en} } @article{SchneiderHoffmannMuenkeretal.2019, author = {Schneider, K. P. and Hoffmann, J. E. and M{\"u}nker, C. and Patyniak, Magda and Sprung, P. and Roerdink, D. and Garbe-Sch{\"o}nberg, D. and Kr{\"o}ner, A.}, title = {Petrogenetic evolution of metabasalts and metakomatiites of the lower Onverwacht Group, Barberton Greenstone Belt (South Africa)}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {511}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2019.02.020}, pages = {152 -- 177}, year = {2019}, abstract = {A well-preserved sequence, by Archean standards, of mantle-derived metabasalts and metakomatiites forms large parts of the lower Onverwacht Group of the Barberton Greenstone Belt (South Africa). To elucidate the origin of mafic and ultramafic rocks from this 3.55 to 3.45 Ga sequence, we present a comprehensive geochemical dataset including major and trace elements as well as Lu-Hf and Sm-Nd isotope compositions for a variety of metavolcanic rocks. These include metabasalts of the amphibolite-facies Sandspruit and Theespruit Formations as well as metabasalts and metakomatiites of the lower greenschist-facies Komati Formation. Based on their incompatible trace element patterns, the basalts of the Sandspruit and Theespruit Formations can be subdivided into a light rare earth element (LREE) depleted group, a LREE-undepleted group, and a LREE-enriched group. Positive epsilon Hf-(t) and epsilon Nd-(t) values of ca. +3 to +4 and 0 to +2, respectively, together with depletions in Th and La-CN/Yb-CN indicate derivation of the LREE-depleted basalts from a depleted mantle source. However, chondritic epsilon Hf-(t) and epsilon Nd-(t) values combined with positive Th and La-CN/Yb-CN of the LREE-enriched samples indicate a contribution from older granitoid crust in the petrogenesis of these samples. Trace element patterns of komatiites and basalts of the Komati Formation are generally flat relative to primitive mantle with slight depletions in heavy rare earth elements and Th and overall positive epsilon Hf-(t) of + 2.5 +/- 3.5 (2 s.d.) and epsilon Nd-(t) of + 0.5 +/- 2.2 (2 s. d.). The coherence in trace element characteristics suggests a common magmatic origin for basalts and komatiites. This study reveals that the two lavas were derived from the same mantle plume, i. e. komatiites were formed by high degrees of melting of a depleted mantle source containing residual garnet and the basalts were formed by moderate degrees of partial melting in shallower regions of the mantle. Based on the current dataset, combined with published data, we propose a geodynamic model for the oldest units of the Barberton Greenstone Belt that describes the development from a submerged continental setting (for the Sandspruit and Theespruit Formations) to a submarine plateau setting (for the Komati Formation) as a consequence of continental rifting.}, language = {en} } @phdthesis{Schleicher2019, author = {Schleicher, Anja Maria}, title = {The significance of clay minerals in active fault zones}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2019}, abstract = {Die vorliegende Habilitationsschrift umfasst Forschungsergebnisse aus Studien, die sich mit Fluid-Gesteins-Wechselwirkungen und Deformationsprozessen in aktiven St{\"o}rungszonen befassen, wobei der Einfluss der Tonminerale auf das geochemische und hydromechanische Verhalten dieser St{\"o}rungen im Vordergrund steht. Kernproben (core) und Bohrklein (cuttings) aus vier verschiedenen Bohrprojekten an der San Andreas St{\"o}rung (USA), der Nankai Trough Subduktionszone und der Japan Trench Subduktionszone (Japan), sowie der Alpine St{\"o}rung in Neuseeland wurden untersucht. Die von ICDP (International Continental Scientific Drilling Program) und IODP (International Ocean Discovery Program) unterst{\"u}tzten Projekte verfolgen alle das Ziel, das Verhalten von Erdbeben besser zu verstehen. In Kapitel 1 werden in einer kurzen Einleitung die allgemeinen thematischen Grundlagen und Ziele der Arbeit beschrieben. Kapitel 2 umfasst den Stand der Forschung, eine kurze Beschreibung der einzelnen Bohrprojekte und Standorte, sowie eine Zusammenfassung der wichtigsten Messmethoden. Kapitel 3 beinhaltet insgesamt zehn wissenschaftliche Arbeiten, die alle in einem methodisch-thematischen Zusammenhang stehen. Die Manuskripte wurden in den Jahren 2006-2015 ver{\"o}ffentlicht, wobei weitere Arbeiten aus diesem Themenbereich im Literaturverzeichnis vermerkt sind. Sie gehen auf unterschiedliche Fragestellungen um die Bildung und das Verhalten von Tonmineralen in aktiven St{\"o}rungszonen ein. Insgesamt sechs Publikationen beinhalten Daten und Forschungsergebnisse, die