@phdthesis{Rudloff2001, author = {Rudloff, Jan}, title = {Doppelthydrophile Blockcopolymere : Synthese und Einsatz in der biomimetischen Morphosynthese von CaCO3}, pages = {116 S.}, year = {2001}, language = {de} } @phdthesis{Krasteva2001, author = {Krasteva, Nadejda}, title = {Influence of soluble sugars and DMSO on interactions and phase behaviour of phospholipid monolayers, thin foam films and bilayer dispersions}, pages = {158 S.}, year = {2001}, language = {en} } @phdthesis{Tiarks2001, author = {Tiarks, Franca}, title = {Neue Strukturen und Synthesen durch die Miniemulsionspolymerisation: Polyaddition, Nanokapseln und Hybridpartikel}, publisher = {Shaker}, address = {Aachen}, isbn = {3-8265-8997-1}, issn = {0945-070X}, pages = {158 S.}, year = {2001}, language = {de} } @phdthesis{Drechsler2001, author = {Drechsler, Ulrich}, title = {Statische Lichtstreuung an Cellulose in L{\"o}sungsmittelsystemen mit N-Methylmorpholin-N-oxid}, pages = {94 S.}, year = {2001}, language = {de} } @phdthesis{Willert2001, author = {Willert, Mirjam A.}, title = {Prinzipien und Anwendungsm{\"o}glichkeiten nichtw{\"a}ßriger und inverser Miniemulsionen}, publisher = {Cuvillier}, address = {G{\"o}ttingen}, isbn = {3-89873-329-7}, pages = {137 S.}, year = {2001}, language = {de} } @phdthesis{Janietz2002, author = {Janietz, Silvia}, title = {Zusammnenh{\"a}nge zwischen Struktur, elektrochemischem Redoxverhalten und dem Einsatz von organischen Halbleitern in der Elektronik}, pages = {78 S., Anh.}, year = {2002}, language = {de} } @phdthesis{Germer2002, author = {Germer, Antje}, title = {Konformationsanalyse oligosaccharidischer Chitinaseinhibitoren}, pages = {117 S.}, year = {2002}, language = {de} } @phdthesis{Krass2002, author = {Kraß, Henning}, title = {Aufbau und Untersuchung ultrad{\"u}nner Filme aus Metallkomplexen auf Oberfl{\"a}chen}, pages = {86 S.}, year = {2002}, language = {de} } @phdthesis{Fischbach2002, author = {Fischbach, Matthias}, title = {Synthese und Polymerisation kationischer Carnitinderivate}, pages = {88 S.}, year = {2002}, language = {de} } @phdthesis{Schrage2002, author = {Schrage, Stefan}, title = {Selbstorganisation von Ionomeren zu phasenseparierten Vesikeln}, pages = {105 S.}, year = {2002}, language = {de} } @phdthesis{Schwarz2002, author = {Schwarz, Bernd}, title = {NMR Spektroskopie an Polyelektrolyt Mono- und Multischicht-Systemen}, pages = {141 S.}, year = {2002}, language = {de} } @phdthesis{Khrenov2002, author = {Khrenov, Viktor}, title = {Anwendung der Heterophasenpolymerisation und CeIV Chemie zur Synthese von Blockcopolymeren}, pages = {119 S.}, year = {2002}, language = {de} } @phdthesis{Schattka2002, author = {Schattka, Jan Hendrik}, title = {Synthese por{\"o}ser Metalloxidstrukturen durch Template Nanocoating}, pages = {108 S.}, year = {2002}, language = {de} } @phdthesis{Zintchenko2002, author = {Zintchenko, Arkadi}, title = {Polyelektrolythkomplexbildung mit doppelhydrophilen Blockcopolymeren}, pages = {103 S.}, year = {2002}, language = {de} } @phdthesis{Viala2002, author = {Viala, Sophie}, title = {Kontrollierte radikalische Heterophasenpolymerisaton mit Anwesenheit des Diphenylethylens}, pages = {130 S.}, year = {2002}, language = {de} } @phdthesis{Bozorgzadeh2002, author = {Bozorgzadeh, Hamid-Reza}, title = {Katalytische Umwandlung von "Flur-Chlor-Kohlenwasserstoffen" zu umweltvertr{\"a}glichen Verbindungen}, pages = {160 S.}, year = {2002}, language = {de} } @phdthesis{Engelhardt2002, author = {Engelhardt, Ulrike}, title = {Eine effiziente und enantioselektive Totalsynthese von Epipodophyllotoxin}, publisher = {Ed. L{\"o}wengasse}, address = {Radolfzell}, isbn = {3-925466-65-7}, pages = {230 S.}, year = {2002}, language = {de} } @phdthesis{Padtberg2002, author = {Padtberg, Klaus}, title = {On-line Verfolgung von Nukleierungsprozessen}, pages = {110 S.}, year = {2002}, language = {de} } @phdthesis{DereseYenesewMidiwoetal.2003, author = {Derese, Solomon and Yenesew, Abiy and Midiwo, Jacob O. and Heydenreich, Matthias and Peter, Martin G.}, title = {A new isoflavone from stem bark of Millettia dura}, issn = {1011-3924}, year = {2003}, language = {en} } @phdthesis{BahrkeEinarssonGislasonetal.2003, author = {Bahrke, Sven and Einarsson, Jon M. and Gislason, Johannes and Haebel, Sophie and Peter-Katalinic, Jasna and Peter, Martin G.}, title = {Characterization of chitooligosaccharides by mass spectrometry}, isbn = {82-47-15901-5}, year = {2003}, language = {en} } @phdthesis{Taden2003, author = {Taden, Andreas J{\"o}rg}, title = {Kristalisationsph{\"a}nomene in Minienmulsionssystemen : geordnete Strukturen und Anwendungen f{\"u}r die enzymatische Polymerisation}, pages = {118 S.}, year = {2003}, language = {de} } @phdthesis{Wohlrab2003, author = {Wohlrab, Erdmann Sebastian}, title = {Polymerinduzierte Morphogenese bei der Kristalisation von Aminos{\"a}uren}, pages = {112 S.}, year = {2003}, language = {de} } @phdthesis{Lucas2003, author = {Lucas, Gordon}, title = {Gradientenzentrifugation : neue Anwendungen eines klassischen Verfahrens}, pages = {114 S.}, year = {2003}, language = {de} } @phdthesis{IbarzRic2003, author = {Ibarz-Ric, Gemma}, title = {Controlling internal structure and permeability of polyelectrolyte multilayer microcapsules}, pages = {96 S.}, year = {2003}, language = {en} } @phdthesis{Schoeler2003, author = {Sch{\"o}ler, Bj{\"o}rn}, title = {Einfluss der Ladungsdichte aud den Aufbau von Polyelektrolyt Multischichten mit der Layer-by-Layer Technik}, pages = {122 S.}, year = {2003}, language = {de} } @phdthesis{Schuetz2003, author = {Sch{\"u}tz, Peter}, title = {D{\"u}nne Kompostfilme aus Nanopartikeln und Polyelektrolyten}, pages = {109 S.}, year = {2003}, language = {de} } @phdthesis{Thomas2003, author = {Thomas, Arne Christian}, title = {Por{\"o}se Silikate durch Nanocasting : von chiralen Templaten zu neuer Chemie in Poren}, pages = {112 S.}, year = {2003}, language = {de} } @phdthesis{Wang2003, author = {Wang, Liying}, title = {Lipid monolayers coupled to polyelectrolyte multilayers : stability, dynamics and interactions}, pages = {133, II S.}, year = {2003}, language = {en} } @phdthesis{Radtchenko2003, author = {Radtchenko, Igor Leonidovich}, title = {Nanoengineered polymeric capsules as physico-chemical microreactors}, pages = {109 S.}, year = {2003}, language = {en} } @phdthesis{Klod2003, author = {Klod, Sabrina}, title = {Elektronische, sterische und Anistorische-Effekte in Push-pull-Alkenen : NMR-spektroskopische und quantenchemische Untersuchungen}, pages = {111 S.}, year = {2003}, language = {de} } @phdthesis{Antipov2003, author = {Antipov, Alexei}, title = {Polyelectrolyte multilayer capsules as controlled permeability vehicles and catalyst carriers}, pages = {100 S.