@phdthesis{Esen2023, author = {Esen, Cansu}, title = {Carbon nitride incorporation in polymer networks}, doi = {10.25932/publishup-57625}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576253}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 175}, year = {2023}, abstract = {The urge of light utilization in fabrication of materials is as encouraging as challenging. Steadily increasing energy consumption in accordance with rapid population growth, is requiring a corresponding solution within the same rate of occurrence speed. Therefore, creating, designing and manufacturing materials that can interact with light and in further be applicable as well as disposable in photo-based applications are very much under attention of researchers. In the era of sustainability for renewable energy systems, semiconductor-based photoactive materials have received great attention not only based on solar and/or hydrocarbon fuels generation from solar energy, but also successful stimulation of photocatalytic reactions such as water splitting, pollutant degradation and organic molecule synthesisThe turning point had been reached for water splitting with an electrochemical cell consisting of TiO2-Pt electrode illuminated by UV light as energy source rather than an external voltage, that successfully pursued water photolysis by Fujishima and Honda in 1972. Ever since, there has been a great deal of interest in research of semiconductors (e.g. metal oxide, metal-free organic, noble-metal complex) exhibiting effective band gap for photochemical reactions. In the case of environmental friendliness, toxicity of metal-based semiconductors brings some restrictions in possible applications. Regarding this, very robust and 'earth-abundant' organic semiconductor, graphitic carbon nitride has been synthesized and successfully applied in photoinduced applications as novel photocatalyst. Properties such as suitable band gap, low charge carrier recombination and feasibility for scaling up, pave the way of advance combination with other catalysts to gather higher photoactivity based on compatible heterojunction. This dissertation aims to demonstrate a series of combinations between organic semiconductor g-CN and polymer materials that are forged through photochemistry, either in synthesis or in application. Fabrication and design processes as well as applications performed in accordance to the scope of thesis will be elucidated in detail. In addition to UV light, more attention is placed on visible light as energy source with a vision of more sustainability and better scalability in creation of novel materials and solar energy based applications.}, language = {en} } @phdthesis{Lepre2023, author = {Lepre, Enrico}, title = {Nitrogen-doped carbonaceous materials for energy and catalysis}, doi = {10.25932/publishup-57739}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577390}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2023}, abstract = {Facing the environmental crisis, new technologies are needed to sustain our society. In this context, this thesis aims to describe the properties and applications of carbon-based sustainable materials. In particular, it reports the synthesis and characterization of a wide set of porous carbonaceous materials with high nitrogen content obtained from nucleobases. These materials are used as cathodes for Li-ion capacitors, and a major focus is put on the cathode preparation, highlighting the oxidation resistance of nucleobase-derived materials. Furthermore, their catalytic properties for acid/base and redox reactions are described, pointing to the role of nitrogen speciation on their surfaces. Finally, these materials are used as supports for highly dispersed nickel loading, activating the materials for carbon dioxide electroreduction.}, language = {en} } @phdthesis{Henschel2023, author = {Henschel, Cristiane}, title = {Thermoresponsive polymers with co-nonsolvency behavior}, doi = {10.25932/publishup-57716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577161}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 260}, year = {2023}, abstract = {Despite the popularity of thermoresponsive polymers, much is still unknown about their behavior, how it is triggered, and what factors influence it, hindering the full exploitation of their potential. One particularly puzzling phenomenon is called co-nonsolvency, in which a polymer is soluble in two individual solvents, but counter-intuitively becomes insoluble in mixtures of both. Despite the innumerous potential applications of such systems, including actuators, viscosity regulators and as carrier structures, this field has not yet been extensively studied apart from the classical example of poly(N isopropyl acrylamide) (PNIPAM) in mixtures of water and methanol. Therefore, this thesis focuses on evaluating how changes in the chemical structure