@unpublished{SchulzeTarkhanov1997, author = {Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {The Riemann-Roch theorem for manifolds with conical singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25051}, year = {1997}, abstract = {The classical Riemann-Roch theorem is extended to solutions of elliptic equations on manifolds with conical points.}, language = {en} } @unpublished{RabinovichSchulzeTarkhanov1997, author = {Rabinovich, Vladimir and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {A calculus of boundary value problems in domains with Non-Lipschitz Singular Points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24957}, year = {1997}, abstract = {The paper is devoted to pseudodifferential boundary value problems in domains with singular points on the boundary. The tangent cone at a singular point is allowed to degenerate. In particular, the boundary may rotate and oscillate in a neighbourhood of such a point. We show a criterion for the Fredholm property of a boundary value problem and derive estimates of solutions close to singular points.}, language = {en} } @unpublished{SchulzeTarkhanov1997, author = {Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Lefschetz theory on manifolds with edges : introduction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24948}, year = {1997}, abstract = {The aim of this book is to develop the Lefschetz fixed point theory for elliptic complexes of pseudodifferential operators on manifolds with edges. The general Lefschetz theory contains the index theory as a special case, while the case to be studied is much more easier than the index problem. The main topics are: - The calculus of pseudodifferential operators on manifolds with edges, especially symbol structures (inner as well as edge symbols). - The concept of ellipticity, parametrix constructions, elliptic regularity in Sobolev spaces. - Hodge theory for elliptic complexes of pseudodifferential operators on manifolds with edges. - Development of the algebraic constructions for these complexes, such as homotopy, tensor products, duality. - A generalization of the fixed point formula of Atiyah and Bott for the case of simple fixed points. - Development of the fixed point formula also in the case of non-simple fixed points, provided that the complex consists of diferential operarators only. - Investigation of geometric complexes (such as, for instance, the de Rham complex and the Dolbeault complex). Results in this direction are desirable because of both purely mathe matical reasons and applications in natural sciences.}, language = {en} }