im Rahmen des SAFOD Projektes, USA (San Andreas Fault Observatory at Depth) erstellt wurden. Hier wurde vor allem auf die Fluid-Gesteins-Wechselwirkungsprozesse im St{\"o}rungsgestein und die daraus resultierende Bildung von Tonmineralen eingegangen. Drei weitere Arbeiten wurden im Rahmen des NanTroSEIZE Projektes, Japan (Nankai Trough Seismogenic Zone Experiment) und des JFAST Projektes, Japan (Japan Trench Fast Drilling Project) erstellt. Hier steht vor allem das Verhalten von quellf{\"a}higen Tonmineralen auf sich {\"a}ndernde Umgebungsbedingungen (z.B. Temperatur und Feuchtigkeit) im Mittelpunkt. Die zehnte hier vorgestellte Ver{\"o}ffentlichung betrifft Analysen rund um das DFDP Projekt (Deep Fault Drilling Project) in Neuseeland, wobei hier die Deformation von Tonmineralen und das hydro-mechanische Verhalten der St{\"o}rungszone im Vordergrund stehen. In neun Ver{\"o}ffentlichungen war ich als Erstautor f{\"u}r die Vorbereitung des Projektes, das Erstellen der Daten und die Fertigstellung der Manuskripte zust{\"a}ndig. In einer Publikation war ich als Mitautorin f{\"u}r die elektronenmikroskopischen Analysen und deren Interpretation verantwortlich. Die wichtigsten Ergebnisse der in Kapitel 3 vorgelegten Arbeiten werden in Kapitel 4 unter Ber{\"u}cksichtigung neuer Publikationen diskutiert. Nach der Beschreibung der Thesen in Kapitel 5 werden in Kapitel 6 „Outlook" die Highlights zuk{\"u}nftiger Forschungspl{\"a}ne am GFZ n{\"a}her beschrieben. Die Habilitationsschrift endet mit dem Anhang, in welchem unter anderem das Laborequipment genauer beschrieben wird, sowie die Publikationen, Konferenzbeitr{\"a}ge und Lehrbeitr{\"a}ge aufgelistet sind.}, language = {en} } @article{ScheingrossHoviusDellingeretal.2019, author = {Scheingross, Joel S. and Hovius, Niels and Dellinger, M. and Hilton, R. G. and Repasch, M. and Sachse, Dirk and Grocke, D. R. and Vieth-Hillebrand, Andrea and Turowski, Jens M.}, title = {Preservation of organic carbon during active fluvial transport and particle abrasion}, series = {Geology}, volume = {47}, journal = {Geology}, number = {10}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G46442.1}, pages = {958 -- 962}, year = {2019}, abstract = {Oxidation of particulate organic carbon (POC) during fluvial transit releases CO2 to the atmosphere and can influence global climate. Field data show large POC oxidation fluxes in lowland rivers; however, it is unclear if POC losses occur predominantly during in-river transport, where POC is in continual motion within an aerated environment, or during transient storage in floodplains, which may be anoxic. Determination of the locus of POC oxidation in lowland rivers is needed to develop process-based models to predict POC losses, constrain carbon budgets, and unravel links between climate and erosion. However, sediment exchange between rivers and floodplains makes differentiating POC oxidation during in-river transport from oxidation during floodplain storage difficult. Here, we isolated inriver POC oxidation using flume experiments transporting petrogenic and biospheric POC without floodplain storage. Our experiments showed solid phase POC losses of 0\%-10\% over similar to 10(3) km of fluvial transport, compared to similar to 7\% to >50\% losses observed in rivers over similar distances. The production of dissolved organic carbon (DOC) and dissolved rhenium (a proxy for petrogenic POC oxidation) was consistent with small POC lasses, and replicate experiments in static water tanks gave similar results. Our results show that fluvial sediment transport, particle abrasion, and turbulent mixing have a minimal role on POC oxidation, and they suggest that POC losses may accrue primarily in floodplain storage.}, language = {en} } @article{SchefflerImmenhauserPourteauetal.2019, author = {Scheffler, Franziska and Immenhauser, Adrian and Pourteau, Amaury and Natalicchio, Marcello and Candan, Osman and Oberh{\"a}nsli, Roland}, title = {A lost Tethyan evaporitic basin}, series = {Sedimentology : the journal of the International Association of Sedimentologists}, volume = {66}, journal = {Sedimentology : the journal of the International Association of Sedimentologists}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0037-0746}, doi = {10.1111/sed.12606}, pages = {2627 -- 2660}, year = {2019}, abstract = {Ancient evaporite deposits are geological archives of depositional environments characterized by a long-term negative precipitation balance and bear evidence for global ocean element mass balance calculations. Here, Cretaceous selenite pseudomorphs from western Anatolia ('Rosetta Marble') — characterized by their exceptional morphological