of the polymers impact the thermoresponsive, aggregation and co-nonsolvency behaviors of both homopolymers and amphiphilic block copolymers. Within this scope, both the synthesis of the polymers and their characterization in solution is investigated. Homopolymers were synthesized by conventional free radical polymerization, whereas block copolymers were synthesized by consecutive reversible addition fragmentation chain transfer (RAFT) polymerizations. The synthesis of the monomers N isopropyl methacrylamide (NIPMAM) and N vinyl isobutyramide (NVIBAM), as well as a few chain transfer agents is also covered. Through turbidimetry measurements, the thermoresponsive and co-nonsolvency behavior of PNIPMAM and PNVIBAM homopolymers is then compared to the well-known PNIPAM, in aqueous solutions with 9 different organic co-solvents. Additionally, the effects of end-groups, molar mass, and concentration are investigated. Despite the similarity of their chemical structures, the 3 homopolymers show significant differences in transition temperatures and some divergences in their co-nonsolvency behavior. More complex systems are also evaluated, namely amphiphilic di- and triblock copolymers of PNIPAM and PNIPMAM with polystyrene and poly(methyl methacrylate) hydrophobic blocks. Dynamic light scattering is used to evaluate their aggregation behavior in aqueous and mixed aqueous solutions, and how it is affected by the chemical structure of the blocks, the chain architecture, presence of cosolvents and polymer concentration. The results obtained shed light into the thermoresponsive, co-nonsolvency and aggregation behavior of these polymers in solution, providing valuable information for the design of systems with a desired aggregation behavior, and that generate targeted responses to temperature and solvent mixture changes.}, language = {en} } @phdthesis{Chea2022, author = {Chea, Sany}, title = {Glycomaterials: From synthesis of glycoconjugates to potential biomedical applications}, doi = {10.25932/publishup-57424}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574240}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 217}, year = {2022}, abstract = {The importance of carbohydrate structures is enormous due to their ubiquitousness in our lives. The development of so-called glycomaterials is the result of this tremendous significance. These are not exclusively used for research into fundamental biological processes, but also, among other things, as inhibitors of pathogens or as drug delivery systems. This work describes the development of glycomaterials involving the synthesis of glycoderivatives, -monomers and -polymers. Glycosylamines were synthesized as precursors in a single synthesis step under microwave irradiation to significantly shorten the usual reaction time. Derivatization at the anomeric position was carried out according to the methods developed by Kochetkov and Likhorshetov, which do not require the introduction of protecting groups. Aminated saccharide structures formed the basis for the synthesis of glycomonomers in β-configuration by methacrylation. In order to obtain α-Man-based monomers for interactions with certain α-Man-binding lectins, a monomer synthesis by Staudinger ligation was developed in this work, which also does not require protective groups. Modification of the primary hydroxyl group of a saccharide was accomplished by enzyme-catalyzed synthesis. Ribose-containing cytidine was transesterified using the lipase Novozym 435 and microwave irradiation. The resulting monomer synthesis was optimized by varying the reaction partners. To create an amide bond instead of an ester bond, protected cytidine was modified by oxidation followed by amide coupling to form the monomer. This synthetic route was also used to isolate the monomer from its counterpart guanosine. After obtaining the nucleoside-based monomers, they were block copolymerized using the RAFT method. Pre-synthesized pHPMA served as macroCTA to yield cytidine- or guanosine-containing block copolymer. These isolated block copolymers were then investigated for their self-assembly behavior using UV-Vis, DLS and SEM to serve as a potential thermoresponsive drug delivery system.