@article{StancikMacholanPluhaceketal.1995, author = {Stanc{\´i}k, L. and Machol{\´a}n, L. and Pluhacek, I. and Scheller, Frieder W.}, title = {Biosensing of rapeseed glucosinolates using amperometric enzyme electrodes based on membrane-bound glucose oxidase or tyrosinase}, year = {1995}, language = {en} } @article{StancikMacholanScheller1995, author = {Stancik, L. and Machol{\´a}n, L. and Scheller, Frieder W.}, title = {Biosensing of tyrosinase inhibitors in nonaqueous solvents}, year = {1995}, language = {en} } @article{SpricigoRichterLeimkuehleretal.2010, author = {Spricigo, Roberto and Richter, Claudia and Leimk{\"u}hler, Silke and Gorton, Lo and Scheller, Frieder W. and Wollenberger, Ursula}, title = {Sulfite biosensor based on osmium redox polymer wired sulfite oxidase}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2009.09.001}, year = {2010}, abstract = {A biosensor, based on a redoxactive osmium polymer and sulfite oxidase on screen-printed electrodes, is presented here as a promising method for the detection of sulfite. A catalytic oxidative current was generated when a sample containing sulfite was pumped over the carbon screen-printed electrode modified with osmium redox polymer wired sulfite oxidase. A stationary value was reached after approximately 50 s and a complete measurement lasted no more than 3 min. The electrode polarized at -0.1 V (vs. Ag vertical bar AgCl 1M KCl) permits minimizing the influence of interfering substances, since these compounds can be unspecific oxidized at higher potentials. Because of the good stability of the protein film on the electrode surface, a well functioning biosensor-flow system was possible to construct. The working stability and reproducibility were further enhanced by the addition of bovine serum albumin generating a more long-term stable and biocompatible protein environment. The optimized biosensor showed a stable signal for more than a week of operation and a coefficient of variation of 4.8\% for 12 successive measurements. The lower limit of detection of the sensor was 0.5 mu M sulfite and the response was linear until 100 mu M. The high sensitivity permitted a 1:500 dilution of wine samples. The immobilization procedure and the operational conditions granted minimized interferences. Additionally, repeating the immobilization procedure to form several layers of wired SO further increased the sensitivity of such a sensor. Finally. the applicability of the developed sulfite biosensor was tested on real samples, such as white and red wines.}, language = {en} } @article{SpricigoLeimkuehlerGortonetal.2015, author = {Spricigo, Roberto and Leimk{\"u}hler, Silke and Gorton, Lo and Scheller, Frieder W. and Wollenberger, Ursula}, title = {The Electrically Wired Molybdenum Domain of Human Sulfite Oxidase is Bioelectrocatalytically Active}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201500034}, pages = {3526 -- 3531}, year = {2015}, abstract = {We report electron transfer between the catalytic molybdenum cofactor (Moco) domain of human sulfite oxidase (hSO) and electrodes through a poly(vinylpyridine)-bound [osmium(N,N'-methyl-2,2'-biimidazole)(3)](2+/3+) complex as the electron-transfer mediator. The biocatalyst was immobilized in this low-potential redox polymer on a carbon electrode. Upon the addition of sulfite to the immobilized separate Moco domain, the generation of a significant catalytic current demonstrated that the catalytic center is effectively wired and active. The bioelectrocatalytic current of the wired separate catalytic domain reached 25\% of the signal of the wired full molybdoheme enzyme hSO, in which the heme b(5) is involved in the electron-transfer pathway. This is the first report on a catalytically active wired molybdenum cofactor domain. The formal potential of this electrochemical mediator is between the potentials of the two cofactors of hSO, and as hSO can occupy several conformations in the polymer matrix, it is imaginable that electron transfer from the catalytic site to the electrode through the osmium center occurs for the hSO molecules in which the Moco domain is sufficiently accessible. The observation of catalytic oxidation currents at low potentials is favorable for applications in bioelectronic devices.}, language = {en} } @article{SpricigoDronovLisdatetal.2009, author = {Spricigo, Roberto and Dronov, Roman and Lisdat, Fred and Leimk{\"u}hler, Silke and Scheller, Frieder W. and Wollenberger, Ursula}, title = {Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolyte-containing multilayer}, issn = {1618-2642}, doi = {10.1007/s00216-008-2432-y}, year = {2009}, abstract = {An efficient electrocatalytic biosensor for sulfite detection was developed by co-immobilizing sulfite oxidase and cytochrome c with polyaniline sulfonic acid in a layer-by-layer assembly. QCM, UV-Vis spectroscopy and cyclic voltammetry revealed increasing loading of electrochemically active protein with the formation of multilayers. The sensor operates reagentless at low working potential. A catalytic oxidation current was detected in the presence of sulfite at the modified gold electrode, polarized at +0.1 V ( vs. Ag/AgCl 1 M KCl). The stability of the biosensor performance was characterized and optimized. A 17-bilayer electrode has a linear range between 1 and 60 mu M sulfite with a sensitivity of 2.19 mA M-1 sulfite and a response time of 2 min. The electrode retained a stable response for 3 days with a serial reproducibility of 3.8\% and lost 20\% of sensitivity after 5 days of operation. It is possible to store the sensor in a dry state for more than 2 months. The multilayer electrode was used for determination of sulfite in unspiked and spiked samples of red and white wine. The recovery and the specificity of the signals were evaluated for each sample.}, language = {en} } @article{SongBierScheller1995, author = {Song, Min Ik and Bier, Frank Fabian and Scheller, Frieder W.}, title = {A method to detect superoxide radicals using teflon membrane and superoxide dismutase}, year = {1995}, language = {en} } @article{SigolaevaMarkowerEremenkoetal.2001, author = {Sigolaeva, L. V. and Markower, Alexander and Eremenko, A. V. and Makhaeva, G. F. and Malygin, V. V. and Kurochkin, I. N. and Scheller, Frieder W.}, title = {Bioelectrochemical anaysis of neuropathy targes esterase activity in blood}, year = {2001}, language = {en} } @article{ShumyantsevaIvanovBistolasetal.2004, author = {Shumyantseva, V. V. and Ivanov, Y. D. and Bistolas, Nikitas and Scheller, Frieder W. and Archakov, Alexander I. and Wollenberger, Ursula}, title = {Direct electron transfer of cytochrome P450 2B4 at electrodes modified with non-ionic detergent and colloidal clay nanoparticles}, year = {2004}, abstract = {A method for construction of biosensors with membranous cytochrome P450 isoenzymes was developed based on clay/ detergent/protein mixed films. Thin films of sodium montmorillonite colloid with incorporated cytochrome P450 2134 (CYP2B4) with nonionic detergent were prepared on glassy carbon electrodes. The modified electrodes were electrochemically characterized, and bio-electrocatalytic reactions were followed. CYP2B4 can be reduced fast on clay- modified glassy carbon electrodes in the presence of the nonionic detergent Tween 80. In anaerobic solutions, reversible oxidation and reduction is obtained with a formal potential between -0.292 and - 0.305 V vs Ag/AgCl 1 M KCl depending on the preparation of the biosensor. In air-saturated solution, bio-electrocatalytic reduction currents can be obtained with the CYP2B4-modified electrode on addition of typical substrates such as aminopyrine and benzphetamine. This reaction was suppressed when methyrapone, an inhibitor of P450 reactions, was present. Measurement of product formation also indicates the bioelectrocatialysis by CYP2B4}, language = {en} } @article{SchulmeisterScheller1996, author = {Schulmeister, Thomas and Scheller, Frieder W.