@article{NiebuurPuchmayrHeroldetal.2018, author = {Niebuur, Bart-Jan and Puchmayr, Jonas and Herold, Christian and Kreuzer, Lucas and Hildebrand, Viet and M{\"u}ller-Buschbaum, Peter and Laschewsky, Andre and Papadakis, Christine M.}, title = {Polysulfobetaines in aqueous solution and in thin film geometry}, series = {Materials}, volume = {11}, journal = {Materials}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma11050850}, pages = {11}, year = {2018}, abstract = {Polysulfobetaines in aqueous solution show upper critical solution temperature (UCST) behavior. We investigate here the representative of this class of materials, poly (N,N-dimethyl-N-(3-methacrylamidopropyl) ammonio propane sulfonate) (PSPP), with respect to: (i) the dynamics in aqueous solution above the cloud point as function of NaBr concentration; and (ii) the swelling behavior of thin films in water vapor as function of the initial film thickness. For PSPP solutions with a concentration of 5 wt.\%, the temperature dependence of the intensity autocorrelation functions is measured with dynamic light scattering as function of molar mass and NaBr concentration (0-8 mM). We found a scaling of behavior for the scattered intensity and dynamic correlation length. The resulting spinodal temperatures showed a maximum at a certain (small) NaBr concentration, which is similar to the behavior of the cloud points measured previously by turbidimetry. The critical exponent of susceptibility depends on NaBr concentration, with a minimum value where the spinodal temperature is maximum and a trend towards the mean-field value of unity with increasing NaBr concentration. In contrast, the critical exponent of the correlation length does not depend on NaBr concentration and is lower than the value of 0.5 predicted by mean-field theory. For PSPP thin films, the swelling behavior was found to depend on film thickness. A film thickness of about 100 nm turns out to be the optimum thickness needed to obtain fast hydration with H2O.}, language = {en} } @article{IjiriInagakiKuboetal.2018, author = {Ijiri, Akira and Inagaki, Fumio and Kubo, Yusuke and Adhikari, Rishi Ram and Hattori, Shohei and Hoshino, Tatsuhiko and Imachi, Hiroyuki and Kawagucci, Shinsuke and Morono, Yuki and Ohtomo, Yoko and Ono, Shuhei and Sakai, Sanae and Takai, Ken and Toki, Tomohiro and Wang, David T. and Yoshinaga, Marcos Y. and Arnold, Gail L. and Ashi, Juichiro and Case, David H. and Feseker, Tomas and Hinrichs, Kai-Uwe and Ikegawa, Yojiro and Ikehara, Minoru and Kallmeyer, Jens and Kumagai, Hidenori and Lever, Mark Alexander and Morita, Sumito and Nakamura, Ko-ichi and Nakamura, Yuki and Nishizawa, Manabu and Orphan, Victoria J. and Roy, Hans and Schmidt, Frauke and Tani, Atsushi and Tanikawa, Wataru and Terada, Takeshi and Tomaru, Hitoshi and Tsuji, Takeshi and Tsunogai, Urumu and Yamaguchi, Yasuhiko T. and Yoshida, Naohiro}, title = {Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex}, series = {Science Advances}, volume = {4}, journal = {Science Advances}, number = {6}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aao4631}, pages = {15}, year = {2018}, language = {en} } @article{FabianZlatanovicMutzetal.2018, author = {Fabian, Jenny and Zlatanovic, Sanja and Mutz, Michael and Grossart, Hans-Peter and van Geldern, Robert and Ulrich, Andreas and Gleixner, Gerd and Premke, Katrin}, title = {Environmental control on microbial turnover of leaf carbon in streams}, series = {Frontiers in microbiology}, volume = {9}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2018.01044}, pages = {16}, year = {2018}, abstract = {In aquatic ecosystems, light availability can significantly influence microbial turnover of terrestrial organic matter through associated metabolic interactions between phototrophic and heterotrophic communities. However, particularly in streams, microbial functions vary significantly with the structure of the streambed, that is the distribution and spatial arrangement of sediment grains in the streambed. It is therefore essential to elucidate how environmental factors synergistically define the microbial turnover of terrestrial organic matter in order to better understand the ecological role of photoheterotrophic interactions in stream ecosystem processes. In outdoor experimental streams, we examined how the structure of streambeds modifies the influence of light availability on microbial turnover of leaf carbon (C). Furthermore, we investigated whether the studied relationships of microbial leaf C turnover to environmental conditions are affected by flow intermittency commonly occurring in streams. We applied leaves enriched with a C-13-stable isotope tracer and combined quantitative and isotope analyses. We thereby elucidated whether treatment induced changes in C turnover were associated with altered use of leaf C within the microbial food web. Moreover, isotope analyses were combined with measurements of microbial community composition to determine whether changes in community function were associated with a change in community composition. In this study, we present evidence, that environmental factors interactively determine how phototrophs and heterotrophs contribute to leaf C turnover. Light availability promoted the utilization of leaf C within the microbial food web, which was likely associated with a promoted availability of highly bioavailable metabolites of phototrophic origin. However, our results additionally confirm that the structure of the streambed modifies light-related changes in microbial C turnover. From our observations, we conclude that the streambed structure influences the strength of photo-heterotrophic interactions by defining the spatial availability of algal metabolites in the streambed and the composition of microbial communities. Collectively, our multifactorial approach provides valuable insights into environmental controls on the functioning of stream ecosystems.