}, language = {en} } @phdthesis{Simsek2022, author = {Simsek, Ibrahim}, title = {Ink-based preparation of chalcogenide perovskites as thin films for PV applications}, doi = {10.25932/publishup-57271}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572711}, school = {Universit{\"a}t Potsdam}, pages = {iv, 113}, year = {2022}, abstract = {The increasing demand for energy in the current technological era and the recent political decisions about giving up on nuclear energy diverted humanity to focus on alternative environmentally friendly energy sources like solar energy. Although silicon solar cells are the product of a matured technology, the search for highly efficient and easily applicable materials is still ongoing. These properties made the efficiency of halide perovskites comparable with silicon solar cells for single junctions within a decade of research. However, the downside of halide perovskites are poor stability and lead toxicity for the most stable ones. On the other hand, chalcogenide perovskites are one of the most promising absorber materials for the photovoltaic market, due to their elemental abundance and chemical stability against moisture and oxygen. In the search of the ultimate solar absorber material, combining the good optoelectronic properties of halide perovskites with the stability of chalcogenides could be the promising candidate. Thus, this work investigates new techniques for the synthesis and design of these novel chalcogenide perovskites, that contain transition metals as cations, e.g., BaZrS3, BaHfS3, EuZrS3, EuHfS3 and SrHfS3. There are two stages in the deposition techniques of this study: In the first stage, the binary compounds are deposited via a solution processing method. In the second stage, the deposited materials are annealed in a chalcogenide atmosphere to form the perovskite structure by using solid-state reactions. The research also focuses on the optimization of a generalized recipe for a molecular ink to deposit precursors of chalcogenide perovskites with different binaries. The implementation of the precursor sulfurization resulted in either binaries without perovskite formation or distorted perovskite structures, whereas some of these materials are reported in the literature as they are more favorable in the needle-like non-perovskite configuration. Lastly, there are two categories for the evaluation of the produced materials: The first category is about the determination of the physical properties of the deposited layer, e.g., crystal structure, secondary phase formation, impurities, etc. For the second category, optoelectronic properties are measured and compared to an ideal absorber layer, e.g., band gap, conductivity, surface photovoltage, etc.}, language = {en} } @phdthesis{Djalali2023, author = {Djalali, Saveh Arman}, title = {Multiresponsive complex emulsions: Concepts for the design of active and adaptive liquid colloidal systems}, doi = {10.25932/publishup-57520}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-575203}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2023}, abstract = {Complex emulsions are dispersions of kinetically stabilized multiphasic emulsion droplets comprised of two or more immiscible liquids that provide a novel material platform for the generation of active and dynamic soft materials. In recent years, the intrinsic reconfigurable morphological behavior of complex emulsions, which can be attributed to the unique force equilibrium between the interfacial tensions acting at the various interfaces, has become of fundamental and applied interest. As such, particularly biphasic Janus droplets have been investigated as structural templates for the generation of anisotropic precision objects, dynamic optical elements or as transducers and signal amplifiers in chemo- and bio-sensing applications. In the present thesis, switchable internal morphological responses of complex droplets triggered by stimuli-induced alterations of the balance of interfacial tensions have been explored as a universal building block for the design of multiresponsive, active, and adaptive liquid colloidal systems. A series of underlying principles and mechanisms that influence the equilibrium of interfacial tensions have been uncovered, which allowed the targeted design of emulsion bodies that can alter their shape, bind and roll on surfaces, or change their geometrical shape in response to chemical stimuli. Consequently, combinations of the unique triggerable behavior of Janus droplets with designer surfactants, such as a stimuli-responsive photosurfactant (AzoTAB) resulted for instance in shape-changing soft colloids that exhibited a jellyfish inspired buoyant motion behavior, holding great promise for the design of biological inspired active material architectures and transformable soft robotics. In situ observations of spherical Janus emulsion droplets using a customized side-view microscopic imaging setup with accompanying pendant dropt measurements disclosed the sensitivity regime of the unique chemical-morphological coupling inside complex emulsions and enabled the recording of calibration curves for the extraction of critical parameters of surfactant effectiveness. The deduced new "responsive drop" method permitted a convenient and cost-efficient quantification and comparison of the critical micelle concentrations (CMCs) and effectiveness of various cationic, anionic, and nonionic surfactants. Moreover, the method allowed insightful characterization of stimuli-responsive surfactants