}, title = {The mathematics of exponential signal amplification in amperometric three enzyme electrodes}, year = {1996}, language = {en} } @article{SchulmeisterRoseScheller1997, author = {Schulmeister, Thomas and Rose, J{\"u}rgen and Scheller, Frieder W.}, title = {Mathematical modelling of exponential amplification in membrane-based enzyme sensors}, year = {1997}, language = {en} } @misc{SchellerZhangYarmanetal.2019, author = {Scheller, Frieder W. and Zhang, Xiaorong and Yarman, Aysu and Wollenberger, Ulla and Gyurcs{\´a}nyi, R{\´o}bert E.}, title = {Molecularly imprinted polymer-based electrochemical sensors for biopolymers}, series = {Current opinion in electrochemistry}, volume = {14}, journal = {Current opinion in electrochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2451-9103}, doi = {10.1016/j.coelec.2018.12.005}, pages = {53 -- 59}, year = {2019}, abstract = {Electrochemical synthesis and signal generation dominate among the almost 1200 articles published annually on protein-imprinted polymers. Such polymers can be easily prepared directly on the electrode surface, and the polymer thickness can be precisely adjusted to the size of the target to enable its free exchange. In this architecture, the molecularly imprinted polymer (MIP) layer represents only one 'separation plate'; thus, the selectivity does not reach the values of 'bulk' measurements. The binding of target proteins can be detected straightforwardly by their modulating effect on the diffusional permeability of a redox marker through the thin MIP films. However, this generates an 'overall apparent' signal, which may include nonspecific interactions in the polymer layer and at the electrode surface. Certain targets, such as enzymes or redox active proteins, enables a more specific direct quantification of their binding to MIPs by in situ determination of the enzyme activity or direct electron transfer, respectively.}, language = {en} } @article{SchellerYarmanBachmannetal.2014, author = {Scheller, Frieder W. and Yarman, Aysu and Bachmann, Till and Hirsch, Thomas and Kubick, Stefan and Renneberg, Reinhard and Schumacher, Soeren and Wollenberger, Ursula and Teller, Carsten and Bier, Frank Fabian}, title = {Future of biosensors: a personal view}, series = {Advances in biochemical engineering, biotechnology}, volume = {140}, journal = {Advances in biochemical engineering, biotechnology}, editor = {Gu, MB and Kim, HS}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-642-54143-8; 978-3-642-54142-1}, issn = {0724-6145}, doi = {10.1007/10_2013_251}, pages = {1 -- 28}, year = {2014}, abstract = {Biosensors representing the technological counterpart of living senses have found routine application in amperometric enzyme electrodes for decentralized blood glucose measurement, interaction analysis by surface plasmon resonance in drug development, and to some extent DNA chips for expression analysis and enzyme polymorphisms. These technologies have already reached a highly advanced level and need minor improvement at most. The dream of the "100-dollar' personal genome may come true in the next few years provided that the technological hurdles of nanopore technology or of polymerase-based single molecule sequencing can be overcome. Tailor-made recognition elements for biosensors including membrane-bound enzymes and receptors will be prepared by cell-free protein synthesis. As alternatives for biological recognition elements, molecularly imprinted polymers (MIPs) have been created. They have the potential to substitute antibodies in biosensors and biochips for the measurement of low-molecular-weight substances, proteins, viruses, and living cells. They are more stable than proteins and can be produced in large amounts by chemical synthesis. Integration of nanomaterials, especially of graphene, could lead to new miniaturized biosensors with high sensitivity and ultrafast response. In the future individual therapy will include genetic profiling of isoenzymes and polymorphic forms of drug-metabolizing enzymes especially of the cytochrome P450 family. For defining the pharmacokinetics including the clearance of a given genotype enzyme electrodes will be a useful tool. For decentralized online patient control or the integration into everyday "consumables' such as drinking water, foods, hygienic articles, clothing, or for control of air conditioners in buildings and cars and swimming pools, a new generation of "autonomous' biosensors will emerge.}, language = {en} } @article{SchellerWollenbergerWarsinkeetal.2001, author = {Scheller, Frieder W. and Wollenberger, Ursula and Warsinke, Axel and Lisdat, Fred}, title = {Research and development in biosensors}, year = {2001}, language = {en} } @article{SchellerWollenbergerSchubertetal.1993, author = {Scheller, Frieder W. and Wollenberger, Ursula and Schubert, Florian and Pfeiffer, Dorothea and Markower, Alexander and McNeil, C. J.}, title = {Multienzyme biosensors : coupled enzyme reactions and enzyme activation}, year = {1993}, language = {en} } @article{SchellerWollenbergerPfeifferetal.1996, author = {Scheller, Frieder W. and Wollenberger, Ursula and Pfeiffer, Dorothea and Schubert, Florian}, title = {Overview of biosensor technology : proceedings of Mosbach Symposion on Biochemical Technology}, year = {1996}, language = {en} } @article{SchellerWollenbergerLeietal.2002, author = {Scheller, Frieder W. and Wollenberger, Ursula and Lei, Chenghong and Jin, Wen and Ge, Bixia and Lehmann, Claudia and Lisdat, Fred and Fridman, Vadim}, title = {Bioelectrocatalysis by redox enzymes at modified electrodes}, year = {2002}, language = {en} } @article{SchellerWollenberger2003, author = {Scheller, Frieder W. and Wollenberger, Ursula}, title = {Enzyme Electrodes}, isbn = {3-527-30401-0}, year = {2003}, language = {en} } @article{SchellerWagener2004, author = {Scheller, Frieder W. and Wagener, C.}, title = {From gene to life}, year = {2004}, language = {en} } @article{SchellerSchubertFederowitz1997, author = {Scheller, Frieder W. and Schubert, Frank and Federowitz, J.