preservation — and their 'marine' geochemical signatures are described and interpreted in a process-oriented context. These rocks recorded Late Cretaceous high-pressure/low-temperature, subduction-related metamorphism with peak conditions of 1·0 to 1·2 GPa and 300 to 400°C. Metre-scale, rock-forming radiating rods, now present as fibrous calcite marble, clearly point to selenitic gypsum as the precursor mineral. Stratigraphic successions are recorded along a reconstructed proximal to distal transect. The cyclical alternation of selenite beds and radiolarian ribbon-bedded cherts in the distal portions are interpreted as a two type of seawater system. During arid intervals, shallow marine brines cascaded downward into basinal settings and induced precipitation. During more humid times, upwelling-induced radiolarian blooms caused the deposition of radiolarite facies. Interestingly, there is no comparable depositional setting known from the Cenozoic world. Meta-selenite geochemical data (δ13C, δ18O and 87Sr/86Sr) plot within the range of reconstructed middle Cretaceous seawater signatures. Possible sources for the 13C-enriched (mean 2·2 per mille) values include methanogenesis, gas hydrates and cold seep fluid exhalation. Spatially resolved component-specific analysis of a rock slab displays isotopic variances between meta-selenite crystals (mean δ13C 2·2 per mille) and host matrix (mean δ13C 1·3 per mille). The Cretaceous evaporite-pseudomorphs of Anatolia represent a basin wide event coeval with the Aptian evaporites of the Proto-Atlantic and the pseudomorphs share many attributes, including lateral distribution of 600 km and stratigraphic thickness of 1·5 to 2·0 km, with the evaporites formed during the younger Messinian salinity crisis. The Rosetta Marble of Anatolia may represent the best-preserved selenite pseudomorphs worldwide and have a clear potential to act as a template for the study of meta-selenite in deep time.}, language = {en} } @phdthesis{Scheffler2019, author = {Scheffler, Franziska}, title = {Selenite pseudomorphs}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2019}, language = {en} } @article{SchattanKoehliSchroenetal.2019, author = {Schattan, Paul and K{\"o}hli, Markus and Schr{\"o}n, Martin and Baroni, Gabriele and Oswald, Sascha}, title = {Sensing area-average snow water equivalent with cosmic-ray neutrons: the influence of fractional snow cover}, series = {Water resources research}, volume = {55}, journal = {Water resources research}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2019WR025647}, pages = {10796 -- 10812}, year = {2019}, abstract = {Cosmic-ray neutron sensing (CRNS) is a promising non-invasive technique to estimate snow water equivalent (SWE) over large areas. In contrast to preliminary studies focusing on shallow snow conditions (SWE <130 mm), more recently the method was shown experimentally to be sensitive also to deeper snowpacks providing the basis for its use at mountain experimental sites. However, hysteretic neutron response has been observed for complex snow cover including patchy snow-free areas. In the present study we aimed to understand and support the experimental findings using a comprehensive neutron modeling approach. Several simulations have been set up in order to disentangle the effect on the signal of different land surface characteristics and to reproduce multiple observations during periods of snow melt and accumulation. To represent the actual land surface heterogeneity and the complex snow cover, the model used data from terrestrial laser scanning. The results show that the model was able to accurately reproduce the CRNS signal and particularly the hysteresis effect during accumulation and melting periods. Moreover, the sensor footprint was found to be anisotropic and affected by the spatial distribution of liquid water and snow as well as by the topography of the nearby mountains. Under fully snow-covered conditions the CRNS is able to accurately estimate SWE without prior knowledge about snow density profiles or other spatial anomalies. These results provide new insights into the characteristics of the detected neutron signal in complex terrain and support the use of CRNS for long-term snow monitoring in high elevated mountain environments.