and monitoring of the impact of inorganic salts on the CMC and surfactant effectiveness of ionic and nonionic surfactants. Droplet functionalization with synthetic crown ether surfactants yielded a synthetically minimal material platform capable of autonomous and reversible adaptation to its chemical environment through different supramolecular host-guest recognition events. Addition of metal or ammonium salts resulted in the uptake of the resulting hydrophobic complexes to the hydrocarbon hemisphere, whereas addition of hydrophilic ammonium compounds such as amino acids or polypeptides resulted in supramolecular assemblies at the hydrocarbon-water interface of the droplets. The multiresponsive material platform enabled interfacial complexation and thus triggered responses of the droplets to a variety of chemical triggers including metal ions, ammonium compounds, amino acids, antibodies, carbohydrates as well as amino-functionalized solid surfaces. In the final chapter, the first documented optical logic gates and combinatorial logic circuits based on complex emulsions are presented. More specifically, the unique reconfigurable and multiresponsive properties of complex emulsions were exploited to realize droplet-based logic gates of varying complexity using different stimuli-responsive surfactants in combination with diverse readout methods. In summary, different designs for multiresponsive, active, and adaptive liquid colloidal systems were presented and investigated, enabling the design of novel transformative chemo-intelligent soft material platforms.}, language = {en} } @phdthesis{Brinkmann2022, author = {Brinkmann, Pia}, title = {Laserinduzierte Breakdownspektroskopie zur qualitativen und quantitativen Bestimmung von Elementgehalten in geologischen Proben mittels multivariater Analysemethoden am Beispiel von Kupfer und ausgew{\"a}hlten Seltenen Erden}, doi = {10.25932/publishup-57212}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572128}, school = {Universit{\"a}t Potsdam}, pages = {148}, year = {2022}, abstract = {Ein schonender Umgang mit den Ressourcen und der Umwelt ist wesentlicher Bestandteil des modernen Bergbaus sowie der zuk{\"u}nftigen Versorgung unserer Gesellschaft mit essentiellen Rohstoffen. Die vorliegende Arbeit besch{\"a}ftigt sich mit der Entwicklung analytischer Strategien, die durch eine exakte und schnelle Vor-Ort-Analyse den technisch-praktischen Anforderungen des Bergbauprozesses gerecht werden und somit zu einer gezielten und nachhaltigen Nutzung von Rohstofflagerst{\"a}tten beitragen. Die Analysen basieren auf den spektroskopischen Daten, die mittels der laserinduzierten Breakdownspektroskopie (LIBS) erhalten und mittels multivariater Datenanalyse ausgewertet werden. Die LIB-Spektroskopie ist eine vielversprechende Technik f{\"u}r diese Aufgabe. Ihre Attraktivit{\"a}t machen insbesondere die M{\"o}glichkeiten aus, Feldproben vor Ort ohne Probennahme oder ‑vorbereitung messen zu k{\"o}nnen, aber auch die Detektierbarkeit s{\"a}mtlicher Elemente des Periodensystems und die Unabh{\"a}ngigkeit vom Aggregatzustand. In Kombination mit multivariater Datenanalyse kann eine schnelle Datenverarbeitung erfolgen, die Aussagen zur qualitativen Elementzusammensetzung der untersuchten Proben erlaubt. Mit dem Ziel die Verteilung der Elementgehalte in einer Lagerst{\"a}tte zu ermitteln, werden in dieser Arbeit Kalibrierungs- und Quantifizierungsstrategien evaluiert. F{\"u}r die Charakterisierung von Matrixeffekten und zur Klassifizierung von Mineralen werden explorative Datenanalysemethoden angewendet. Die spektroskopischen Untersuchungen erfolgen an B{\"o}den und Gesteinen sowie an Mineralen, die Kupfer oder Seltene Erdelemente beinhalten und aus verschiedenen Lagerst{\"a}tten bzw. von unterschiedlichen Agrarfl{\"a}chen stammen. F{\"u}r die Entwicklung einer Kalibrierungsstrategie wurden sowohl synthetische als auch Feldproben von zwei verschiedenen Agrarfl{\"a}chen mittels LIBS analysiert. Anhand der Beispielanalyten Calcium, Eisen und Magnesium erfolgte die auf uni- und multivariaten Methoden beruhende Evaluierung verschiedener Kalibrierungsmethoden. Grundlagen der Quantifizierungsstrategien sind die multivariaten Analysemethoden der partiellen Regression der kleinsten Quadrate (PLSR, von engl.: partial least squares regression) und der Intervall PLSR (iPLSR, von engl.: interval PLSR), die das gesamte detektierte Spektrum oder Teilspektren in der Analyse ber{\"u}cksichtigen. Der Untersuchung liegen synthetische sowie Feldproben von Kupfermineralen zugrunde als auch solche die Seltene Erdelemente beinhalten. Die Proben stammen aus verschiedenen Lagerst{\"a}tten und weisen unterschiedliche Begleitmatrices auf. Mittels der explorativen Datenanalyse erfolgte die Charakterisierung dieser Begleitmatrices. Die daf{\"u}r angewendete Hauptkomponentenanalyse gruppiert Daten anhand von