}, title = {Present state and frontiers in biosensorics}, year = {1997}, language = {en} } @article{SchellerSchmid2020, author = {Scheller, Frieder W. and Schmid, Rolf}, title = {A tribute to Isao Karube (1942-2020) and his influence on sensor science}, series = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, volume = {412}, journal = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, number = {28}, publisher = {Springer}, address = {Berlin}, issn = {1618-2642}, doi = {10.1007/s00216-020-02946-5}, pages = {7709 -- 7711}, year = {2020}, language = {en} } @misc{SchellerSakarDasdan2016, author = {Scheller, Frieder W. and Sakar Dasdan, Dolunay}, title = {Selected papers presented on the 2nd International Conference on the New Trends in Chemistry, Zagreb, Croatia, April 19-22, 2016 Preface}, series = {Bulgarian chemical communications : journal of the Chemical Institutes of the Bulgarian Academy of Sciences and of the Bulgarian Chemical Society = Izvestija po chimija}, volume = {48}, journal = {Bulgarian chemical communications : journal of the Chemical Institutes of the Bulgarian Academy of Sciences and of the Bulgarian Chemical Society = Izvestija po chimija}, publisher = {Bulgarian Academy of Sciences}, address = {Sofia}, issn = {0324-1130}, pages = {4 -- 4}, year = {2016}, language = {en} } @article{SchellerPfeifferSchubertetal.1995, author = {Scheller, Frieder W. and Pfeiffer, Dorothea and Schubert, Florian and Wollenberger, Ursula}, title = {Enzyme - based electrodes}, year = {1995}, language = {en} } @article{SchellerPfeifferLisdatetal.1998, author = {Scheller, Frieder W. and Pfeiffer, Dorothea and Lisdat, Fred and Bauer, Christian G. and Gajovic, Nenad}, title = {Enzyme biosensors based on oxygen detection}, year = {1998}, language = {en} } @article{SchellerPfeiffer1997, author = {Scheller, Frieder W. and Pfeiffer, Dorothea}, title = {Commercial devices based on amperometric biosensors}, year = {1997}, language = {en} } @article{SchellerMakowerGhindilisetal.1995, author = {Scheller, Frieder W. and Makower, Alexander and Ghindilis, A. L. and Bier, Frank Fabian and Ehrentreich-F{\"o}rster, Eva and Wollenberger, Ursula and Bauer, Christian G. and Micheel, Burkhard and Pfeiffer, Dorothea and Szeponik, Jan and Michael, N. and Kaden, H.}, title = {Enzyme sensors for subnanomolar concentrations}, year = {1995}, language = {en} } @article{SchellerLisdatWollenberger2005, author = {Scheller, Frieder W. and Lisdat, Fred and Wollenberger, Ursula}, title = {Application of electrically contacted enzymes for biosensors}, isbn = {3-527- 30690-0}, year = {2005}, language = {en} } @article{SchellerKleinjungBieretal.1998, author = {Scheller, Frieder W. and Kleinjung, Frank and Bier, Frank Fabian and Markower, Alexander and Neumann, Barbara and Wollenberger, Ursula and Kurochkin, Iliya N. and Eremenko, Arkadi V. and Barmin, Anatoli V. and Klußmann, Sven and F{\"u}rste, Jens-Peter and Erdmann, Volker A. and Mansuy, D.}, title = {New recognition elements in biosensing}, year = {1998}, language = {en} } @article{SchellerKirsteinSchubertetal.1993, author = {Scheller, Frieder W. and Kirstein, Dieter and Schubert, Florian and Pfeiffer, Dorothea and McNeil, C. J.}, title = {Enzymes in electrochemical biosensors}, year = {1993}, language = {en} } @article{SchellerJinEhrentreichFoersteretal.1999, author = {Scheller, Frieder W. and Jin, Wen and Ehrentreich-F{\"o}rster, Eva and Ge, Bixia and Lisdat, Fred and B{\"u}ttemeyer, R. and Wollenberger, Ursula}, title = {Cytochrome c based superoxide sensor for in vivo application}, year = {1999}, language = {en} } @article{SchellerHeiduschka1994, author = {Scheller, Frieder W. and Heiduschka, P.}, title = {Preparation of an electrode surface with a high density of binding sites by an electrochemical reduction of a poly (nitrophenol) film}, year = {1994}, language = {en} } @article{SchellerBistolasLiuetal.2005, author = {Scheller, Frieder W. and Bistolas, Nikitas and Liu, Songqin and J{\"a}nchen, Michael and Katterle, Martin and Wollenberger, Ursula}, title = {Thirty years of haemoglobin electrochemistry}, year = {2005}, abstract = {Electrochemical investigations of the blood oxygen carrier protein include both mediated and direct electron transfer. The reaction of haemoglobin (Hb) with typical mediators, e.g., ferricyanide, can be quantified by measuring the produced ferrocyanide which is equivalent to the Hb concentration. Immobilization of the mediator within the electrode body allows reagentless electrochemical measuring of Hb. On the other hand, entrapment of the protein within layers of polyclectrolytes, lipids, nanoparticles of clay or gold leads to a fast heterogeneous electron exchange of the partially denatured Hb. (c) 2005 Elsevier B.V. All rights reserved}, language = {en} } @article{SchellerBier2004, author = {Scheller, Frieder W. and Bier, Frank Fabian}, title = {Analytical Biochemistry (Editorial)}, year = {2004}, language = {en} } @article{SchellerBauerMarkoweretal.2001, author = {Scheller, Frieder W. and Bauer, Christian G. and Markower, Alexander and Wollenberger, Ursula and Warsinke, Axel and Bier, Frank Fabian}, title = {Coupling of immunoassays with enzymatic recycling electrodes}, year = {2001}, language = {en} } @article{SchellerBauerMakoweretal.2002, author = {Scheller, Frieder W. and Bauer, Christian G. and Makower, Alexander and Wollenberger, Ursula and Warsinke, Axel and Bier, Frank Fabian}, title = {Immunoassays using enzymatic amplification electrodes}, isbn = {0-7484-0791-X}, year = {2002}, language = {en} } @article{Scheller2009, author = {Scheller, Frieder W.}, title = {Tribute to Guenter Gauglitz (Editorial)}, issn = {1618-2642}, doi = {10.1007/s00216-008-2548-0}, year = {2009}, language = {en} } @article{Scheller1996, author = {Scheller, Frieder W.}, title = {New recognition elements for bioanalytics}, year = {1996}, language = {en} } @article{RosePfeifferSchelleretal.2001, author = {Rose, Andreas and Pfeiffer, Dorothea and Scheller, Frieder W. and Wollenberger, Ursula}, title = {Quinoprotein glucose dehydrogenasemodified thick-film electrodes for the amperometric detection of phenolic compounds in flow injection analysis}, year = {2001}, language = {en} } @article{RiedelSabirSchelleretal.2017, author = {Riedel, M. and Sabir, N. and Scheller, Frieder W. and Parak, Wolfgang J. and Lisdat, Fred}, title = {Connecting quantum dots with enzymes}, series = {Nanoscale}, volume = {9}, journal = {Nanoscale}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c7nr00091j}, pages = {2814 -- 2823}, year = {2017}, abstract = {The combination of the biocatalytic features of enzymes with the unique physical properties of nanoparticles in a biohybrid system provides a promising approach for the development of advanced bioelectrocatalytic devices. This study describes the construction of photoelectrochemical signal chains based on CdSe/ZnS quantum dot (QD) modified gold electrodes as light switchable elements, and low molecular weight redox molecules for the combination with different biocatalysts. Photoelectrochemical and photoluminescence experiments verify that electron transfer can be achieved between the redox molecules hexacyanoferrate and ferrocene, and the QDs under illumination. Since for both redox mediators a concentration dependent photocurrent change has been found, light switchable enzymatic signal chains are built up with fructose dehydrogenase (FDH) and pyrroloquinoline quinone-dependent glucose dehydrogenase ((PQQ) GDH) for the detection of sugars. After immobilization of the enzymes at the QD electrode the biocatalytic oxidation of the substrates can be followed by conversion of the redox mediator in solution and subsequent detection at the QD electrode. Furthermore, (PQQ) GDH has been assembled together with ferrocenecarboxylic acid on top of the QD electrode for the construction of a funtional biohybrid architecture, showing that electron transfer can be realized from the enzyme over the redox mediator to the QDs and subsequently to the electrode in a completely immobilized fashion. The results obtained here do not only provide the basis for light-switchable biosensing and bioelectrocatalytic applications, but may also open the way for self-driven point-of-care systems by combination with solar cell approaches (power generation at the QD electrode by enzymatic substrate consumption).