}, year = {2003}, language = {en} } @phdthesis{Engelhard2003, author = {Engelhard, Sonja}, title = {Optische Verfahren zur Qualit{\"a}tskontrolle von Bier und zur Zellzahlbestimung in S. cerevisiae Kultivierungen}, pages = {129 S.}, year = {2003}, language = {de} } @phdthesis{Kamm2004, author = {Kamm, Birgit}, title = {Neue Ans{\"a}tze in der Organischen Synthesechemie : Verkn{\"u}pfung von biologischer und chemischer Stoffwandlung am Beispiel der Bioraffinerie-Grundprodukte Milchs{\"a}ure und Carnitin}, address = {Potsdam}, pages = {Getr. Z{\"a}hlung : graph. Darst.}, year = {2004}, language = {de} } @phdthesis{Goltz2004, author = {Goltz, Daniel}, title = {Stereoselektive Synthese von asymmetrisch Benzyl-H-deuterierten Dibenzylbutyrolacton-Lignanzen}, pages = {VII, 101 S. : graph. Darst.}, year = {2004}, language = {de} } @phdthesis{Heise2004, author = {Heise, Christian}, title = {Strukturierte Immobilisierung auf Oberfl{\"a}chen f{\"u}r BioChip-Anwendungen}, address = {Potsdam}, pages = {127, XX S. : Ill., graph. Darst.}, year = {2004}, language = {de} } @phdthesis{Rusu2004, author = {Rusu, Mihaela}, title = {Phase transitions of thermoreversible polymers in polyeletrolyte multilayers}, address = {Potsdam}, pages = {I-2, 131, III-2 S. : graph. Darst.}, year = {2004}, language = {en} } @phdthesis{Yue2004, author = {Yue, Xiuli}, title = {Monolayer phase behavior of bipolar amphiphiles and their coupling with DNA}, address = {Golm}, pages = {4, 106, 11 S. : graph. Darst.}, year = {2004}, language = {en} } @phdthesis{Dong2004, author = {Dong, Wen-Fei}, title = {Polyelectrolyte Multilayer Capsules: structure, encapsulation, and optical properties}, address = {Potsdam}, pages = {130 S. : Ill., graph. Darst.}, year = {2004}, language = {en} } @phdthesis{Li2004, author = {Li, Lidong}, title = {Polyelectrolyte hollow capsules functionalized for vectorial electron transfer}, pages = {99 S.}, year = {2004}, language = {en} } @phdthesis{Muruganathan2004, author = {Muruganathan, Ramanathan}, title = {Permeability and interaction in Free-standing Foam Films}, pages = {120, VII S.}, year = {2004}, language = {en} } @phdthesis{Delajon2005, author = {Delajon, Christophe Bernard}, title = {Wechselwirkung von Lipidmembranen mit Polyelektrolytmultischichten}, address = {Potsdam}, pages = {99 S. : graph. Darst.}, year = {2005}, language = {de} } @phdthesis{Ali2005, author = {Ali, Abu Md. Imroz}, title = {Morphology control in nanoscopic composite polymer particles}, address = {Potsdam}, pages = {97, XXXV S. : Ill., graph. Darst.}, year = {2005}, language = {en} } @phdthesis{Asfaw2005, author = {Asfaw, Mesfin}, title = {Adhesion of multi-component membbranes and strings}, address = {Potsdam}, pages = {102 S. : graph. Darst.}, year = {2005}, language = {en} } @phdthesis{Recih2005, author = {Recih, Oliver}, title = {Photonendichtewellenspektroskopie mit intensit{\"a}tsmodulierten Diodenlasern}, address = {Potsdam}, pages = {iii, 163 S. : graph. Darst.}, year = {2005}, language = {de} } @phdthesis{Duan2005, author = {Duan, Hongwei}, title = {Functional Nanoparticles as Self-Assembling Building Block and Synthetic Templates}, address = {Potsdam}, pages = {III, 107 S. : Ill., graph. Darst.}, year = {2005}, language = {en} } @phdthesis{Polleux2005, author = {Polleux, Julien Philippe}, title = {Ligang-Mediated synthesis and assembly of crystalline metal oxide nanoparticles}, address = {Potsdam}, pages = {118 S. : Ill., graph. Darst.}, year = {2005}, language = {en} } @phdthesis{Kammer2009, author = {Kammer, Stefan}, title = {Metallkomplexe von 1,12-Diazaperylen-Liganden und Derivate des 1,12-Diazaperylens als Bausteine f{\"u}r den Aufbau supramolekularer Strukturen durch pi-pi stacking Wechselwirkungen}, address = {Potsdam}, pages = {133 S. : zahlr. graph. Darst.}, year = {2009}, language = {de} } @phdthesis{Koehler2006, author = {K{\"o}hler, Karen}, title = {Temperature-induced rearrangements of polyelectrolyte multilayer capsules : mechanisms and applications}, address = {Potsdam}, pages = {XV, 118, B S. : Ill., graph. Darst.}, year = {2006}, language = {en} } @phdthesis{Kim2006, author = {Kim, Boo Geun}, title = {Radikalische Additionen an unges{\"a}ttigte Kohlenhydrate als Schl{\"u}sselschritt in der Synthese von Kohlenhydrat-C-Analoga}, address = {Potsdam}, pages = {113 Bl. : graph. Darst.}, year = {2006}, language = {de} } @phdthesis{Klamroth2006, author = {Klamroth, Tillmann}, title = {Quantum mechanical simulations for correlated many-electron dynamics and electron induced processes at surfaces}, address = {Potsdam}, pages = {206 S. : graph. Darst.}, year = {2006}, language = {en} } @phdthesis{Kohlmeier2006, author = {Kohlmeier, Alexandra}, title = {Synthese und Eigenschaften supramolekularer polyphiler Blockmesogene}, address = {Potsdam}, pages = {116 S. : graph. Darst.}, year = {2006}, language = {de} } @phdthesis{Bellin2006, author = {Bellin, Ingo}, title = {Thermosensitive Polymer Networks with Two Different Shapes in Memory}, address = {Potsdam}, pages = {117 S. : graph. Darst.}, year = {2006}, language = {en} } @phdthesis{Robertson2006, author = {Robertson, Daniela}, title = {Polymermodifizierte Phospholipid : Vesikel als neuartige Templat-Phase}, address = {Potsdam}, pages = {129 Bl. : Ill., graph. Darst.}, year = {2006}, language = {de} } @phdthesis{Holzberger2006, author = {Holzberger, Anja}, title = {Bestimmung der Konformationen und der Komplexbildungstendenzen von Kronenverbindungen in L{\"o}sung unter kombiniertem Einsatz von Kernmagnetischer Resonanzspektriskopie und Molecular Modelling}, address = {Potsdam}, pages = {90 S. : graph. Darst.}, year = {2006}, language = {de} } @phdthesis{Nest2007, author = {Nest, Mathias}, title = {Quantum dynamics for large systems: System-bath type situations and correlated dynamics of many electrons}, address = {Potsdam}, pages = {176 S., I-V, graph. Darst.}, year = {2007}, language = {en} } @phdthesis{Lutter2007, author = {Lutter, Stefanie}, title = {Polymermodifizierte Mikroemulsionen als Pr{\"a}gematrix f{\"u}r die Nanopartikelbildung}, address = {Potsdam}, pages = {x, 132, XIII S.: Ill., graph. Darst.}, year = {2007}, language = {de} } @phdthesis{Alahverdjieva2007, author = {Alahverdjieva, Veneta}, title = {Experimental study of mixed protein/surfactant systems at the aqueous solution/air interface}, address = {Potsdam}, pages = {XIV, 146 S., X : graph. Darst.}, year = {2007}, language = {en} } @phdthesis{Kaper2007, author = {Kaper, Helenea}, title = {Structure control of nanoscaled inorganic matter by ionic liquids}, address = {Potsdam}, pages = {138 S. : Ill., graph. Darst.