}, language = {en} } @article{SaltikoffFriedrichSoderholmetal.2019, author = {Saltikoff, Elena and Friedrich, Katja and Soderholm, Joshua and Lengfeld, Katharina and Nelson, Brian and Becker, Andreas and Hollmann, Rainer and Urban, Bernard and Heistermann, Maik and Tassone, Caterina}, title = {An Overview of Using Weather Radar for Climatological Studies: Successes, Challenges, and Potential}, series = {Bulletin of the American Meteorological Society}, volume = {100}, journal = {Bulletin of the American Meteorological Society}, number = {9}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {0003-0007}, doi = {10.1175/BAMS-D-18-0166.1}, pages = {1739 -- 1751}, year = {2019}, abstract = {Weather radars have been widely used to detect and quantify precipitation and nowcast severe weather for more than 50 years. Operational weather radars generate huge three-dimensional datasets that can accumulate to terabytes per day. So it is essential to review what can be done with existing vast amounts of data, and how we should manage the present datasets for the future climatologists. All weather radars provide the reflectivity factor, and this is the main parameter to be archived. Saving reflectivity as volumetric data in the original spherical coordinates allows for studies of the three-dimensional structure of precipitation, which can be applied to understand a number of processes, for example, analyzing hail or thunderstorm modes. Doppler velocity and polarimetric moments also have numerous applications for climate studies, for example, quality improvement of reflectivity and rain rate retrievals, and for interrogating microphysical and dynamical processes. However, observational data alone are not useful if they are not accompanied by sufficient metadata. Since the lifetime of a radar ranges between 10 and 20 years, instruments are typically replaced or upgraded during climatologically relevant time periods. As a result, present metadata often do not apply to past data. This paper outlines the work of the Radar Task Team set by the Atmospheric Observation Panel for Climate (AOPC) and summarizes results from a recent survey on the existence and availability of long time series. We also provide recommendations for archiving current and future data and examples of climatological studies in which radar data have already been used.}, language = {en} } @article{SairamSchroeterRoezeretal.2019, author = {Sairam, Nivedita and Schroeter, Kai and R{\"o}zer, Viktor and Merz, Bruno and Kreibich, Heidi}, title = {Hierarchical Bayesian Approach for Modeling Spatiotemporal Variability in Flood Damage Processes}, series = {Water resources research}, volume = {55}, journal = {Water resources research}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2019WR025068}, pages = {8223 -- 8237}, year = {2019}, abstract = {Flood damage processes are complex and vary between events and regions. State-of-the-art flood loss models are often developed on the basis of empirical damage data from specific case studies and do not perform well when spatially and temporally transferred. This is due to the fact that such localized models often cover only a small set of possible damage processes from one event and a region. On the other hand, a single generalized model covering multiple events and different regions ignores the variability in damage processes across regions and events due to variables that are not explicitly accounted for individual households. We implement a hierarchical Bayesian approach to parameterize widely used depth-damage functions resulting in a hierarchical (multilevel) Bayesian model (HBM) for flood loss estimation that accounts for spatiotemporal heterogeneity in damage processes. We test and prove the hypothesis that, in transfer scenarios, HBMs are superior compared to generalized and localized regression models. In order to improve loss predictions for regions and events for which no empirical damage data are available, we use variables pertaining to specific region- and event-characteristics representing commonly available expert knowledge as group-level predictors within the HBM.}, language = {en} } @article{RungeGrosse2019, author = {Runge, Alexandra and Grosse, Guido}, title = {Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs11141730}, pages = {29}, year = {2019}, abstract = {The Arctic-Boreal regions experience strong changes of air temperature and precipitation regimes, which affect the thermal state of the permafrost. This results in widespread permafrost-thaw disturbances, some unfolding slowly and over long periods, others occurring rapidly and abruptly. Despite optical remote sensing offering a variety of techniques to assess and monitor landscape changes, a persistent cloud cover decreases the amount of usable images considerably. However, combining data from multiple platforms promises to increase the number of images drastically. We therefore assess the comparability of Landsat-8 and Sentinel-2 imagery and the possibility to use both Landsat and Sentinel-2 