}, language = {en} } @article{RiedelBeyersdorfRadeckNeumannetal.1995, author = {Riedel, K. and Beyersdorf-Radeck, Baerbel and Neumann, B. and Scheller, Frieder W. and Schmid, Rolf D.}, title = {Microbial sensors for determination of aromatics and their chloro derivatives. Part III: Determination of chlorinated phenols using a biosensor containing Trichosporon beigelii (cutaneum)}, year = {1995}, language = {en} } @article{PieperFuerstKleuserStoeckleinetal.2004, author = {Pieper-F{\"u}rst, U. and Kleuser, U. and St{\"o}cklein, Walter F. M. and Warsinke, Axel and Scheller, Frieder W.}, title = {Detection of subicomolar concentrations of human matrix metalloproteinase-2 by an optical biosensor}, year = {2004}, abstract = {We describe in this paper the development of a one-step sandwich assay for the highly sensitive and fast detection of human matrix metalloproteinase (MMP)-2 (EC 3.4.24.24), using surface plasmon resonance (SPR). For the assay, two ligands were selected: monoclonal anti-MMP-2 antibody Ab-2 and the tissue inhibitor of metalloproteinases (TIMP)-2. They were chosen on the basis of (1) their affinities to MMP-2, (2) the efficiency of immobilization to the sensor chip, (3) the efficiency of adsorption to colloidal gold, and (4) the stability of these protein-coated gold particles. The assay included mixing of MMP-2 with antibody Ab-2 adsorbed to colloidal gold with a diameter of about 20 rim and injection into the flowcell of the SPR instrument containing immobilized TIMP-2. By using colloidal gold particles an amplification factor of 114 and a detection limit of 0.5 pM for MMP-2 were obtained. The precision of the assay was high even at low analyte concentrations, the standard deviation being 8.3\% for five determinations of 1 pM MMP- 2. No significant binding was observed with the structurally related MMP-9. The assay is far more sensitive and faster than commonly used methods for MMP-2 detection. As TIMP-bound MMP-2 is not detected by this method, the assay can be applied for measuring free MMP-2, reflecting the imbalance of free and inhibitor-bound enzyme in various pathological situations. (C) 2004 Elsevier Inc. All rights reserved}, language = {en} } @article{PfeifferYangSchelleretal.1997, author = {Pfeiffer, Dorothea and Yang, L. and Scheller, Frieder W. and Kissinger, P. T.}, title = {Continous measurement of lactate in microdialysate}, year = {1997}, language = {en} } @article{PfeifferSchubertWollenbergeretal.1996, author = {Pfeiffer, Dorothea and Schubert, Frank and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Electrochemical sensors : enzyme electrodes and field effect transistors}, year = {1996}, language = {en} } @article{PfeifferSchellerSchubertetal.1993, author = {Pfeiffer, Dorothea and Scheller, Frieder W. and Schubert, Florian and Setz, K.}, title = {Amperometric enzyme electrodes for lactate and glucose determinations in highly diluted and undiluted media}, year = {1993}, language = {en} } @article{PfeifferSchellerMcNeiletal.1995, author = {Pfeiffer, Dorothea and Scheller, Frieder W. and McNeil, C. J. and Schulmeister, Thomas}, title = {Cascade-like exponential substrate amplification in enzyme sensors}, year = {1995}, language = {en} } @article{PengYarmanJetzschmannetal.2016, author = {Peng, Lei and Yarman, Aysu and Jetzschmann, Katharina J. and Jeoung, Jae-Hun and Schad, Daniel and Dobbek, Holger and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Molecularly Imprinted Electropolymer for a Hexameric Heme Protein with Direct Electron Transfer and Peroxide Electrocatalysis}, series = {SENSORS}, volume = {16}, journal = {SENSORS}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s16030272}, pages = {1343 -- 1364}, year = {2016}, abstract = {For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of -184.4 +/- 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP).}, language = {en} } @article{PengUteschYarmanetal.2015, author = {Peng, Lei and Utesch, Tillmann and Yarman, Aysu and Jeoung, Jae-Hun and Steinborn, Silke and Dobbek, Holger and Mroginski, Maria Andrea and Tanne, Johannes and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Surface-Tuned Electron Transfer and Electrocatalysis of Hexameric Tyrosine-Coordinated Heme Protein}, series = {Chemistry - a European journal}, volume = {21}, journal = {Chemistry - a European journal}, number = {20}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201405932}, pages = {7596 -- 7602}, year = {2015}, abstract = {Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine-coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self-assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl-terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this "disc" orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi-reversible redox behavior with rate constant k(s) values between 0.93 and 2.86 s(-1) and apparent formal potentials E-app(0)' between -131.1 and -249.1 mV. On the MUA/MU-modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH.}, language = {en} } @article{PaeschkeHintscheWollenbergeretal.1995, author = {Paeschke, Manfred and Hintsche, Rainer and Wollenberger, Ursula and Jin, Wen and Scheller, Frieder W.}, title = {Dynamic redox recycling of cytochrome c}, issn = {0022-0728}, year = {1995}, language = {en} } @article{OzcelikayKurbanogluZhangetal.2019, author = {Ozcelikay, Goksu and Kurbanoglu, Sevinc and Zhang, Xiaorong and S{\"o}z, {\c{C}}ağla Kosak and Wollenberger, Ulla and Ozkan, Sibel A. and Yarman, Aysu and Scheller, Frieder W.}, title = {Electrochemical MIP Sensor for Butyrylcholinesterase}, series = {Polymers}, volume = {11}, journal = {Polymers}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym11121970}, pages = {11}, year = {2019}, abstract = {Molecularly imprinted polymers (MIPs) mimic the binding sites of antibodies by substituting the amino acid-scaffold of proteins by synthetic polymers. In this work, the first MIP for the recognition of the diagnostically relevant enzyme butyrylcholinesterase (BuChE) is presented. The MIP was prepared using electropolymerization of the functional monomer o-phenylenediamine and was deposited as a thin film on a glassy carbon electrode by oxidative potentiodynamic polymerization. Rebinding and removal of the template were detected by cyclic voltammetry using ferricyanide as a redox marker. Furthermore, the enzymatic activity of BuChE rebound to the MIP was measured via the anodic oxidation of thiocholine, the reaction product of butyrylthiocholine. The response was linear between 50 pM and 2 nM concentrations of BuChE with a detection limit of 14.7 pM. In addition to the high sensitivity for BuChE, the sensor responded towards pseudo-irreversible inhibitors in the lower mM range.}, language = {en} } @article{OzcelikayKurbanogluYarmanetal.2020, author = {Ozcelikay, Goksu and Kurbanoglu, Sevinc and Yarman, Aysu and Scheller, Frieder W. and Ozkan, Sibel A.