}, year = {2007}, language = {en} } @phdthesis{Kulkarni2007, author = {Kulkarni, Amit Narahari}, title = {Degradation kinetics studies of polymers for biomedical applications}, address = {Potsdam}, pages = {vi, 144, viii S. : graph. Darst.}, year = {2007}, language = {en} } @phdthesis{EntrialgoCastano2007, author = {Entrialgo Castano, Maria}, title = {Hydrolytic degradation of aliphatic polyester: molecular modeling and quantum mechanical investigations}, address = {Potsdam}, pages = {141 S. : graph. Darst.}, year = {2007}, language = {en} } @phdthesis{Stocco2007, author = {Stocco, Antonio}, title = {Amphiphilic block copolymers at the liquid-fluid interface, invesrigated by evanescent light scattering and ellipsometry}, address = {Potsdam}, pages = {iii, 108 S. : Ill., graph. Darst.}, year = {2007}, language = {en} } @phdthesis{You2007, author = {You, Liangchen}, title = {Synthesis and characterization of novel glycopolymers}, address = {Potsdam}, pages = {116 S. : graph. Darst.}, year = {2007}, language = {en} } @phdthesis{Sel2007, author = {Sel, {\"O}zlem}, title = {Hierarchical meso- and macropore architectures by liquid crystalline and polymer colloid templating}, address = {Potsdam}, pages = {105, VXI S. : graph. Darst.}, year = {2007}, language = {en} } @phdthesis{Baier2007, author = {Baier, Jennifa}, title = {Polyelektrolyt-modifizierte w/o-Mikroemulsionen als Templatphase f{\"u}r die Nanopartikelbildung}, address = {Potsdam}, pages = {VI, 137 Bl. : graph. Darst.}, year = {2007}, language = {de} } @phdthesis{Frankovitch2007, author = {Frankovitch, Christine Marie}, title = {Optical methods for monitoring biological parameters of phototropic microorganisms during cultivation}, address = {Potsdam}, pages = {iii, 95 S. : graph. Darst.}, year = {2007}, language = {en} } @phdthesis{Krause2007, author = {Krause, Pascal}, title = {Many-electron dynamics in molecules by means of time-dependent configuration interaction methods}, address = {Potsdam}, pages = {III, 107 S. : graph. Darst.}, year = {2007}, language = {en} } @phdthesis{Schwarz2008, author = {Schwarz, Guntram}, title = {Charakterisierung von Eigenschaften und Struktur Metallo-supramolekularer Funktionseinheiten}, address = {Potsdam}, pages = {155 S., : graph. Darst.}, year = {2008}, language = {de} } @phdthesis{Yagci2008, author = {Yagci, Yavuz Emre}, title = {Synthesis of poly(tartar amide)s and poly-(gluco amide)s as antifreeze additives}, address = {Potsdam}, pages = {86 S., ii-vi, : graph. Darst.}, year = {2008}, language = {en} } @phdthesis{HordyjewiczBaran2008, author = {Hordyjewicz-Baran, Zofia}, title = {Synthesis and Study of the Aggregation Behavior of Hydrophilically Modified Polybutadienes}, address = {Potsdam}, pages = {101 S., : graph. Darst.}, year = {2008}, language = {en} } @phdthesis{Stark2008, author = {Stark, Arne Henning}, title = {CCD based ellipsometric light scattering}, address = {Potsdam}, pages = {99 S., vi-xv, : graph. Darst.}, year = {2008}, language = {en} } @phdthesis{Lutter2008, author = {Lutter, Stefanie}, title = {Polymermodofizierte Mikroemulsionen als Pr{\"a}gematrix f{\"u}r die Nanopartikelbildung}, address = {Potsdam}, pages = {132 S., Anhang I-XIII, : graph. Darst.}, year = {2008}, language = {de} } @phdthesis{Stark2008, author = {Stark, Arne Henning}, title = {CCD based ellipsometric light scattering}, pages = {xv, 99, XVI S.: Ill., graph. Darst.}, year = {2008}, language = {en} } @phdthesis{HordyjewiczBaran2008, author = {Hordyjewicz-Baran, Zofia}, title = {Synthesis and study of the aggregation behavior of hydrophilically modified polybutadienes}, address = {Potsdam}, pages = {101 S.: Ill., graph. Darst.}, year = {2008}, language = {en} } @phdthesis{Biernat2008, author = {Biernat, Anne}, title = {Synthese seltener Kohlenhydrate unter Verwendung der ringschließenden Olefinmetathese}, address = {Potsdam}, pages = {174 S.: graph. Darst.}, year = {2008}, language = {de} } @phdthesis{Schwarz2008, author = {Schwarz, Guntram}, title = {Charakterisierung von Eigenschaften und Struktur Metallo-supramolekularer Funktionseinheiten}, address = {Potsdam}, pages = {156 S.: Ill., garph. Darst.}, year = {2008}, language = {de} } @phdthesis{Yagci2008, author = {Yagci, Yavuz Emre}, title = {Synthesis of poly(tartar amide)s and poly-(gluco amide)s as antifreeze additives}, address = {Potsdam}, pages = {vi, 86 S.: Ill., graph. Darst.}, year = {2008}, language = {en} } @phdthesis{Wacker2008, author = {Wacker, Philipp}, title = {Konformationsanalyse meso-substituierter Porphyrine mittels NMR-Spektroskopie und quantenchemischer Berechnungen}, address = {Potsdam}, pages = {112 S., A36: Ill., graph. Darst.}, year = {2008}, language = {de} } @phdthesis{Olak2008, author = {Olak, Claudia}, title = {Untersuchung zur Rolle von Adapterprotein-Komplexen im Targeting der Glucosetransporter GLUT8 und GLUT4}, address = {Potsdam}, pages = {131,xii S. : graph. Darst.}, year = {2008}, language = {de} } @phdthesis{Wacker2008, author = {Wacker, Philipp}, title = {Konformationsanalyse meso-substituierter Porphyrine mittels NMR-Spektroskopie und quantenchemischer Berechnungen}, address = {Potsdam}, pages = {112, A36 : graph. Darst.}, year = {2008}, language = {de} } @phdthesis{Leiendecker2016, author = {Leiendecker, Mai-Thi}, title = {Physikalische Hydrogele auf Polyurethan-Basis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103917}, school = {Universit{\"a}t Potsdam}, pages = {109}, year = {2016}, abstract = {Physical hydrogels have gained recent attention as cell substrates, since viscoelasticity or stress relaxation is a powerful parameter in mechanotransduction, which has long been neglected. We designed multi-functional polyurethanes to form physical hydrogels via a unique tunable gelation mechanism. The anionic polyurethanes spontaneously form aggregates in water that are kept in a soluble state through electrostatic repulsion. Fast subsequent gelation can be triggered by charge shielding which allows the aggregation and network building to proceed. This can be induced by adding either acids or salts, resulting in acidic (pH 4-5) or pH-neutral hydrogels, respectively. Whereas conventional polyurethane-based hydrogels are commonly prepared from toxic isocyanate precursors, the physical hydrogelation mechanism described here does not involve chemically reactive species which is ideal for in situ applications in sensitive environments. Both stiffness and stress relaxation can be tuned independently over a broad range and the gels exhibit excellent stress recovery behavior.