}, language = {en} } @article{StoesselStellmannWillingetal.2018, author = {Stoessel, Daniel and Stellmann, Jan-Patrick and Willing, Anne and Behrens, Birte and Rosenkranz, Sina C. and Hodecker, Sibylle C. and Stuerner, Klarissa H. and Reinhardt, Stefanie and Fleischer, Sabine and Deuschle, Christian and Maetzler, Walter and Berg, Daniela and Heesen, Christoph and Walther, Dirk and Schauer, Nicolas and Friese, Manuel A. and Pless, Ole}, title = {Metabolomic Profiles for Primary Progressive Multiple Sclerosis Stratification and Disease Course Monitoring}, series = {Frontiers in human neuroscienc}, volume = {12}, journal = {Frontiers in human neuroscienc}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2018.00226}, pages = {13}, year = {2018}, abstract = {Primary progressive multiple sclerosis (PPMS) shows a highly variable disease progression with poor prognosis and a characteristic accumulation of disabilities in patients. These hallmarks of PPMS make it difficult to diagnose and currently impossible to efficiently treat. This study aimed to identify plasma metabolite profiles that allow diagnosis of PPMS and its differentiation from the relapsing remitting subtype (RRMS), primary neurodegenerative disease (Parkinson's disease, PD), and healthy controls (HCs) and that significantly change during the disease course and could serve as surrogate markers of multiple sclerosis (MS)-associated neurodegeneration over time. We applied untargeted high-resolution metabolomics to plasma samples to identify PPMS-specific signatures, validated our findings in independent sex- and age-matched PPMS and HC cohorts and built discriminatory models by partial least square discriminant analysis (PLS-DA). This signature was compared to sex- and age-matched RRMS patients, to patients with PD and HC. Finally, we investigated these metabolites in a longitudinal cohort of PPMS patients over a 24-month period. PLS-DA yielded predictive models for classification along with a set of 20 PPMS-specific informative metabolite markers. These metabolites suggest disease-specific alterations in glycerophospholipid and linoleic acid pathways. Notably, the glycerophospholipid LysoPC(20:0) significantly decreased during the observation period. These findings show potential for diagnosis and disease course monitoring, and might serve as biomarkers to assess treatment efficacy in future clinical trials for neuroprotective MS therapies.}, language = {en} } @article{MerksSwinarskiMeyeretal.2018, author = {Merks, Anne Margarete and Swinarski, Marie and Meyer, Alexander Matthias and M{\"u}ller, Nicola Victoria and {\"O}zcan, Ismail and Donat, Stefan and Burger, Alexa and Gilbert, Stephen and Mosimann, Christian and Abdelilah-Seyfried, Salim and Panakova, Daniela}, title = {Planar cell polarity signalling coordinates heart tube remodelling through tissue-scale polarisation of actomyosin activity}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-04566-1}, pages = {15}, year = {2018}, abstract = {Development of a multiple-chambered heart from the linear heart tube is inherently linked to cardiac looping. Although many molecular factors regulating the process of cardiac chamber ballooning have been identified, the cellular mechanisms underlying the chamber formation remain unclear. Here, we demonstrate that cardiac chambers remodel by cell neighbour exchange of cardiomyocytes guided by the planar cell polarity (PCP) pathway triggered by two non-canonical Wnt ligands, Wnt5b and Wnt11. We find that PCP signalling coordinates the localisation of actomyosin activity, and thus the efficiency of cell neighbour exchange. On a tissue-scale, PCP signalling planar-polarises tissue tension by restricting the actomyosin contractility to the apical membranes of outflow tract cells. The tissue-scale polarisation of actomyosin contractility is required for cardiac looping that occurs concurrently with chamber ballooning. Taken together, our data reveal that instructive PCP signals couple cardiac chamber expansion with cardiac looping through the organ-scale polarisation of actomyosin-based tissue tension.