}, title = {Au-Pt nanoparticles based molecularly imprinted nanosensor for electrochemical detection of the lipopeptide antibiotic drug Daptomycin}, series = {Sensors and actuators : B, Chemical}, volume = {320}, journal = {Sensors and actuators : B, Chemical}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2020.128285}, pages = {7}, year = {2020}, abstract = {In this work, a novel electrochemical molecularly imprinted polymer (MIP) sensor for the detection of the lipopeptide antibiotic Daptomycin (DAP) is presented which integrates gold decorated platinum nanoparticles (Au-Pt NPs) into the nanocomposite film. The sensor was prepared by electropolymerization of o-phenylenediamine (o-PD) in the presence of DAP using cyclic voltammetry. Cyclic voltammetry and differential pulse voltammetry were applied to follow the changes in the MIP-layer related to rebinding and removal of the target DAP by using the redox marker [Fe(CN)(6)](3-/4-). Under optimized operational conditions, the MIP/Au-Pt NPs/ GCE nanosensor exhibits a linear response in the range of 1-20 pM towards DAP. The limit of detection and limit of quantification were determined to be 0.161pM +/- 0.012 and 0.489pM +/- 0.012, respectively. The sensitivity towards the antibiotics Vancomycin and Erythromycin and the amino acids glycine and tryptophan was below 7 percent as compared with DAP. Moreover, the nanosensor was also successfully used for the detection of DAP in deproteinated human serum samples.}, language = {en} } @article{NitscheKurthDunkhorstetal.2007, author = {Nitsche, Andreas and Kurth, Andreas and Dunkhorst, Anna and P{\"a}nke, Oliver and Sielaff, Hendrik and Junge, Wolfgang and Muth, Doreen and Scheller, Frieder W. and St{\"o}cklein, Walter F. M. and Pauli, Georg and Kage, Andreas}, title = {One-step selection of vaccinia virus binding DNA-aptamers by MonoLEX}, doi = {10.1186/1472-6750-7-48}, year = {2007}, language = {en} } @article{NeumannYarmanWollenbergeretal.2014, author = {Neumann, Bettina and Yarman, Aysu and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Characterization of the enhanced peroxidatic activity of amyloid beta peptide-hemin complexes towards neurotransmitters}, series = {Analytical \& bioanalytical chemistry}, volume = {406}, journal = {Analytical \& bioanalytical chemistry}, number = {14}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-014-7822-8}, pages = {3359 -- 3364}, year = {2014}, abstract = {Binding of heme to the amyloid peptides A beta 40/42 is thought to be an initial step in the development of symptoms in the early stages of Alzheimer's disease by enhancing the intrinsic peroxidatic activity of heme. We found considerably higher acceleration of the reaction for the physiologically relevant neurotransmitters dopamine and serotonin than reported earlier for the artificial substrate 3,3',5,5'-tetramethylbenzidine (TMB). Thus, the binding of hemin to A beta peptides might play an even more crucial role in the early stages of Alzheimer's disease than deduced from these earlier results. To mimic complex formation, a new surface architecture has been developed: The interaction between the truncated amyloid peptide A beta 1-16 and hemin immobilized on an aminohexanethiol spacer on a gold electrode has been analyzed by cyclic voltammetry. The resulting complex has a redox pair with a 25 mV more cathodic formal potential than hemin alone.}, language = {en} } @article{NeumannGoetzWrzoleketal.2018, author = {Neumann, Bettina and G{\"o}tz, Robert and Wrzolek, Pierre and Scheller, Frieder W. and Weidinger, Inez M. and Schwalbe, Matthias and Wollenberger, Ulla}, title = {Enhancement of the Electrocatalytic Activity of Thienyl-Substituted Iron Porphyrin Electropolymers by a Hangman Effect}, series = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, volume = {10}, journal = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, number = {19}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1867-3880}, doi = {10.1002/cctc.201800934}, pages = {4353 -- 4361}, year = {2018}, abstract = {The thiophene-modified iron porphyrin FeT3ThP and the respective iron Hangman porphyrin FeH3ThP, incorporating a carboxylic acid hanging group in the second coordination sphere of the iron center, were electropolymerized on glassy carbon electrodes using 3,4-ethylenedioxythiophene (EDOT) as co-monomer. Scanning electron microscopy images and Resonance Raman spectra demonstrated incorporation of the porphyrin monomers into a fibrous polymer network. Porphyrin/polyEDOT films catalyzed the reduction of molecular oxygen in a four-electron reaction to water with onset potentials as high as +0.14V vs. Ag/AgCl in an aqueous solution of pH7. Further, FeT3ThP/polyEDOT films showed electrocatalytic activity towards reduction of hydrogen peroxide at highly positive potentials, which was significantly enhanced by introduction of the carboxylic acid hanging group in FeH3ThP. The second coordination sphere residue promotes formation of a highly oxidizing reaction intermediate, presumably via advantageous proton supply, as observed for peroxidases and catalases making FeH3ThP/polyEDOT films efficient mimics of heme enzymes.}, language = {en} } @misc{MengerYarmanErdoessyetal.2016, author = {Menger, Marcus and Yarman, Aysu and Erd{\"o}ssy, J{\´u}lia and Yildiz, Huseyin Bekir and Gyurcs{\´a}nyi, R{\´o}bert E. and Scheller, Frieder W.}, title = {MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing}, series = {Biosensors : open access journal}, volume = {6}, journal = {Biosensors : open access journal}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios6030035}, pages = {4399 -- 4413}, year = {2016}, abstract = {Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.}, language = {en} } @article{MarkowerWollenbergerHoertnageletal.1997, author = {Markower, Alexander and Wollenberger, Ursula and H{\"o}rtnagel, H. and Pfeiffer, Dorothea and Scheller, Frieder W.}, title = {Catecholamine detection using enzymatic amplification}, year = {1997}, language = {en} } @article{MakowerHalamekSkladaletal.2003, author = {Makower, Alexander and Hal{\´a}mek, Jan and Skl{\´a}dal, Petr and Kernchen, Frank and Scheller, Frieder W.}, title = {New principle of direct real-time monitoring of the interaction of cholinesterase and its inhibitors by piezoelectric biosensor}, year = {2003}, language = {en} } @article{MakowerEremenkoStrefferetal.1996, author = {Makower, Alexander and Eremenko, A. V. and Streffer, Katrin and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Tyrosinase-glucose dehydrogenase substrate-recycling biosensor : a highly sensitive measurement of phenolic compounds}, year = {1996}, language = {en} } @article{MakowerBarminMorzunovaetal.1997, author = {Makower, Alexander and Barmin, Anatoli V. and Morzunova, T. and Eremenko, Arkadi V. and Bier, Frank Fabian and Scheller, Frieder W.