images together in time series analyses, achieving a temporally-dense data coverage in Arctic-Boreal regions. We determined overlapping same-day acquisitions of Landsat-8 and Sentinel-2 images for three representative study sites in Eastern Siberia. We then compared the Landsat-8 and Sentinel-2 pixel-pairs, downscaled to 60 m, of corresponding bands and derived the ordinary least squares regression for every band combination. The acquired coefficients were used for spectral bandpass adjustment between the two sensors. The spectral band comparisons showed an overall good fit between Landsat-8 and Sentinel-2 images already. The ordinary least squares regression analyses underline the generally good spectral fit with intercept values between 0.0031 and 0.056 and slope values between 0.531 and 0.877. A spectral comparison after spectral bandpass adjustment of Sentinel-2 values to Landsat-8 shows a nearly perfect alignment between the same-day images. The spectral band adjustment succeeds in adjusting Sentinel-2 spectral values to Landsat-8 very well in Eastern Siberian Arctic-Boreal landscapes. After spectral adjustment, Landsat and Sentinel-2 data can be used to create temporally-dense time series and be applied to assess permafrost landscape changes in Eastern Siberia. Remaining differences between the sensors can be attributed to several factors including heterogeneous terrain, poor cloud and cloud shadow masking, and mixed pixels.}, language = {en} } @misc{RounsevellMetzgerWalz2019, author = {Rounsevell, Mark D. A. and Metzger, Marc J. and Walz, Ariane}, title = {Operationalising ecosystem services in Europe}, series = {Regional environmental change}, volume = {19}, journal = {Regional environmental change}, number = {8}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-019-01560-1}, pages = {2143 -- 2149}, year = {2019}, language = {en} } @article{RodriguezZuluagaStolle2019, author = {Rodriguez-Zuluaga, Juan and Stolle, Claudia}, title = {Interhemispheric field-aligned currents at the edges of equatorial plasma depletions}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-37955-z}, pages = {8}, year = {2019}, abstract = {A comprehensive description of electromagnetic processes related to equatorial plasma depletions (EPDs) is essential for understanding their evolution and day-to-day variability. Recently, field-aligned currents (FACs) flowing at both western and eastern edges of EPDs were observed to be interhemispheric rather than anti-parallel about the dip equator, as suggested by previous theoretical studies. In this paper, we investigate the spatial and temporal variability of the FACs orientation using simultaneous measurements of electron density and magnetic field gathered by ESA's Swarm constellation mission. By using empirical models, we assess the role of the Pedersen conductance in the preference of the FACs to close either in the northern or southern magnetic hemisphere. Here we show that the closure of the FACs agrees with an electrostatic regime determined by a hemispherical asymmetry of the Pedersen conductance. That is, the EPD-related FACs close at lower altitudes in the hemisphere with the highest conductivity. The evidence of this conclusion stands on the general agreement between the longitudinal and seasonal variability of both the conductivity and the FACs orientation.}, language = {en} } @article{RoderHudsonTaroili2019, author = {Roder, Giulia and Hudson, Paul and Taroili, Paolo}, title = {Flood risk perceptions and the willingness to pay for flood insurance in the Veneto region of Italy}, series = {International Journal of Disaster Risk Reduction}, volume = {37}, journal = {International Journal of Disaster Risk Reduction}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-4209}, doi = {10.1016/j.ijdrr.2019.101172}, pages = {10}, year = {2019}, abstract = {The floodplain of the Veneto region (north-east Italy) is one of the most inhabited and economically competitive urban landscapes in Europe. Moreover, recent flood events have caused millions of Euros in damage across the region. Due to the combined influence of climate change and socio-economic development, flood impacts are expected to grow. Therefore, it is important for all flood-prone individuals to actively manage and limit flood risk through property-level flood risk management as part of an integrated flood risk management strategy. This is in line with the calls for wider community engagement in risk management in the Sendai Framework for Disaster Risk Reduction and the Sustainable Development Goals. Therefore, an online-survey of Veneto region residents was conducted asking questions regarding