Unterschieden und Regelm{\"a}ßigkeiten. Dies erlaubt Aussagen {\"u}ber Gemeinsamkeiten und Unterschiede der untersuchten Proben im Bezug auf ihre Herkunft, chemische Zusammensetzung oder lokal bedingte Auspr{\"a}gungen. Abschließend erfolgte die Klassifizierung kupferhaltiger Minerale auf Basis der nicht-negativen Tensorfaktorisierung. Diese Methode wurde mit dem Ziel verwendet, unbekannte Proben aufgrund ihrer Eigenschaften in Klassen einzuteilen. Die Verkn{\"u}pfung von LIBS und multivariater Datenanalyse bietet die M{\"o}glichkeit durch eine Analyse vor Ort auf eine Probennahme und die entsprechende Laboranalytik weitestgehend zu verzichten und kann somit zum Umweltschutz sowie einer Schonung der nat{\"u}rlichen Ressourcen bei der Prospektion und Exploration von neuen Erzg{\"a}ngen und Lagerst{\"a}tten beitragen. Die Verteilung von Elementgehalten der untersuchten Gebiete erm{\"o}glicht zudem einen gezielten Abbau und damit eine effiziente Nutzung der mineralischen Rohstoffe.}, language = {de} } @phdthesis{Baeckemo2022, author = {B{\"a}ckemo, Johan Dag Valentin}, title = {Digital tools and bioinspiration for the implementation in science and medicine}, doi = {10.25932/publishup-57145}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571458}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 108}, year = {2022}, abstract = {Diese Doktorarbeit untersucht anhand dreier Beispiele, wie digitale Werkzeuge wie Programmierung, Modellierung, 3D-Konstruktions-Werkzeuge und additive Fertigung in Verbindung mit einer auf Biomimetik basierenden Design\-strategie zu neuen Analysemethoden und Produkten f{\"u}hren k{\"o}nnen, die in Wissenschaft und Medizin Anwendung finden. Das Verfahren der Funkenerosion (EDM) wird h{\"a}ufig angewandt, um harte Metalle zu verformen oder zu formen, die mit normalen Maschinen nur schwer zu bearbeiten sind. In dieser Arbeit wird eine neuartige Kr{\"u}mmungsanalysemethode als Alternative zur Rauheitsanalyse vorgestellt. Um besser zu verstehen, wie sich die Oberfl{\"a}che w{\"a}hrend der Bearbeitungszeit des EDM-Prozesses ver{\"a}ndert, wurde außerdem ein digitales Schlagmodell erstellt, das auf einem urspr{\"u}nglich flachen Substrat Krater auf Erhebungen erzeugte. Es wurde festgestellt, dass ein Substrat bei etwa 10.000 St{\"o}ßen ein Gleichgewicht erreicht. Die vorgeschlagene Kr{\"u}mmungsanalysemethode hat das Potenzial, bei der Entwicklung neuer Zellkultursubstrate f{\"u}r die Stammzellenforschung eingesetzt zu werden. Zwei Arten, die in dieser Arbeit aufgrund ihrer interessanten Mechanismen analysiert wurden, sind die Venusfliegenfalle und der Bandwurm. Die Venusfliegenfalle kann ihr Maul mit einer erstaunlichen Geschwindigkeit schließen. Der Schließmechanismus kann f{\"u}r die Wissenschaft interessant sein und ist ein Beispiel f{\"u}r ein so genanntes mechanisch bi-stabiles System - es gibt zwei stabile Zust{\"a}nde. Der Bandwurm ist bei S{\"a}ugetieren meist im unteren Darm zu finden und heftet sich mit seinen Saugn{\"a}pfen an die Darmw{\"a}nde. Wenn der Bandwurm eine geeignete Stelle gefunden hat, st{\"o}ßt er seine Haken aus und heftet sich dauerhaft an die Wand. Diese Funktion k{\"o}nnte in der minimalinvasiven Medizin genutzt werden, um eine bessere Kontrolle der Implantate w{\"a}hrend des Implantationsprozesses zu erm{\"o}glichen. F{\"u}r beide Projekte wurde ein mathematisches Modell, das so genannte Chained Beam Constraint Model (CBCM), verwendet, um das nichtlineare Biegeverhalten zu modellieren und somit vorherzusagen, welche Strukturen ein mechanisch bi-stabiles Verhalten aufweisen k{\"o}nnten. Daraufhin konnten zwei Prototypen mit einem 3D-Drucker gedruckt und durch Experimente veranschaulicht werden, dass sie beide ein bi-stabiles Verhalten aufweisen. Diese Arbeit verdeutlicht das hohe Anwendungspotenzial f{\"u}r neue Analysenmethoden in der Wissenschaft und f{\"u}r neue Medizinprodukte in der minimalinvasiven Medizin.}, language = {en} } @phdthesis{Fischer2022, author = {Fischer, Eric Wolfgang}, title = {Quantum vibrational dynamics in complex environments: from vibrational strong coupling in molecular cavity QED to phonon-induced adsorbate relaxation}, doi = {10.25932/publishup-56721}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-567214}, school = {Universit{\"a}t Potsdam}, pages = {viii, 171}, year = {2022}, abstract = {Molecules are often naturally embedded in a complex environment. As a consequence, characteristic properties of a molecular subsystem can be substantially altered or new properties emerge due to interactions between molecular and environmental degrees of freedom. The present thesis is concerned with the numerical study of quantum dynamical and stationary properties of molecular vibrational systems embedded in selected complex environments. In the first part, we discuss "strong-coupling" model scenarios for molecular vibrations