}, language = {en} } @article{SchleglDittmerHoffmannetal.2018, author = {Schlegl, Sandra and Dittmer, Nina and Hoffmann, Svenja and Voderholzer, Ulrich}, title = {Self-reported quantity, compulsiveness and motives of exercise in patients with eating disorders and healthy controls}, series = {Journal of eating disorders}, volume = {6}, journal = {Journal of eating disorders}, publisher = {BMC}, address = {London}, issn = {2050-2974}, doi = {10.1186/s40337-018-0202-6}, pages = {10}, year = {2018}, abstract = {Background: Compulsive exercise (CE) is a frequent symptom in patients with eating disorders (EDs). It includes, in addition to quantitatively excessive exercise behaviour, a driven aspect and specific motives of exercise. CE is generally associated with worse therapy outcomes. The aims of the study were to compare self-reported quantity of exercise, compulsiveness of exercise as well as motives for exercise between patients with anorexia nervosa (AN), bulimia nervosa (BN) and healthy controls (HC). Additionally, we wanted to explore predictors of compulsive exercise (CE) in each group. Methods: We investigated 335 female participants (n = 226 inpatients, n = 109 HC) and assessed self-reported quantity of exercise, compulsiveness of exercise (Compulsive Exercise Test), motives for exercise (Exercise Motivations Inventory-2), ED symptoms (Eating Disorder Inventory-2), obsessive-compulsiveness (Obsessive-Compulsive Inventory-Revised), general psychopathology (Brief Symptom Inventory-18) and depression (Beck Depression Inventory-2). Results: Both patients with AN and BN exercised significantly more hours per week and showed significantly higher CE than HC; no differences were found between patients with AN and BN. Patients with EDs and HC also partly varied in motives for exercise. Specific motives were enjoyment, challenge, recognition and weight management in patients with EDs in contrast to ill-health avoidance and affiliation in HC. Patients with AN and BN only differed in regard to exercise for appearance reasons in which patients with BN scored higher. The most relevant predictor of CE across groups was exercise for weight and shape reasons. Conclusions: Exercise behaviours and motives differ between patients with EDs and HC. CE was pronounced in both patients with AN and BN. Therefore, future research should focus not only on CE in patients with AN, but also on CE in patients with BN. Similarities in CE in patients with AN and BN support a transdiagnostic approach during the development of interventions specifically targeting CE in patients with EDs.}, language = {en} } @article{StettnerLantuitHeimetal.2018, author = {Stettner, Samuel and Lantuit, Hugues and Heim, Birgit and Eppler, Jayson and Roth, Achim and Bartsch, Annett and Rabus, Bernhard}, title = {TerraSAR-X time series fill a gap in spaceborne snowmelt monitoring of small arctic catchments}, series = {Remote sensing}, volume = {10}, journal = {Remote sensing}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10071155}, pages = {26}, year = {2018}, abstract = {The timing of snowmelt is an important turning point in the seasonal cycle of small Arctic catchments. The TerraSAR-X (TSX) satellite mission is a synthetic aperture radar system (SAR) with high potential to measure the high spatiotemporal variability of snow cover extent (SCE) and fractional snow cover (FSC) on the small catchment scale. We investigate the performance of multi-polarized and multi-pass TSX X-Band SAR data in monitoring SCE and FSC in small Arctic tundra catchments of Qikiqtaruk (Herschel Island) off the Yukon Coast in the Western Canadian Arctic. We applied a threshold based segmentation on ratio images between TSX images with wet snow and a dry snow reference, and tested the performance of two different thresholds. We quantitatively compared TSX- and Landsat 8-derived SCE maps using confusion matrices and analyzed the spatiotemporal dynamics of snowmelt from 2015 to 2017 using TSX, Landsat 8 and in situ time lapse data. Our data showed that the quality of SCE maps from TSX X-Band data is strongly influenced by polarization and to a lesser degree by incidence angle. VH polarized TSX data performed best in deriving SCE when compared to Landsat 8. TSX derived SCE maps from VH polarization detected late lying snow patches that were not detected by Landsat 8. Results of a local assessment of TSX FSC against the in situ data showed that TSX FSC accurately captured the temporal dynamics of different snow melt regimes that were related to topographic characteristics of the studied catchments. Both in situ and TSX FSC showed a longer snowmelt period in a catchment with higher contributions of steep valleys and a shorter snowmelt period in a catchment with higher contributions of upland terrain. Landsat 8 had fundamental data gaps during the snowmelt period in all 3 years due to cloud cover. The results also revealed that by choosing a positive threshold of 1 dB, detection of ice layers due to diurnal temperature variations resulted in a more accurate estimation of snow cover than a negative threshold that detects wet snow alone. We find that TSX X-Band data in VH polarization performs at a comparable quality to Landsat 8 in deriving SCE maps when a positive threshold is used. We conclude that TSX data polarization can be used to accurately monitor snowmelt events at high temporal and spatial resolution, overcoming limitations of Landsat 8, which due to cloud related data gaps generally only indicated the onset and end of snowmelt.