}, language = {de} } @phdthesis{Koenig2016, author = {K{\"o}nig, Jana}, title = {Synthese und Charakterisierung von 3d-4f-Komplexen und deren Vorl{\"a}ufer mit 1,2-Dithiooxalat als Ligand}, school = {Universit{\"a}t Potsdam}, pages = {89, LXIX}, year = {2016}, language = {de} } @phdthesis{Knoop2016, author = {Knoop, Mats Timothy}, title = {Neue Polyacrylnitril-basierte, schmelzspinnbare Pr{\"a}kursoren f{\"u}r Carbonfasern}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103972}, school = {Universit{\"a}t Potsdam}, pages = {VI, 143, XV}, year = {2016}, abstract = {Diese Arbeit zu Grunde liegenden Forschung zielte darauf ab, neue schmelzbare Acrylnitril-Copolymere zu entwickeln. Diese sollten im Anschluss {\"u}ber ein Schmelzspinnverfahren zur Chemiefaser geformt und im letzten Schritt zur Carbonfaser konvertiert werden. Zu diesem Zweck wurden zun{\"a}chst orientierende Untersuchungen an unterschiedlichen Copolymeren des Acrylnitril aus L{\"o}sungspolymerisation durchgef{\"u}hrt. Die Untersuchungen zeigten, dass elektrostatische Wechselwirkungen besser als sterische Abschirmung dazu geeignet sind, Schmelzbarkeit unterhalb der Zersetzungstemperatur von Polyacrylnitril zu bewirken. Aus der Vielzahl untersuchter Copolymere stellten sich jene mit Methoxyethylacrylat (MEA) als am effektivsten heraus. F{\"u}r diese Copolymere wurden sowohl die Copolymerisationsparameter bestimmt als auch die grundlegende Kinetik der L{\"o}sungspolymerisation untersucht. Die Copolymere mit MEA wurden {\"u}ber Schmelzspinnen zur Faser umgeformt und diese dann untersucht. Hierbei wurden auch Einfl{\"u}sse verschiedener Parameter, wie z.B. die der Molmasse, auf die Fasereigenschaften und -herstellung untersucht. Zuletzt wurde ein Heterophasenpolymerisationsverfahren zur Herstellung von Copolymeren aus AN/MEA entwickelt; dadurch konnten die Materialeigenschaften weiter verbessert werden. Zur Unterdr{\"u}ckung der thermoplastischen Eigenschaften der Fasern wurde ein geeignetes Verfahren entwickelt und anschließend die Konversion zu Carbonfasern durchgef{\"u}hrt.}, language = {de} } @phdthesis{Trautmann2016, author = {Trautmann, Michael}, title = {Neue Polystyrolharze mit Sulfoxid-Ankergruppen f{\"u}r die Festphasenextraktion von Platin und Ruthenium aus salzsauren L{\"o}sungen}, school = {Universit{\"a}t Potsdam}, pages = {191}, year = {2016}, language = {de} } @phdthesis{Friese2016, author = {Friese, Viviane A.}, title = {Solvato-, vapo, mechanochromic and luminescent behavior of Rhodium, Platinum and Gold complexes and their coordination polymers}, school = {Universit{\"a}t Potsdam}, pages = {100 S.}, year = {2016}, language = {en} } @phdthesis{Friess2016, author = {Frieß, Fabian}, title = {Shape-memory polymer micronetworks}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 111 S.}, year = {2016}, language = {en} } @phdthesis{Hildebrand2016, author = {Hildebrand, Viet}, title = {Twofold switchable block copolymers based on new polyzwitterions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101372}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 170, LXXX}, year = {2016}, abstract = {In complement to the well-established zwitterionic monomers 3-((2-(methacryloyloxy)ethyl)dimethylammonio)propane-1-sulfonate ("SPE") and 3-((3-methacrylamidopropyl)dimethylammonio)propane-1-sulfonate ("SPP"), the closely related sulfobetaine monomers were synthesized and polymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization, using a fluorophore labeled RAFT agent. The polyzwitterions of systematically varied molar mass were characterized with respect to their solubility in water, deuterated water, and aqueous salt solutions. These poly(sulfobetaine)s show thermoresponsive behavior in water, exhibiting upper critical solution temperatures (UCST). Phase transition temperatures depend notably on the molar mass and polymer concentration, and are much higher in D2O than in H2O. Also, the phase transition temperatures are effectively modulated by the addition of salts. The individual effects can be in parts correlated to the Hofmeister series for the anions studied. Still, they depend in a complex way on the concentration and the nature of the added electrolytes, on the one hand, and on the detailed structure of the zwitterionic side chain, on the other hand. For the polymers with the same zwitterionic side chain, it is found that methacrylamide-based poly(sulfobetaine)s exhibit higher UCST-type transition temperatures than their methacrylate analogs. The extension of the distance between polymerizable unit and zwitterionic groups from 2 to 3 methylene units decreases the UCST-type transition temperatures. Poly(sulfobetaine)s derived from aliphatic esters show higher UCST-type transition temperatures than their analogs featuring cyclic ammonium cations. The UCST-type transition temperatures increase markedly with spacer length separating the cationic and anionic moieties from 3 to 4 methylene units. Thus, apparently small variations of their chemical structure strongly affect the phase behavior of the polyzwitterions in specific aqueous environments. Water-soluble block copolymers were prepared from the zwitterionic monomers and the non-ionic monomer N-isopropylmethacrylamide ("NIPMAM") by the RAFT polymerization. Such block copolymers with two hydrophilic blocks exhibit twofold thermoresponsive behavior in water. The poly(sulfobetaine) block shows an UCST, whereas the poly(NIPMAM) block exhibits a lower critical solution temperature (LCST). This constellation induces a structure inversion of the solvophobic aggregate, called "schizophrenic micelle". Depending on the relative positions of the two different phase transitions, the block copolymer passes through a molecularly dissolved or an insoluble intermediate regime, which can be modulated by the polymer concentration or by the addition of salt. Whereas, at low temperature, the poly(sulfobetaine) block forms polar aggregates that are kept in solution by the poly(NIPMAM) block, at high temperature, the poly(NIPMAM) block forms hydrophobic aggregates that are kept in solution by the poly(sulfobetaine) block. Thus, aggregates can be prepared in water, which switch reversibly their "inside" to the "outside", and vice versa.