interacting with few quantized electromagnetic field modes of an optical Fabry-P{\´e}rot cavity. We thoroughly elaborate on properties of emerging "vibrational polariton" light-matter hybrid states and examine the relevance of the dipole self-energy. Further, we identify cavity-induced quantum effects and an emergent dynamical resonance in a cavity-altered thermal isomerization model, which lead to significant suppression of thermal reaction rates. Moreover, for a single rovibrating diatomic molecule in an optical cavity, we observe non-adiabatic signatures in dynamics due to "vibro-polaritonic conical intersections" and discuss spectroscopically accessible "rovibro-polaritonic" light-matter hybrid states. In the second part, we study a weakly coupled but numerically challenging quantum mechanical adsorbate-surface model system comprising a few thousand surface modes. We introduce an efficient construction scheme for a "hierarchical effective mode" approach to reduce the number of surface modes in a controlled manner. In combination with the multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method, we examine the vibrational adsorbate relaxation dynamics from different excited adsorbate states by solving the full non-Markovian system-bath dynamics for the characteristic relaxation time scale. We examine half-lifetime scaling laws from vibrational populations and identify prominent non-Markovian signatures as deviations from Markovian reduced system density matrix theory in vibrational coherences, system-bath entanglement and energy transfer dynamics. In the final part of this thesis, we approach the dynamics and spectroscopy of vibronic model systems at finite temperature by formulating the ML-MCTDH method in the non-stochastic framework of thermofield dynamics. We apply our method to thermally-altered ultrafast internal conversion in the well-known vibronic coupling model of pyrazine. Numerically beneficial representations of multilayer wave functions ("ML-trees") are identified for different temperature regimes, which allow us to access thermal effects on both electronic and vibrational dynamics as well as spectroscopic properties for several pyrazine models.}, language = {en} } @phdthesis{Tang2022, author = {Tang, Jo Sing Julia}, title = {Biofunctional polymers for medical applications}, doi = {10.25932/publishup-56363}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563639}, school = {Universit{\"a}t Potsdam}, pages = {III, 150, V}, year = {2022}, abstract = {Carbohydrates are found in every living organism, where they are responsible for numerous, essential biological functions and processes. Synthetic polymers with pendant saccharides, called glycopolymers, mimic natural glycoconjugates in their special properties and functions. Employing such biomimetics furthers the understanding and controlling of biological processes. Hence, glycopolymers are valuable and interesting for applications in the medical and biological field. However, the synthesis of carbohydrate-based materials can be very challenging. In this thesis, the synthesis of biofunctional glycopolymers is presented, with the focus on aqueous-based, protecting group free and short synthesis routes to further advance in the field of glycopolymer synthesis. A practical and versatile precursor for glycopolymers are glycosylamines. To maintain biofunctionality of the saccharides after their amination, regioselective functionalization was performed. This frequently performed synthesis was optimized for different sugars. The optimization was facilitated using a design of experiment (DoE) approach to enable a reduced number of necessary experiments and efficient procedure. Here, the utility of using DoE for optimizing the synthesis of glycosylamines is discussed. The glycosylamines were converted to glycomonomers which were then polymerized to yield biofunctional glycopolymers. Here, the glycopolymers were aimed to be applicable as layer-by-layer (LbL) thin film coatings for drug delivery systems. To enable the LbL technique, complimentary glycopolymer electrolytes were synthesized by polymerization of the glycomonomers and subsequent modification or by post-polymerization modification. For drug delivery, liposomes were embedded into the glycopolymer coating as potential cargo carriers. The stability as well as the integrity of the glycopolymer layers and liposomes were investigated at physiological pH range. Different glycopolymers were also synthesized to be applicable as anti-adhesion therapeutics by providing advanced architectures with multivalent presentations of saccharides, which can inhibit the binding of pathogene lectins. Here, the synthesis of glycopolymer hydrogel particles based on biocompatible poly(N-isopropylacrylamide) (NiPAm) was established using the free-radical precipitation polymerization technique. The influence of synthesis parameters on the sugar content in the gels and on the hydrogel morphology is discussed. The accessibility of the saccharides to model lectins and their enhanced, multivalent interaction were investigated. At the end of this work, the synthesis strategies for the glycopolymers are generally discussed as well as their potential application in medicine.