flood risk perceptions, preparedness, and preferences towards flood insurance via self-stated willingness to pay (WTP). Our analysis provides an initial indication that while flood risk knowledge is high, it may not be sufficient to encourage proactive risk management. From the WTP values provided people seem reluctant to buy insurance. However, many respondents expressed that a compulsory insurance system may be acceptable. In such a scheme the estimated insurance premium could fall to between (sic)26 and (sic)42 per year, as compared to, potentially, (sic)800 under risk-based premiums, which falls within the majority of WTP estimates provided ((sic)0-(sic)250). Overall, we identify areas of future research that are critical for the better design of risk management policies, supporting the insurance companies in risk management and for recommendations regarding property-level risk management.}, language = {en} } @article{RodaBoludaWhittakerGheorghiuetal.2019, author = {Roda-Boluda, Duna C. and Whittaker, Alexander C. and Gheorghiu, Delia M. and Rodes, Angel and D'Arcy, Mitch}, title = {Be-10 erosion rates controlled by transient response to normal faulting through incision and landsliding}, series = {Earth \& planetary science letters}, volume = {507}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.11.032}, pages = {140 -- 153}, year = {2019}, abstract = {Quantifying erosion rates, and how they compare to rock uplift rates, is fundamental for understanding landscape response to tectonics and associated sediment fluxes from upland areas. The erosional response to uplift is well-represented by river incision and the associated landslide activity. However, characterising the relationship between these processes remains a major challenge in tectonically active areas, in some cases because landslides can preclude obtaining reliable erosion rates from cosmogenic radionuclide (CRN) concentrations. Here, we quantify the control of tectonics and its coupled geomorphic response on the erosion rates of catchments in southern Italy that are experiencing a transient response to normal faulting. We analyse in-situ Be-10 concentrations for detrital sediment samples, collected along the strike of faults with excellent tectonic constraints and landslide inventories. We demonstrate that Be-10-derived erosion rates are controlled by fault throw rates and the extent of transient incision and associated landsliding in the catchments. We show that the low-relief sub-catchments above knickpoints erode at uniform background rates of similar to 0.10 mm/yr, while downstream of knickpoints, erosion removes similar to 50\% of the rock uplifted by the faults, at rates of 0.10-0.64 mm/yr. Despite widespread landsliding, CRN samples provide relatively consistent and accurate erosion rates, most likely because landslides are frequent, small, and shallow, and represent the integrated record of landsliding over several seismic cycles. Consequently, we combine these validated Be-10 erosion rates and data from a geomorphological landslide inventory in a published numerical model, to gain further insight into the long-term landslide rates and sediment mixing, highlighting the potential of CRN data to study landslide dynamics. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{RipollLoridanDentonetal.2019, author = {Ripoll, Jean-Francois and Loridan, Vivien and Denton, Michael H. and Cunningham, Gregory and Reeves, G. and Santolik, O. and Fennell, Joseph and Turner, Drew L. and Drozdov, Alexander and Cervantes Villa, Juan Sebastian and Shprits, Yuri and Thaller, Scott A. and Kurth, William S. and Kletzing, Craig A. and Henderson, Michael G. and Ukhorskiy, Aleksandr Y.}, title = {Observations and Fokker-Planck Simulations of the L-Shell, Energy, and Times}, series = {Journal of geophysical research : Space physics}, volume = {124}, journal = {Journal of geophysical research : Space physics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2018JA026111}, pages = {1125 -- 1142}, year = {2019}, abstract = {The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch angle (alpha(0)) is analyzed during the calm 11-day interval (4-15 March) following the 1 March 2013 storm. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, alpha(0)) regions persist through 11 days of hiss wave scattering; the pitch angle-dependent inner belt core (L similar to <2.2 and E < 700 keV), pitch angle homogeneous outer belt low-energy core (L > similar to 5 and E similar to < 100 keV), and a distinct pocket of electrons (L similar to [4.5, 5.5] and E similar to [0.7, 2] MeV). The pitch angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for alpha(0) similar to <60 degrees, E > 100 keV, 3.5 < L < L-pp similar to 6. Thus, observed unidirectional flux decays can be used to estimate local pitch angle diffusion rates in that region. Top-hat distributions are computed and observed at L similar to 3-3.5 and E = 100-300 keV.