}, language = {en} } @phdthesis{Steeples2016, author = {Steeples, Elliot}, title = {Amino acid-derived imidazolium salts: platform molecules for N-Heterocyclic carbene metal complexes and organosilica materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101861}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2016}, abstract = {In the interest of producing functional catalysts from sustainable building-blocks, 1, 3-dicarboxylate imidazolium salts derived from amino acids were successfully modified to be suitable as N-Heterocyclic carbene (NHC) ligands within metal complexes. Complexes of Ag(I), Pd(II), and Ir(I) were successfully produced using known procedures using ligands derived from glycine, alanine, β-alanine and phenylalanine. The complexes were characterized in solid state using X-Ray crystallography, which allowed for the steric and electronic comparison of these ligands to well-known NHC ligands within analogous metal complexes. The palladium complexes were tested as catalysts for aqueous-phase Suzuki-Miyaura cross-coupling. Water-solubility could be induced via ester hydrolysis of the N-bound groups in the presence of base. The mono-NHC-Pd complexes were seen to be highly active in the coupling of aryl bromides with phenylboronic acid; the active catalyst of which was determined to be mostly Pd(0) nanoparticles. Kinetic studies determined that reaction proceeds quickly in the coupling of bromoacetophenone, for both pre-hydrolyzed and in-situ hydrolysis catalyst dissolution. The catalyst could also be recycled for an extra run by simply re-using the aqueous layer. The imidazolium salts were also used to produce organosilica hybrid materials. This was attempted via two methods: by post-grafting onto a commercial organosilica, and co-condensation of the corresponding organosilane. The co-condensation technique harbours potential for the production of solid-support catalysts.}, language = {en} } @phdthesis{Klaper2014, author = {Klaper, Matthias}, title = {Untersuchungen zum intramolekularen Transfer von Singulettsauerstoff auf Acene und Alkene}, school = {Universit{\"a}t Potsdam}, pages = {118}, year = {2014}, language = {de} } @phdthesis{Bressel2016, author = {Bressel, Lena}, title = {Bedeutung der abh{\"a}ngigen Streuung f{\"u}r die optischen Eigenschaften hochkonzentrierter Dispersionen}, school = {Universit{\"a}t Potsdam}, pages = {154, XL}, year = {2016}, language = {de} } @phdthesis{Pampel2016, author = {Pampel, Jonas}, title = {Ionothermal carbon materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101323}, school = {Universit{\"a}t Potsdam}, pages = {122, xlv}, year = {2016}, abstract = {Alternative concepts for energy storage and conversion have to be developed, optimized and employed to fulfill the dream of a fossil-independent energy economy. Porous carbon materials play a major role in many energy-related devices. Among different characteristics, distinct porosity features, e.g., specific surface area (SSA), total pore volume (TPV), and the pore size distribution (PSD), are important to maximize the performance in the final device. In order to approach the aim to synthesize carbon materials with tailor-made porosity in a sustainable fashion, the present thesis focused on biomass-derived precursors employing and developing the ionothermal carbonization. During the ionothermal carbonization, a salt melt simultaneously serves as solvent and porogen. Typically, eutectic mixtures containing zinc chloride are employed as salt phase. The first topic of the present thesis addressed the possibility to precisely tailor the porosity of ionothermal carbon materials by an experimentally simple variation of the molar composition of the binary salt mixture. The developed pore tuning tool allowed the synthesis of glucose derived carbon materials with predictable SSAs in the range of ~ 900 to ~ 2100 m2 g-1. Moreover, the nucleobase adenine was employed as precursor introducing nitrogen functionalities in the final material. Thereby, the chemical properties of the carbon materials are varied leading to new application fields. Nitrogen doped carbons (NDCs) are able to catalyze the oxygen reduction reaction (ORR) which takes place on the cathodic site of a fuel cell. The herein developed porosity tailoring allowed the synthesis of adenine derived NDCs with outstanding SSAs of up to 2900 m2 g-1 and very large TPV of 5.19 cm3 g-1. Furthermore, the influence of the porosity on the ORR could be directly investigated enabling the precise optimization of the porosity characteristics of NDCs for this application. The second topic addressed the development of a new method to investigate the not-yet unraveled mechanism of the oxygen reduction reaction using a rotating disc electrode setup. The focus was put on noble-metal free catalysts. The results showed that the reaction pathway of the investigated catalysts is pH-dependent indicating different active species at different pH-values. The third topic addressed the expansion of the used salts for the ionothermal approach towards hydrated calcium and magnesium chloride. It was shown that hydrated salt phases allowed the introduction of a secondary templating effect which was connected to the coexistence of liquid and solid salt phases. The method enabled the synthesis of fibrous NDCs with SSAs of up to 2780 m2 g-1 and very large TPV of 3.86 cm3 g-1. Moreover, the concept of active site implementation by a facile low-temperature metalation employing the obtained NDCs as solid ligands could be shown for the first time in the context of ORR. Overall, the thesis may pave the way towards highly porous carbon with tailor-made porosity materials prepared by an inexpensive and sustainable pathway, which can be applied in energy related field thereby supporting the needed expansion of the renewable energy sector.}, language = {en} } @phdthesis{Draffehn2016, author = {Draffehn, S{\"o}ren}, title = {Optical Spectroscopy-Based Characterization of Micellar and Liposomal Systems with Possible Applications in Drug Delivery}, school = {Universit{\"a}t Potsdam}, pages = {VII, 106, XII}, year = {2016}, language = {en} } @phdthesis{Rackwitz2016, author = {Rackwitz, Jenny}, title = {A novel approach to study low-energy electron-induced damage to DNA oligonucleotides}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2016}, language = {en} } @phdthesis{Limberg2016, author = {Limberg, Felix Rolf Paul}, title = {Synthese und Entwicklung thermisch vernetzbarer OLED-Materialien}, school = {Universit{\"a}t Potsdam}, pages = {206}, year = {2016}, language = {de} } @phdthesis{Won2016, author = {Won, Jooyoung}, title = {Dynamic and equilibrium adsorption behaviour of ß-lactoglobulin at the solution/tetradecane interface: Effect of solution concentration, pH and ionic strength}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99167}, school = {Universit{\"a}t Potsdam}, pages = {ix, 106}, year = {2016}, abstract = {Proteins are amphiphilic and adsorb at liquid interfaces. Therefore, they can be efficient stabilizers of foams and emulsions. β-lactoglobulin (BLG) is one of the most widely studied proteins due to its major industrial applications, in particular in food technology. In the present