}, language = {en} } @phdthesis{Doering2022, author = {Doering, Ulrike}, title = {Preparation, characterization and modification of oil loaded protein microcapsules and composite protein-mineral microcapsules}, doi = {10.25932/publishup-55958}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559589}, school = {Universit{\"a}t Potsdam}, pages = {viii, 115}, year = {2022}, abstract = {Diese Doktorarbeit behandelt die Synthese von Protein- und kompositen Protein-Mineral-Mikrokapseln durch die Anwendung von hochintensivem Ultraschall an der {\"O}l-Wasser-Grenzfl{\"a}che. W{\"a}hrend ein System durch BSA-Molek{\"u}le stabilisiert wird, wird das andere System durch verschiedene mit BSA modifizierten Nanopartikeln stabilisiert. Sowohl von allen Synthesestufen als auch von den resultierenden Kapseln wurden umfassende Untersuchungen durchgef{\"u}hrt und eine plausible Erkl{\"a}rung f{\"u}r den Mechanismus der Kapselbildung wurde vorgestellt. W{\"a}hrend der Bildung der BSA-Mikrokapseln adsorbieren die Proteinmolek{\"u}le als Erstes an der O/W-Grenzfl{\"a}che, entfalten sich dort und bilden ein Netzwerk, das durch hydrophobe Wechselwirkungen und Wasserstoffbr{\"u}ckenbindungen zwischen den benachbarten Molek{\"u}len stabilisiert wird. Gleichzeitig bewirkt die Ultraschallbehandlung die Quervernetzung der BSA-Molek{\"u}le {\"u}ber die Bildung von intermolekularen Disulfidbindungen. In dieser Doktorarbeit werden die experimentellen Nachweise f{\"u}r die durch Ultraschall induzierte Quervernetzung von BSA in den Schalen der proteinbasierten Mikrokapseln aufgezeigt. Deshalb wurde das Konzept, das vor vielen Jahren von Suslick und seinen Mitarbeitern vorgestellt wurde, zum ersten Mal durch experimentelle Nachweise best{\"a}tigt. Außerdem wurde ein konsistenter Mechanismus f{\"u}r die Bildung der intermolekularen Disulfidbindungen in der Kapselschale vorgestellt, der auf der Neuverteilung der Thiol- und Disulfidgruppen in BSA unter der Wirkung von hochenergetischem Ultraschall basiert. Auch die Bildung von kompositen Protein-Mineral-Mikrokapseln, die mit drei verschiedenen {\"O}len gef{\"u}llt wurden und deren Schalen aus Nanopartikeln bestehen, war erfolgreich. Die Beschaffenheit des {\"O}ls und die Art der Nanopartikel in der Schale hatten Einfluss auf die Gr{\"o}ße und Form der Mikrokapseln. Die Untersuchung der kompositen Kapseln zeigte, dass die BSA-Molek{\"u}le, die an der Oberfl{\"a}che der Nanopartikel in der Kapselschale adsorbiert sind, nicht durch intermolekulare Disulfidbindungen quervernetzt sind. Stattdessen findet die Bildung einer Pickering-Emulsion statt. Die Oberfl{\"a}chenmodifizierung der kompositen Mikrokapseln durch Vormodifizierung der Hauptbestandteile und auch durch Postmodifizierung der Oberfl{\"a}che der fertigen kompositen Mikrokapseln wurde erfolgreich demonstriert. Zus{\"a}tzlich wurden die mechanischen Eigenschaften beider Kapselarten verglichen. Dabei erwiesen sich die Protein-Mikrokapseln widerstandsf{\"a}higer gegen{\"u}ber elastischer Deformation.}, language = {en} } @phdthesis{Pruefert2022, author = {Pr{\"u}fert, Christian}, title = {Laser ablation and matter sizing}, doi = {10.25932/publishup-55974}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559745}, school = {Universit{\"a}t Potsdam}, pages = {IX, 96}, year = {2022}, abstract = {The doctoral thesis presented provides a comprehensive view of laser-based ablation techniques promoted to new fields of operation, including, but not limited to, size, composition, and concentration analyses. It covers various applications of laser ablation techniques over a wide range of sizes, from single molecules all the way to aerosol particles. The research for this thesis started with broadening and deepening the field of application and the fundamental understanding of liquid-phase IR-MALDI. Here, the hybridization of ion mobility spectrometry and microfluidics was realized by using IR-MALDI as the coupling technique for the first time. The setup was used for monitoring the photocatalytic performance of the E-Z isomerization of olefins. Using this hybrid, measurement times were so drastically reduced that such photocatalyst screenings became a matter of minutes rather than hours. With this on hand, triple measurements screenings could not only be performed within ten minutes, but also with a minimum amount of resources highlighting its potential as a green chemistry alternative to batch-sized reactions. Along the optimizing process of the IR-MALDI source for microfluidics