}, title = {Affinity enzymomoetric assay for detection of organophosphorus compounds}, year = {1997}, language = {en} } @article{MakCheungTrauetal.2005, author = {Mak, Wing Cheung and Cheung, Kwan Yee and Trau, Dieter and Warsinke, Axel and Scheller, Frieder W. and Renneberg, Reinhard}, title = {Electrochemical bioassay utilizing encapsulated electrochemical active microcrystal biolabels}, issn = {0003-2700}, year = {2005}, abstract = {A new approach to perform electrochemical immunoassay based on the utilization of encapsulated microcrystal was developed. The microcrystal labels create a "supernova effect" upon exposure to a desired releasing agent. The microcrystal cores dissolve, and large amounts of signal-generating molecules diffuse across the capsule wall into the outer environment. Layer-by-Layer (LbL) technology was employed for the encapsulation of electrochemical signal- generating microcrystals (ferrocene microcrystals). The encapsulated microcrystals were conjugated with antibody molecules through the adsorption process. The biofunctionalized microcrystals were utilized as a probe for immunoassays. The microcrystal-based label system provided a high-signal molecule to antibody (SIP) ratio of 10(4)-10(5). Microcrystal biolabels with different antibody surface coverage (1.60-5.05 mg m(-2)) were subjected to a solid-phase immunoassay for the detection of mouse immunoglobulin G (M-IgG) molecules. The microcrystal-based immunoassay for the detection of M-IgG performed with microcrystals having antibody surface coverage of 5.05 mg m(-2) showed a sensitivity of 3.93 nA g(- 1) L-1 with a detection limit of 2.82 g L-1}, language = {en} } @article{MakWollenbergerSchelleretal.2003, author = {Mak, Karen K. W. and Wollenberger, Ursula and Scheller, Frieder W. and Renneberg, Reinhard}, title = {An amperometric bi-enzyme sensor for determination of formate using cofactor regeneration}, year = {2003}, language = {en} } @article{LoewWollenbergerSchelleretal.2009, author = {Loew, Noya and Wollenberger, Ursula and Scheller, Frieder W. and Katterle, Martin}, title = {Direct electrochemistry and spectroelectrochemistry of osmium substituted horseradish peroxidase}, issn = {1567-5394}, doi = {10.1016/j.bioelechem.2009.03.015}, year = {2009}, abstract = {In this contribution the substitution of the central protoporphyrin IX iron complex of horseradish peroxidase by the respective osmium porphyrin complex is described. The direct electrochemical reduction of the Os containing horseradish peroxidase (OsHRP) was achieved at ITO and modified glassy carbon electrodes and in combination with spectroscopy revealed the three redox couples (OsHRP)-H-III/(OsHRP)-H-IV, (OsHRP)-H-IV/(OsHRP)-H-V and (OsHRP)-H-V/ (OsHRP)-H-VI. The midpoint potentials differ dependent on the electrode material used with E-1/2 (Os-III/IV) of -0.4 V (ITO) and -0.25 V (GC), E-1/2 (Os-IV/V) of -0.16 V (ITO) and +0.10 V (GC), and E-1/2 (Os-V/VI)of +018 V (ITO), respectively Moreover, with immobilised OsHRP the direct electrocatalytic reduction of hydrogen peroxide and tert-butyl hydroperoxide was observed. In comparison to electrodes modified with native HRP the sensitivity of the OsHRP-electrode for tert-butyl hydroperoxide is higher.}, language = {en} } @article{LoewSchellerWollenberger2004, author = {Loew, Noya and Scheller, Frieder W. and Wollenberger, Ursula}, title = {Characterization of self-assembling of glucose dehydrogenase in mono- and multilayers on gold electrodes}, year = {2004}, abstract = {Glucose dehydrogenase (GDH) was assembled electrostatically onto QCM-gold electrodes by their sequential deposition with anionic polyelectrolytes such as PSS and PASA. For the layer-by-layer arrangements both the microgravimetric and the electrochemical sensor signal were followed. Increasing amounts of GDH were deposited by stepwise formation of alternating layers of GDH and PSS or PASA. The mass increase was about 1.88 mug/cm(2) for one GDH/ PASA bilayer and 2.4 mug/cm(2) for a GDH/PSS bilayer. The addition of phenolic compounds resulted in an oxidation current, which could be catalytically increased by the GDH catalysed reaction in the presence of glucose. The system functions as glucose sensor when quinones are present in nonlimiting amount. The amperometric response was already diffusion limited when a single layer of GDH was adsorbed. The sensor sensitivity increased by a factor of 10 when MSA was used instead of MUA as initial electrode modifier}, language = {en} } @article{LoewBogdanoffHerrmannetal.2006, author = {Loew, Noya and Bogdanoff, Peter and Herrmann, Iris and Wollenberger, Ursula and Scheller, Frieder W. and Katterle, Martin}, title = {Influence of modifications on the efficiency of pyrolysed CoTMPP as electrode material for horseradish peroxidase and the reduction of hydrogen peroxide}, series = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, volume = {18}, journal = {Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis}, number = {23}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1040-0397}, doi = {10.1002/elan.200603664}, pages = {2324 -- 2330}, year = {2006}, abstract = {A tailor-made horseradish peroxidase (HRP) bulk composite electrode was developed on the basis of pyrolyzed cobalt tetramethoxyphenylporphyrin (CoTMPP) by modifying pore size and surface area of the porous carbon material through varying amounts of iron oxalate and sulfur prior to pyrolyzation. The materials were used to immobilize horseradish peroxidase (HRP). These electrodes were characterized in terms of their efficiency to reduce hydrogen peroxide. The heterogeneous electron transfer rate constants of different materials were determined with the rotating disk electrode method and a k(S) (401 +/- 61 s(-1)) exceeding previously reported values for native HRP was found.}, language = {en} } @article{LiuWollenbergerKatterleetal.2006, author = {Liu, Songqin and Wollenberger, Ursula and Katterle, Martin and Scheller, Frieder W.}, title = {Ferroceneboronic acid-based amperometric biosensor for glycated hemoglobin}, issn = {0925-4005}, doi = {10.1016/j.snb.2005.07.011}, year = {2006}, abstract = {An amperometric biosensor for the determination of glycated hemoglobin in human whole blood is proposed. The principle is based on the electrochemical measurement of ferroceneboronic acid (FcBA) that has been specifically bound to the glycated N-terminus. Hemoglobin is immobilized on a zirconium dioxide nanoparticle modified pyrolytic graphite electrode (PGE) in the presence of didodecyldimethylammonium bromide (DDAB). The incubation of this sensor in FcBA solution leads to the formation of an FcBA-modified surface due to the affinity interaction between boronate and the glycated sites of the hemoglobin. The binding of FcBA results in well-defined redox peaks with an E-0' of 0.299 V versus Ag/AgCl (1 M KCl). The square wave voltammetric response of the bound FcBA reflects the amount of glycated hemoglobin at the surface. This signal increases linearily with the degree of glycated hemoglobin from 6.8 to 14.0\% of total immobilized hemoglobin. The scheme was applied to the determination of the fraction of glycated hemoglobin in whole blood samples.}, language = {en} } @article{LiuWollenbergerHalameketal.2005, author = {Liu, Songqin and Wollenberger, Ursula and Halamek, Jan and Leupold, Eik and St{\"o}cklein, Walter F. M. and Warsinke, Axel and Scheller, Frieder W.}, title = {Affinity interaction betwen phenylboronic acid-carrying self-assembled monolayers and FAD or HRP}, year = {2005}, abstract = {A method is provided for the recognition of glycated molecules based on their binding affinities to boronate- carrying monolayers. The affinity interaction of flavin adenine dinucleotide (FAD) and horseradish peroxidase (HRP) with phenylboronic acid monolayers on gold was investigated by using voltammetric and microgravimetric methods. Conjugates of 3-aminopherrylboronic acid and 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) or 11-mercaptoundecanoic acid were prepared and self-assembled on gold surfaces to generate monolayers. FAD is bound to this modified sur-face and recognized by a pair of redox peaks with a formal potential of -0.433 V in a 0.1 m phosphate buffer solution, pH 6.5. Upon addition of a sugar to the buffer, the bound FAD could be replaced, indicating that the binding is reversible. Voltammetric, mass measurements, and photometric activity assays show that the HRP can also be bound to the interface. This binding is reversible, and HRP can be replaced by sorbitol or removed in acidic solution. The effects of pH, incubation time, and concentration of H2O2 were studied by comparing the catalytic reduction of H2O2 in the presence of the electron-donor thionine. The catalytic current of the HRP-loaded electrode was proportional to HRP concentrations in the incubation solution in the range between 5 mu g mL(-1) and 0.4 mg mL(-1) with a linear slope of 3.34 mu A mL mg(-1) and a correlation coefficient of 0.9945}, language = {en} } @article{LisdatWollenbergerPaeschkeetal.1998, author = {Lisdat, Fred and Wollenberger, Ursula and Paeschke, Manfred and Scheller, Frieder W.