}, language = {en} } @article{RieseThiekenMueggenburgetal.2019, author = {Riese, Miriam and Thieken, Annegret and M{\"u}ggenburg, Eva and Bubeck, Philip}, title = {Synergies and barriers of the possible integration of heavy rainfall for the implementation of the European Floods Directive}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {63}, journal = {Hydrologie und Wasserbewirtschaftung}, number = {4}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2019.4_1}, pages = {193 -- 202}, year = {2019}, abstract = {The heavy rainfall events in recent years have caused great damage, which has increased the public awareness of the topic of heavy rainfall. For this reason, this article discusses how a systematic integration of heavy rainfall within the framework of the European Floods Directive would be possible and reasonable. For this purpose, a matrix covering possible synergies and barriers was created for all steps of the directive, which were then examined in 15 semi-structured interviews with representatives from specialized administration, the private sector and academia. Although there are some synergies, the additional effort required, especially regarding the identification of the risk areas and the higher level of detail required for risk modeling, would be so high that the European Floods Directive cannot be deemed to be an appropriate framework for heavy rainfall risk management. Nevertheless, there is a need for action, e.g. in the field of self-protection, improved risk communication to the population, combined with increased public and interagency cooperation.}, language = {en} } @article{RiechelmanFohlmeisterKlugeetal.2019, author = {Riechelman, Dana F. C. and Fohlmeister, Jens Bernd and Kluge, Tobias and Jochum, Klaus Peter and Richter, Detlev K. and Deininger, Michael and Friedrich, Ronny and Frank, Norbert and Scholz, Denis}, title = {Evaluating the potential of tree-ring methodology for cross-dating of three annually laminated stalagmites from Zoolithencave (SE Germany)}, series = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, volume = {52}, journal = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, publisher = {Elsevier}, address = {Oxford}, issn = {1871-1014}, doi = {10.1016/j.quageo.2019.04.001}, pages = {37 -- 50}, year = {2019}, abstract = {Three small stalagmites from Zoolithencave (southern Germany) show visible laminae, which consist of a clear and a brownish, pigmented layer pair. This potentially provides the opportunity to construct precise chronologies by counting annual laminae. The growth period of the three stalagmites was constrained by the C-14 bomb peak in the youngest part of all three stalagmites and C-14-dating of a piece of charcoal in the consolidated base part of stalagmite Zoo-rez-2. These data suggest an age of AD 1970 for the top laminae and a lower age limit of AD 1973-1682 or AD 1735-1778. Laminae were counted and their thickness determined on scanned thin sections of all stalagmites. On stalagmites Zoo-rez-1 and -2, three tracks were measured near the growth axes, each separated into three sections at prominent anchor laminae (I, II, III). Each section was replicated three times (a, b, c). For Zoo-rez-3, only one track was measured. The total number of laminae counted for Zoo-rez-1 ranges from 138 to 177, for Zoo-rez-2 from 119 to 145, and for Zoo-rez-3 from 159 to 166. The numbers agree well with the range constrained by the bomb peak and the age of the charcoal, which supports the annual origin of the laminae. The replicated measurements of the different tracks as well as the three different tracks on the stalagmites Zoo-rez-1 and-2 were cross-dated using the TSAP-Win (R) tree-ring software. This software is very useful for cross-dating because it enables to insert or delete missing or false laminae as well as identifying common pattern by shifting the series back and forth in time. However, visual inspection of the thin sections was necessary to confirm detection of missing or false laminae by TSAP-Win (R). For all three Zoo-rez speleothems, crossdating of the mean lamina thickness series was not possible due to a missing common pattern. The cross-dating procedure results in three refined chronologies for the three Zoo-rez stalagmites of ranging from AD 1821-1970 (Zoo-rez-1), AD 1835-1970 (Zoo-rez-2), and AD 1808-1970 (Zoo-rez-3).}, language = {en} }