work, the influence of different bulk concentration, solution pH and ionic strength on the dynamic and equilibrium pressures of BLG adsorbed layers at the solution/tetradecane (W/TD) interface has been investigated. Dynamic interfacial pressure (Π) and interfacial dilational elastic modulus (E') of BLG solutions for various concentrations at three different pH values of 3, 5 and 7 at a fixed ionic strength of 10 mM and for a selected fixed concentration at three different ionic strengths of 1 mM, 10 mM and 100 mM are measured by Profile Analysis Tensiometer PAT-1 (SINTERFACE Technologies, Germany). A quantitative data analysis requires additional consideration of depletion due to BLG adsorption at the interface at low protein bulk concentrations. This fact makes experiments more efficient when oil drops are studied in the aqueous protein solutions rather than solution drops formed in oil. On the basis of obtained experimental data, concentration dependencies and the effect of solution pH on the protein surface activity was qualitatively analysed. In the presence of 10 mM buffer, we observed that generally the adsorbed amount is increasing with increasing BLG bulk concentration for all three pH values. The adsorption kinetics at pH 5 result in the highest Π values at any time of adsorption while it exhibits a less active behaviour at pH 3. Since the experimental data have not been in a good agreement with the classical diffusion controlled model due to the conformational changes which occur when the protein molecules get in contact with the hydrophobic oil phase in order to adapt to the interfacial environment, a new theoretical model is proposed here. The adsorption kinetics data were analysed with the newly proposed model, which is the classical diffusion model but modified by assuming an additional change in the surface activity of BLG molecules when adsorbing at the interface. This effect can be expressed through the adsorption activity constant in the corresponding equation of state. The dilational visco-elasticity of the BLG adsorbed interfacial layers is determined from measured dynamic interfacial tensions during sinusoidal drop area variations. The interfacial tension responses to these harmonic drop oscillations are interpreted with the same thermodynamic model which is used for the corresponding adsorption isotherm. At a selected BLG concentration of 2×10-6 mol/l, the influence of the ionic strength using different buffer concentration of 1, 10 and 100 mM on the interfacial pressure was studied. It is affected weakly at pH 5, whereas it has a strong impact by increasing buffer concentration at pH 3 and 7. In conclusion, the structure formation of BLG adsorbed layer in the early stage of adsorption at the W/TD interface is similar to those of the solution/air (W/A) surface. However, the equation of state at the W/TD interface provides an adsorption activity constant which is almost two orders of magnitude higher than that for the solution/air surface. At the end of this work, a new experimental tool called Drop and Bubble Micro Manipulator DBMM (SINTERFACE Technologies, Germany) has been introduced to study the stability of protein covered bubbles against coalescence. Among the available protocols the lifetime between the moment of contact and coalescence of two contacting bubble is determined for different BLG concentrations. The adsorbed amount of BLG is determined as a function of time and concentration and correlates with the observed coalescence behaviour of the contacting bubbles.}, language = {en} } @phdthesis{Klier2016, author = {Klier, Dennis Tobias}, title = {Upconversion luminescence in Er-codoped NaYF4 nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98486}, school = {Universit{\"a}t Potsdam}, pages = {ix, 89}, year = {2016}, abstract = {In the context of an increasing population of aging people and a shift of medical paradigm towards an individualized medicine in health care, nanostructured lanthanides doped sodium yttrium fluoride (NaYF4) represents an exciting class of upconversion nanomaterials (UCNM) which are suitable to bring forward developments in biomedicine and -biodetection. Despite the fact that among various fluoride based upconversion (UC) phosphors lanthanide doped NaYF4 is one of the most studied upconversion nanomaterial, many open questions are still remaining concerning the interplay of the population routes of sensitizer and activator electronic states involved in different luminescence upconversion photophysics as well as the role of phonon coupling. The collective work aims to explore a detailed understanding of the upconversion mechanism in nanoscaled NaYF4 based materials co-doped with several lanthanides, e.g. Yb3+ and Er3+ as the "standard" type upconversion nanoparticles (UCNP) up to advanced UCNP with Gd3+ and Nd3+. Especially the impact of the crystal lattice structure as well as the resulting lattice phonons on the upconversion luminescence was investigated in detail based on different mixtures of cubic and hexagonal NaYF4 nanoscaled crystals. Three synthesis methods, depending on the attempt of the respective central spectroscopic questions, could be accomplished in the following work. NaYF4 based upconversion nanoparticles doped with several combination of lanthanides (Yb3+, Er3+, Gd3+ and Nd3+) were synthesized successfully using a hydrothermal synthesis method under mild conditions as well as a co-precipitation and a high temperature co-precipitation technique. Structural information were gathered by means of X-ray diffraction (XRD), electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy and inductively coupled plasma atomic emission spectrometry (ICP-OES). The results were discussed in detail with relation to the spectroscopic results. A variable spectroscopic setup was developed for multi parameter upconversion luminescence studies at various temperature 4 K to 328 K. Especially, the study of the thermal behavior of upconversion luminescence as well as time resolved area normalized emission spectra were a prerequisite for the detailed understanding of intramolecular deactivation processes, structural changes upon annealing or Gd3+ concentration, and the role of phonon coupling for the upconversion efficiency. Subsequently it became possible to synthesize UCNP with tailored upconversion luminescence properties. In the end, the potential of UCNP for life science application should be enunciated in context of current needs and improvements of a nanomaterial based optical sensors, whereas the "standard" UCNP design was attuned according to the special conditions in the biological matrix. In terms of a better biocompatibility due to a lower impact on biological tissue and higher penetrability for the excitation light. The first step into this direction was to use Nd3+ ions as a new sensitizer in tridoped NaYF4 based UCNP, whereas the achieved absolute and relative temperature sensitivity is comparable to other types of local temperature sensors in the literature.