}, title = {Sensitive catecholamine measurement using a monoenzymatic recycling system}, year = {1998}, language = {en} } @article{LisdatUtepbergenovHaseloffetal.2001, author = {Lisdat, Fred and Utepbergenov, D. and Haseloff, R. F. and Blasig, Ingolf E. and St{\"o}cklein, Walter F. M. and Scheller, Frieder W. and Brigelius-Floh{\´e}, Regina}, title = {An optical method for the detection of oxidative stress using protein-RNA interaction}, year = {2001}, language = {en} } @article{LisdatScheller2000, author = {Lisdat, Fred and Scheller, Frieder W.}, title = {Technical principles. Electrodes}, isbn = {90-5702-447-7}, year = {2000}, language = {en} } @article{LisdatScheller2000, author = {Lisdat, Fred and Scheller, Frieder W.}, title = {Principles of sensorial radical detection - a minireview}, year = {2000}, language = {en} } @article{LisdatHoWollenbergeretal.1998, author = {Lisdat, Fred and Ho, Wah O. and Wollenberger, Ursula and Scheller, Frieder W. and Richter, Torsten and Bilitewski, Ursula}, title = {Recycling systems based on screen-printed electrodes}, year = {1998}, language = {en} } @article{LisdatGeStoeckleinetal.2000, author = {Lisdat, Fred and Ge, Bixia and St{\"o}cklein, Walter F. M. and Scheller, Frieder W. and Meyer, T.}, title = {Electrochemical behaviour and nitric oxides interaction of immobilised cytochrome c from Rhodocyclus gelatinosus}, year = {2000}, language = {en} } @article{LisdatGeScheller1999, author = {Lisdat, Fred and Ge, Bixia and Scheller, Frieder W.}, title = {Oligonucleotide-modified electrodes for fast electron transfer to cytochrome c}, year = {1999}, language = {en} } @article{LisdatGeMeyerhoffetal.2001, author = {Lisdat, Fred and Ge, Bixia and Meyerhoff, M. E. and Scheller, Frieder W.}, title = {Signal chains with cytochromes at SAM modified gold electrodes}, year = {2001}, language = {en} } @article{LisdatGeKrauseetal.2001, author = {Lisdat, Fred and Ge, Bixia and Krause, B. and Ehrlich, A. and Bienert, H. and Scheller, Frieder W.}, title = {Nucleic acid-promoted electron transfer to cytochrome c}, year = {2001}, language = {en} } @article{LisdatGeEhrentreichFoersteretal.1999, author = {Lisdat, Fred and Ge, Bixia and Ehrentreich-F{\"o}rster, Eva and Reszka, R. and Scheller, Frieder W.}, title = {SOD activity measurement using cytochrome c modified electrode}, year = {1999}, language = {en} } @article{LisdatDronovMoehwaldetal.2009, author = {Lisdat, Fred and Dronov, Roman and M{\"o}hwald, Helmuth and Scheller, Frieder W. and Kurth, Dirk G.}, title = {Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains}, issn = {1359-7345}, doi = {10.1039/B813559b}, year = {2009}, abstract = {The layer-by-layer adsorption technique based on the consecutive deposition of oppositely charged species is for the preparation of protein multilayers with fully electro-active protein molecules. The methodology was established with cytochrome c and the polyelectrolyte sulfonated polyaniline (PASA). The technique is also useful for the construction of bi-protein architectures confining protein-protein communication to an electrode. Following natural examples of protein complexes with defined signal transfer, cytochrome c was arranged with enzymes such as xanthine oxidase, bilirubin oxidase, laccase, and sulfite oxidase in self-assembled multilayer architectures. Thus, biomimetic signal chains from the enzyme substrate via the enzyme and cytochrome c towards the electrode can be established. Communication between proteins immobilised in multiple layers on the electrode can be achieved by in situ generation of small shuttle molecules or more advantageously by direct interprotein electron transfer. This allows the construction of new sensing electrodes, the properties of which can be tuned by the number of deposited protein layers. The mechanism of electron transfer within such protein assemblies on gold electrodes will be discussed.}, language = {en} } @article{LettauWarsinkeLaschewskyetal.2004, author = {Lettau, Kristian and Warsinke, Axel and Laschewsky, Andr{\´e} and Mosbach, K. and Yilmaz, E. and Scheller, Frieder W.}, title = {An esterolytic imprinted polymer prepared via a silica-supported transition state analogue}, year = {2004}, abstract = {In this work we describe a new preparation method for an esterolytic imprinted polymer with catalytic sites on the surface. A template was prepared by immobilizing a transition state analogue (phosphoramidic acid derivative) of an esterolytic reaction within porous silica particles. Polymerization within the pores was carried out using 4- vinylimidazole as a functional monomer and divinylbenzene as a cross-linker. The polymer was released by dissolution of the silica support with hydrofluoric acid and catalytic properties were studied by incubation with three different 4- nitrophenylesters and spectrophotometric determination of the released 4-nitrophenol. For 4-nitrophenyl acetate an activity of 211 nmol min(-1) mg(-1) and a K-m value of 2.2 mmol L-1 was obtained}, language = {en} } @article{LettauWarsinkeKatterleetal.2006, author = {Lettau, Kristian and Warsinke, Axel and Katterle, Martin and Danielsson, Bengt and Scheller, Frieder W.}, title = {A bifunctional molecularly imprinted polymer (MIP): analysis of binding and catalysis by a thermistor}, doi = {10.1002/anie.200601796}, year = {2006}, abstract = {Binding or catalysis? Both can be distinguished with a molecularly imprinted polymer (MIP) by the different patterns of heat generation. The catalytically active sites, like in the corresponding enzyme, generate a steady-state temperature increase. Thus, enzyme-like catalysis and antibody-analogue binding are analyzed simultaneously in a bifunctional MIP for the first time (see scheme).}, language = {en} } @article{LeiWollenbergerScheller2000, author = {Lei, Chenghong and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Clay based direct electrochemistry of myoglobin}, year = {2000}, language = {en} } @article{LeiWollenbergerJungetal.2000, author = {Lei, Chenghong and Wollenberger, Ursula and Jung, Christiane and Scheller, Frieder W.}, title = {Clay-bridged electron transfer between cytochrome P450(cam) and electrode}, year = {2000}, language = {en} } @article{LeiWollenbergerBistolasetal.2002, author = {Lei, Chenghong and Wollenberger, Ursula and Bistolas, Nikitas and Guiseppi-Eli, A. and Scheller, Frieder W.}, title = {Electron transfer of hemoglobin at electrodes modified with colloidal clay nanoparticles}, year = {2002}, language = {en} } @article{LeiLisdatWollenbergeretal.1999, author = {Lei, Chenghong and Lisdat, Fred and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Cytochrome c : Clay-modified electrode}, year = {1999}, language = {en} } @article{LehmannWollenbergerBrigeliusFloheetal.1998, author = {Lehmann, Claudia and Wollenberger, Ursula and Brigelius-Floh{\´e}, Regina and Scheller, Frieder W.