}, language = {en} } @article{ChenGuentherGrosseetal.2018, author = {Chen, Jie and G{\"u}nther, Frank and Grosse, Guido and Liu, Lin and Lin, Hui}, title = {Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta}, series = {Remote sensing}, volume = {10}, journal = {Remote sensing}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10071152}, pages = {16}, year = {2018}, abstract = {Yedoma-extremely ice-rich permafrost with massive ice wedges formed during the Late Pleistocene-is vulnerable to thawing and degradation under climate warming. Thawing of ice-rich Yedoma results in lowering of surface elevations. Quantitative knowledge about surface elevation changes helps us to understand the freeze-thaw processes of the active layer and the potential degradation of Yedoma deposits. In this study, we use C-band Sentinel-1 InSAR measurements to map the elevation changes over ice-rich Yedoma uplands on Sobo-Sise Island, Lena Delta with frequent revisit observations (as short as six or 12 days). We observe significant seasonal thaw subsidence during summer months and heterogeneous inter-annual elevation changes from 2016-17. We also observe interesting patterns of stronger seasonal thaw subsidence on elevated flat Yedoma uplands by comparing to the surrounding Yedoma slopes. Inter-annual analyses from 2016-17 suggest that our observed positive surface elevation changes are likely caused by the delayed progression of the thaw season in 2017, associated with mean annual air temperature fluctuations.}, language = {en} } @article{JoussetReinschRybergetal.2018, author = {Jousset, Philippe and Reinsch, Thomas and Ryberg, Trond and Blanck, Hanna and Clarke, Andy and Aghayev, Rufat and Hersir, Gylfi P. and Henninges, Jan and Weber, Michael and Krawczyk, Charlotte M.}, title = {Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-04860-y}, pages = {11}, year = {2018}, abstract = {Natural hazard prediction and efficient crust exploration require dense seismic observations both in time and space. Seismological techniques provide ground-motion data, whose accuracy depends on sensor characteristics and spatial distribution. Here we demonstrate that dynamic strain determination is possible with conventional fibre-optic cables deployed for telecommunication. Extending recently distributed acoustic sensing (DAS) studies, we present high resolution spatially un-aliased broadband strain data. We recorded seismic signals from natural and man-made sources with 4-m spacing along a 15-km-long fibre-optic cable layout on Reykjanes Peninsula, SW-Iceland. We identify with unprecedented resolution structural features such as normal faults and volcanic dykes in the Reykjanes Oblique Rift, allowing us to infer new dynamic fault processes. Conventional seismometer recordings, acquired simultaneously, validate the spectral amplitude DAS response between 0.1 and 100 Hz bandwidth. We suggest that the networks of fibre-optic telecommunication lines worldwide could be used as seismometers opening a new window for Earth hazard assessment and exploration.}, language = {en} } @article{SchirrmeisterBobrovRaschkeetal.2018, author = {Schirrmeister, Lutz and Bobrov, Anatoly and Raschke, Elena and Herzschuh, Ulrike and Strauss, Jens and Pestryakova, Luidmila Agafyevna and Wetterich, Sebastian}, title = {Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands}, series = {Arctic, antarctic, and alpine research : an interdisciplinary journal}, volume = {50}, journal = {Arctic, antarctic, and alpine research : an interdisciplinary journal}, number = {1}, publisher = {Institute of Arctic and Alpine Research, University of Colorado}, address = {Boulder}, issn = {1523-0430}, doi = {10.1080/15230430.2018.1462595}, pages = {18}, year = {2018}, abstract = {Ice-wedge polygons are common features of northeastern Siberian lowland periglacial tundra landscapes. To deduce the formation and alternation of ice-wedge polygons in the Kolyma Delta and in the Indigirka Lowland, we studied shallow cores, up to 1.3 m deep, from polygon center and rim locations. The formation of well-developed low-center polygons with elevated rims and wet centers is shown by the beginning of peat accumulation, increased organic matter contents, and changes in vegetation cover from Poaceae-, Alnus-, and Betula-dominated pollen spectra to dominating Cyperaceae and Botryoccocus presence, and Carex and Drepanocladus revolvens macro-fossils. Tecamoebae data support such a change from wetland to open-water conditions in polygon centers by changes from dominating eurybiontic and sphagnobiontic to hydrobiontic species assemblages. The peat accumulation indicates low-center polygon formation and started between 2380 +/- 30 and 1676 +/- 32 years before present (BP) in the Kolyma Delta. We recorded an opposite change from open-water to wetland conditions because of rim degradation and consecutive high-center polygon formation in the Indigirka Lowland between 2144 +/- 33 and 1632 +/- 32 years BP. The late Holocene records of polygon landscape development reveal changes in local hydrology and soil moisture.}, language = {en} }