}, language = {en} } @phdthesis{Couturier2016, author = {Couturier, Jean-Philippe}, title = {New inverse opal hydrogels as platform for detecting macromolecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98412}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 132, XXXVIII}, year = {2016}, abstract = {In this thesis, a route to temperature-, pH-, solvent-, 1,2-diol-, and protein-responsive sensors made of biocompatible and low-fouling materials is established. These sensor devices are based on the sensitivemodulation of the visual band gap of a photonic crystal (PhC), which is induced by the selective binding of analytes, triggering a volume phase transition. The PhCs introduced by this work show a high sensitivity not only for small biomolecules, but also for large analytes, such as glycopolymers or proteins. This enables the PhC to act as a sensor that detects analytes without the need of complex equipment. Due to their periodical dielectric structure, PhCs prevent the propagation of specific wavelengths. A change of the periodicity parameters is thus indicated by a change in the reflected wavelengths. In the case explored, the PhC sensors are implemented as periodically structured responsive hydrogels in formof an inverse opal. The stimuli-sensitive inverse opal hydrogels (IOHs) were prepared using a sacrificial opal template of monodispersed silica particles. First, monodisperse silica particles were assembled with a hexagonally packed structure via vertical deposition onto glass slides. The obtained silica crystals, also named colloidal crystals (CCs), exhibit structural color. Subsequently, the CCs templates were embedded in polymer matrix with low-fouling properties. The polymer matrices were composed of oligo(ethylene glycol) methacrylate derivatives (OEGMAs) that render the hydrogels thermoresponsive. Finally, the silica particles were etched, to produce highly porous hydrogel replicas of the CC. Importantly, the inner structure and thus the ability for light diffraction of the IOHs formed was maintained. The IOH membrane was shown to have interconnected pores with a diameter as well as interconnections between the pores of several hundred nanometers. This enables not only the detection of small analytes, but also, the detection of even large analytes that can diffuse into the nanostructured IOH membrane. Various recognition unit - analyte model systems, such as benzoboroxole - 1,2-diols, biotin - avidin and mannose - concanavalin A, were studied by incorporating functional comonomers of benzoboroxole, biotin and mannose into the copolymers. The incorporated recognition units specifically bind to certain low and highmolar mass biomolecules, namely to certain saccharides, catechols, glycopolymers or proteins. Their specific binding strongly changes the overall hydrophilicity, thus modulating the swelling of the IOH matrices, and in consequence, drastically changes their internal periodicity. This swelling is amplified by the thermoresponsive properties of the polymer matrix. The shift of the interference band gap due to the specific molecular recognition is easily visible by the naked eye (up to 150 nm shifts). Moreover, preliminary trial were attempted to detect even larger entities. Therefore anti-bodies were immobilized on hydrogel platforms via polymer-analogous esterification. These platforms incorporate comonomers made of tri(ethylene glycol) methacrylate end-functionalized with a carboxylic acid. In these model systems, the bacteria analytes are too big to penetrate into the IOH membranes, but can only interact with their surfaces. The selected model bacteria, as Escherichia coli, show a specific affinity to anti-body-functionalized hydrogels. Surprisingly in the case functionalized IOHs, this study produced weak color shifts, possibly opening a path to detect directly living organism, which will need further investigations.}, language = {en} } @phdthesis{Zabel2016, author = {Zabel, Andre}, title = {Halidometallate - Struktur und Eigenschaften}, school = {Universit{\"a}t Potsdam}, pages = {157, XLIX}, year = {2016}, language = {de} } @phdthesis{Oliveira2016, author = {Oliveira, Joana Santos Lapa}, title = {Role of different ceramides on the nanostructure of Stratum Corneum models and the influence of selected penetration enhancers}, school = {Universit{\"a}t Potsdam}, pages = {125}, year = {2016}, language = {en} } @phdthesis{Stahlhut2016, author = {Stahlhut, Frank}, title = {Entwicklung neuer triphiler, fluorkohlenstofffreier Blockcopolymere und Untersuchung ihrer Eigenschaften f{\"u}r Multikompartiment-Mizellen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96299}, school = {Universit{\"a}t Potsdam}, pages = {iv, 191}, year = {2016}, abstract = {Neue Systeme f{\"u}r triphile, fluorkohlenstofffreie Blockcopolymere in Form von Acrylat-basierten thermoresponsiven Blockcopolymeren sowie Acrylat- bzw. Styrol-basierten Terblock-Polyelektrolyten mit unterschiedlich chaotropen Kationen des jeweiligen polyanionischen Blocks wurden entwickelt. Multikompartiment-Mizellen, mizellare Aggregate mit ultrastrukturiertem hydrophobem Mizellkern die biologischen Strukturen wie dem Humanalbumin nachempfunden sind, sollten bei der Selbstorganisation in w{\"a}ssriger Umgebung entstehen. Durch Verwendung apolarer und polarer Kohlenwasserstoff-Dom{\"a}nen anstelle von fluorophilen Fluorkohlenstoff-Dom{\"a}nen sollte erstmals anhand solcher triphilen Systeme nachgewiesen werden, ob diese in der Lage zur selektiven Aufnahme hydrophober Substanzen in unterschiedliche Dom{\"a}nen des Mizellkerns sind. Mit Hilfe von sequentieller RAFT-Polymerisation wurden diese neuen triphilen Systeme hergestellt, die {\"u}ber einen permanent hydrophilen, eine permanent stark hydrophoben und einen dritten Block verf{\"u}gen, der durch externe Einfl{\"u}sse, speziell die Induzierung eines thermischen Coil-to-globule-{\"U}bergangs bzw. die Zugabe von organischen, hydrophoben Gegenionen von einem wasserl{\"o}slichen in einen polar-hydrophoben Block umgewandelt werden kann. Als RAFT-Agens wurde 4-(Trimethylsilyl)benzyl(3-(trimethylsilyl)-propyl)-trithiocarbonat mit zwei unterschiedlichen TMS-Endgruppen verwendet, das kontrollierte Reaktions-bedingungen sowie die molekulare Charakterisierung der komplexen Copolymere