}, title = {Bioelectrocatalysis by a selenoenzyme}, year = {1998}, language = {en} } @article{LehmannWollenbergerBrigeliusFloheetal.2001, author = {Lehmann, Claudia and Wollenberger, Ursula and Brigelius-Floh{\´e}, Regina and Scheller, Frieder W.}, title = {Modified gold electrodes for electrochemical studies of the reaction phospholipid hydroperoxide glutathione peroxidas with glutathione and glutathione disulfide}, year = {2001}, language = {en} } @article{KulysKrikstopaitisSchelleretal.2004, author = {Kulys, J. and Krikstopaitis, K. and Scheller, Frieder W. and Wollenberger, Ursula}, title = {Electrochemical parameters of phenoxazine derivatives in solution and at monolayer-modified gold electrodes}, year = {2004}, abstract = {Electrochemical properties of beta-(10-phenoxazinyl) propylamine (APPX) and beta-(10-phenoxazinyl) propionic acid (PPX) have been studied in solution, and in immobilized state on gold electrodes modified with monolayers of cystamine and mercaptoundecanoic acid. A reversible diffusion-controlled process of APPX and PPX was observed at a bare gold electrode. The electrochemical conversion of both compounds at modified gold electrodes was a quasireversible diffusion-controlled process. The redox potential of immobilized APPX (443 mV) was similar to the potential in solution, while the value of the immobilized PPX was 131 mV higher than in solution. The immobilized mediators were electrocatalytically active in the fungal peroxidase-catalyzed hydrogen peroxide reduction}, language = {en} } @article{KulysDrungilieneWollenbergeretal.1998, author = {Kulys, J. and Drungiliene, A. and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Membrane covered carbon paste electrode for the electrochemical determination of perioxidase and microperoxidase in a flow system}, year = {1998}, language = {en} } @article{KulysDrungilieneWollenbergeretal.1997, author = {Kulys, J. and Drungiliene, A. and Wollenberger, Ursula and Krikstopaitis, K. and Scheller, Frieder W.}, title = {Electroanalytical determination of peroxidases and laccases on carbon paste electrodes}, year = {1997}, language = {en} } @article{KroeningSchellerWollenbergeretal.2004, author = {Kr{\"o}ning, Steffen and Scheller, Frieder W. and Wollenberger, Ursula and Lisdat, Fred}, title = {Myoglobin-Clay Electrode for Nitric Oxide (NO) Detection in Solution}, year = {2004}, language = {en} } @article{KrylovBeissenhirtzAdamzigetal.2004, author = {Krylov, Andrey V. and Beissenhirtz, Moritz Karl and Adamzig, Holger and Scheller, Frieder W. and Lisdat, Fred}, title = {Thick-film electrodes for measurement of superoxide and hydrogen peroxide based on direct protein-electrode contacts}, year = {2004}, abstract = {Cytochrome c was immobilized on screen-printed thick-film gold electrodes by a self-assembly approach using mixed monolayers of mercaptoundecanoic acid and mercaptoundecanol. Cyclic voltammetry revealed quasi-reversible electrochemical behavior of the covalently fixed protein with a formal potential of +10 mV vs. Ag/AgCl. Polarized at +150 mV vs. Ag/AgCl the electrode was found to be sensitive to superoxide radicals in the range 300-1200 nmol L-1. Compared with metal needle electrodes sensitivity and reproducibility could be improved and combined with the easiness of preparation. This allows the fabrication of disposable sensors for nanomolar superoxide concentrations. By changing the electrode potential the sensor can be switched from response to superoxide radicals to hydrogen peroxide-another reactive oxygen species. H2O2 sensitivity can be provided in the range 10-1000 mumol L-1 which makes the electrode suitable for oxidative stress studies}, language = {en} } @article{KnoescheHalamekMakoweretal.2003, author = {Kn{\"o}sche, Kristina and Hal{\´a}mek, Jan and Makower, Alexander and Fournier, Didier and Scheller, Frieder W.}, title = {Molecular recognition of cocaine by acetylcholinesterases for affinity purification and bio-sensing}, year = {2003}, language = {en} } @article{KleinjungKlussmannErdmannetal.1998, author = {Kleinjung, Frank and Klußmann, S. and Erdmann, V. A. and Scheller, Frieder W. and F{\"u}rste, J. P. and Bier, Frank Fabian}, title = {Novel binders in biosensorics : hight affinity RNA for smal analytes}, year = {1998}, language = {en} } @article{KleinjungEhrentreichFoersterScheller1999, author = {Kleinjung, Frank and Ehrentreich-F{\"o}rster, Eva and Scheller, Frieder W.}, title = {Changing functionality of surfaces by directed self-assembly using oligonucleotides - the oligo-tag}, year = {1999}, language = {en} } @article{KleinjungBeierWarsinkeetal.1997, author = {Kleinjung, Frank and Beier, Frank F. and Warsinke, Axel and Scheller, Frieder W.}, title = {Fibre-optic genosensor for specific determination of femtomolar DNA oligomers}, year = {1997}, language = {en} } @article{KirsteinKirsteinSchelleretal.1998, author = {Kirstein, Dieter and Kirstein, Lincoln and Scheller, Frieder W. and Borcherding, H.}, title = {Amperometric nitrate biosensors on the basis of Pseudomonas stutzeri nitrate reductase}, year = {1998}, language = {en} } @article{KatterleWollenbergerScheller1997, author = {Katterle, Martin and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Electrochemistry of hemoglobin at modified silver electrodes is not a redox-process of iron protoporhyrin IX}, year = {1997}, language = {en} } @article{KappBeissenhirtzGeyeretal.2006, author = {Kapp, Andreas and Beissenhirtz, Moritz Karl and Geyer, F. and Scheller, Frieder W. and Viezzoli, Maria Silvia and Lisdat, Fred}, title = {Electrochemical and sensorial behaviour of SOD mutants immobilized on gold electrodes in aqueous / organic solvent mixtures}, issn = {1040-0397}, doi = {10.1002/elan.200603620}, year = {2006}, language = {en} } @article{KaishevaIlievKazarevaetal.1996, author = {Kaisheva, A. and Iliev, I. and Kazareva, R. and Christov, S. and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Enzyme/gas diffusion electrodes for determination of phenol}, year = {1996}, language = {en} } @article{JuLiuGeetal.2000, author = {Ju, Huangxian and Liu, Songqin and Ge, Bixia and Lisdat, Fred and Scheller, Frieder W.}, title = {Electrochemistry of cytochrome c immobilized on colloidal gold modified carbon paste electrodes and its electrocatalytic activity}, year = {2000}, language = {en} } @article{JinWollenbergerScheller1998, author = {Jin, Wen and Wollenberger, Ursula and Scheller, Frieder W.}, title = {PQQ as redox shuttle for quinoprotein glucose dehydrogenase}, year = {1998}, language = {en} } @article{JinWollenbergerKaergeletal.1997, author = {Jin, Wen and Wollenberger, Ursula and K{\"a}rgel, E. and Schunck, W.-H. and Scheller, Frieder W.}, title = {Electrochemical investigation of the intermolecular electron transfer between cytochrome c and NADPH-cytochrome P450-reductase}, year = {1997}, language = {en} } @article{JinWollenbergerBieretal.1995, author = {Jin, Wen and Wollenberger, Ursula and Bier, Frank Fabian and Scheller, Frieder W.}, title = {Construction and characterization of multi-layer-enzyme electrode : covalent binding of quinoprotein glucose dehydrogenase onto gold electrodes}, year = {1995}, language = {en} }