erm{\"o}glichte. Die beiden Grundtypen der linearen tern{\"a}ren Blockcopolymere wurden jeweils in zwei 2 Modell-Systeme, die geringf{\"u}gig in ihren chemischen Eigenschaften sowie in dem Blockl{\"a}ngenverh{\"a}ltnis von hydrophilen und hydrophoben Polymersegmenten variierten, realisiert und unterschiedliche Permutation der Bl{\"o}cke aufwiesen. Als ersten Polymertyp wurden amphiphile thermoresponsive Blockcopolymere verwendet. Modell-System 1 bestand aus dem permanent hydrophoben Block Poly(1,3-Bis(butylthio)-prop-2-yl-acrylat), permanent hydrophilen Block Poly(Oligo(ethylenglykol)monomethyletheracrylat) und den thermoresponsiven Block Poly(N,N'-Diethylacrylamid), dessen Homopolymer eine LCST-Phasen{\"u}bergang (LCST, engl.: lower critical solution temperature) bei ca. 36°C aufweist. Das Modell-System 2 bestand aus dem permanent hydrophilen Block Poly(2-(Methylsulfinyl)ethylacrylat), dem permanent hydrophoben Block Poly(2-Ethylhexylacrylat) und wiederum Poly(N,N'-Diethylacrylamid). Im tern{\"a}ren Blockcopolymer erh{\"o}hte sich, je nach Blocksequenz und relativen Blockl{\"a}ngen, der LCST-{\"U}bergang auf 50 - 65°C. Bei der Untersuchung der Selbstorganisation f{\"u}r die Polymer-Systeme dieses Typs wurde die Temperatur variiert, um verschieden mizellare {\"U}berstrukturen in w{\"a}ssriger Umgebung zu erzeugen bzw. oberhalb des LCST-{\"U}bergangs Multikompartiment-Mizellen nachzuweisen. Die Unterschiede in der Hydrophilie bzw. den sterischen Anspr{\"u}che der gew{\"a}hlten hydrophilen Bl{\"o}cke sowie die Variation der jeweiligen Blocksequenzen erm{\"o}glichte dar{\"u}ber hinaus die Bildung verschiedenster Morphologien mizellarer Aggregate. Der zweite Typ basierte auf ein Terblock-Polyelektrolyt-System mit Polyacrylaten bzw. Polystyrolen als Polymerr{\"u}ckgrat. Polymere ionische Fl{\"u}ssigkeiten wurden als Vorlage der Entwicklung zweier Modell-Systeme genommen. Eines der beiden Systeme bestand aus dem permanent hydrophilen Block Poly(Oligo(ethylenglykol)monomethyletheracrylat, dem permanent hydrophoben Block Poly(2-Ethylhexylacrylat) sowie dem Polyanion-Block Poly(3-Sulfopropylacrylat). Die Hydrophobie des Polyanion-Blocks variierte durch Verwendung großer organischer Gegenionen, n{\"a}mlich Tetrabutylammonium, Tetraphenylphosphonium und Tetraphenylstibonium. Analog wurde in einem weiteren System aus dem permanent hydrophilen Block Poly(4-Vinylbenzyltetrakis(ethylenoxy)methylether), dem permanent hydrophoben Block Poly(para-Methylstyrol) und Poly(4-Styrolsulfonat) mit den entsprechenden Gegenionen gebildet. Aufgrund unterschiedlicher Kettensteifigkeit in beiden Modell-Systemen sollte es bei der Selbstorganisation der mizellarer Aggregate zu unterschiedlichen {\"U}berstrukturen kommen. Mittels DSC-Messungen konnte nachgewiesen werden, dass f{\"u}r alle Modell-Systeme die Bl{\"o}cke in Volumen-Phase miteinander inkompatibel waren, was eine Voraussetzung f{\"u}r Multikompartimentierung von mizellaren Aggregaten ist. Die Gr{\"o}ße mizellarer Aggregate sowie der Einfluss externer Einfl{\"u}sse wie der Ver{\"a}nderung der Temperatur bzw. der Hydrophobie und Gr{\"o}ße von Gegenionen auf den hydrodynamischen Durchmesser mittels DLS-Untersuchungen wurden f{\"u}r alle Modell-Systeme untersucht. Die Ergebnisse zu den thermoresponsiven tern{\"a}ren Blockcopolymeren belegten , dass sich oberhalb der Phasen{\"u}bergangstemperatur des thermoresponsiven Blocks die Struktur der mizellaren Aggregate {\"a}nderte, indem der p(DEAm)-Block scheinbar kollabierte und so zusammen mit den permanent hydrophoben Block den jeweiligen Mizellkern bildete. Nach gewisser Equilibrierungszeit konnten bei Raumtemperatur dir urspr{\"u}nglichen mizellaren Strukturen regeneriert werden. Hingegen konnte f{\"u}r die Terblock-Polyelektrolyt-Systeme bei Verwendung der unterschiedlich hydrophoben Gegenionen kein signifikanter Unterschied in der Gr{\"o}ße der mizellaren Aggregate beobachtet werden. Zur Abbildung der mizellaren Aggregate mittels kryogene Transmissionselektronenmikroskopie (cryo-TEM) der mizellaren Aggregate war mit Poly(1,3-Bis(butylthio)-prop-2-yl-acrylat) ein Modell-System so konzipiert, dass ein erh{\"o}hter Elektronendichtekontrast durch Schwefel-Atome die Visualisierung ultrastrukturierter hydrophober Mizellkerne erm{\"o}glichte. Dieser Effekt sollte in den Terblock-Polyelektrolyt-Systemen auch durch die Gegenionen Tetraphenylphosphonium und Tetraphenylstibonium nachgestellt werden. W{\"a}hrend bei den thermoresponsiven Systemen auch oberhalb des Phasen{\"u}bergangs kein Hinweis auf Ultrastrukturierung beobachtet wurde, waren f{\"u}r die Polyelektrolyt-Systeme, insbesondere im Fall von Tetraphenylstibonium als Gegenion {\"U}berstrukturen zu erkennen. Der Nachweis der Bildung von Multikompartiment-Mizellen war f{\"u}r beide Polymertypen mit dieser abbildenden Methode nicht m{\"o}glich. Die Unterschiede in der Elektronendichte einzelner Bl{\"o}cke m{\"u}sste m{\"o}glicherweise weiter erh{\"o}ht werden um Aussagen diesbez{\"u}glich zu treffen. Die Untersuchung von ortsspezifischen Solubilisierungsexperimenten mit solvatochromen Fluoreszenzfarbstoffen mittels „steady-state"-Fluoreszenzspektroskopie durch Vergleich der Solubilisierungsorte der Terblockcopolymere bzw. -Polyelektrolyte mit den jeweiligen Solubilisierungsorten von Homopolymer- und Diblock-Vorstufen sollten den qualitativen Nachweis der Multikompartimentierung erbringen. Aufgrund der geringen Mengen an Farbstoff, die f{\"u}r die Solubilisierungsexperimente eingesetzt wurden zeigten DLS-Untersuchungen keine st{\"o}renden Effekte der Sonden auf die Gr{\"o}ße der mizellaren Aggregate. Jedoch erschwerten Quench-Effekte im Falle der Polyelektrolyt Modell-Systeme eine klare Interpretation der Daten. Im Falle der Modell-Systeme der thermoresponsiven Blockcopolymere waren dagegen deutliche solvatochrome Effekte zwischen der Solubilisierung in den mizellaren Aggregaten unterhalb und oberhalb des Phasen{\"u}bergangs zu erkennen. Dies k{\"o}nnte ein Hinweis auf Multikompartimentierung oberhalb des LCST-{\"U}bergangs sein. Ohne die Informationen einer Strukturanalyse wie z.B. der R{\"o}ntgen- oder Neutronenkleinwinkelstreuung (SAXS oder SANS), kann nicht abschließend gekl{\"a}rt werden, ob die Solubilisierung in mizellaren hydrophoben Dom{\"a}nen des kollabierten Poly(N,N'-Diethylacrylamid) erfolgt oder in einer Mischform von mizellaren Aggregaten mit gemittelter Polarit{\"a}t.}, language = {de} } @phdthesis{Kovach2016, author = {Kovach, Ildiko}, title = {Development, characterization of Janus emulsions, and their usage as a template phase for fabricating biopolymer scaffolds}, school = {Universit{\"a}t Potsdam}, year = {2016}, language = {en} }