came its application for another liquid sample supply method, the hanging drop. This demarcated one of the first applications of IR-MALDI for the charging of sub-micron particles directly from suspensions via their gas-phase transfer, followed by their characterization with differential mobility analysis. Given the high spectral quality of the data up to octuply charged particles became experimentally accessible, this laid the foundation for deriving a new charge distribution model for IR-MALDI in that size regime. Moving on to even larger analyte sizes, LIBS and LII were employed as ablation techniques for the solid phase, namely the aerosol particles themselves. Both techniques produce light-emitting events and were used to quantify and classify different aerosols. The unique configuration of stroboscopic imaging, photoacoustics, LII, and LIBS measurements opened new realms for analytical synergies and their potential application in industry. The concept of using low fluences, below 100 J/cm2, and high repetition rates of up to 500 Hz for LIBS makes for an excellent phase-selective LIBS setup. This concept was combined with a new approach to the photoacoustic normalization of LIBS. Also, it was possible to acquire statistically relevant amounts of data in a matter of seconds, showing its potential as a real-time optimization technique. On the same time axis, but at much lower fluences, LII was used with a similar methodology to quickly quantify and classify airborne particles of different compositions. For the first time, aerosol particles were evaluated on their LII susceptibility by using a fluence screening approach.}, language = {en} } @phdthesis{Kwesiga2022, author = {Kwesiga, George}, title = {Synthesis of isoflavonoids from African medicinal plants with activity against tropical infectious diseases}, doi = {10.25932/publishup-55906}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559069}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 175}, year = {2022}, abstract = {Two approaches for the synthesis of prenylated isoflavones were explored: the 2,3-oxidative rearrangement/cross metathesis approach, using hypervalent iodine reagents as oxidants and the Suzuki-Miyaura cross-coupling/cross metathesis approach. Three natural prenylated isoflavones: 5-deoxy-3′-prenylbiochanin A (59), erysubin F (61) and 7-methoxyebenosin (64), and non-natural analogues: 7,4′-dimethoxy-8,3′-diprenylisoflavone (126j) and 4′-hydroxy-7-methoxy-8,3′-diprenylisoflavone (128) were synthesized for the first time via the 2,3-oxidative rearrangement/cross metathesis approach, using mono- or diallylated flavanones as key intermediates. The reaction of flavanones with hypervalent iodine reagents afforded isoflavones via a 2,3-oxidative rearrangement and the corresponding flavone isomers via a 2,3-dehydrogenation. This afforded the synthesis of 7,4′-dimethoxy-8-prenylflavone (127g), 7,4′-dimethoxy-8,3′-diprenylflavone (127j), 7,4′-dihydroxy-8,3′-diprenylflavone (129) and 4′-hydroxy-7-methoxy-8,3′-diprenylflavone (130), the non-natural regioisomers of 7-methoxyebenosin, 126j, erysubin F and 128 respectively. Three natural prenylated isoflavones: 3′-prenylbiochanin A (58), neobavaisoflavone (66) and 7-methoxyneobavaisoflavone (137) were synthesized for the first time using the Suzuki-Miyaura cross-coupling/cross metathesis approach. The structures of 3′-prenylbiochanin A (58) and 5-deoxy-3′-prenylbiochanin A (59) were confirmed by single crystal X-ray diffraction analysis. The 2,3-oxidative rearrangement approach appears to be limited to the substitution pattern on both rings A and B of the flavanone while the Suzuki-Miyaura cross-coupling approach appears to be the most suitable for the synthesis of simple isoflavones or prenylated isoflavones whose prenyl substituents or allyl groups, the substituents that are essential precursors for the prenyl side chains, can be regioselectively introduced after the construction of the isoflavone core. The chalcone-flavanone hybrids 146, 147 and 148, hybrids of the naturally occurring bioactive flavanones liquiritigenin-7-methyl ether, liquiritigenin and liquiritigenin-4′-methyl ether respectively were also synthesized for the first time, using Matsuda-Heck arylation and allylic/benzylic oxidation as key steps. The intermolecular interactions of 5-deoxy-3′-prenylbiochanin A (59) and its two closely related precursors 106a and 106b was investigated by single crystal and Hirshfeld surface analyses to comprehend their different physicochemical properties. The results indicate that the presence of strong intermolecular O-H···O hydrogen bonds and an increase in the number of π-stacking interactions increases the melting point and lowers the solubility of isoflavone derivatives. However, the strong intermolecular O-H···O hydrogen bonds have a greater effect than the π-stacking interactions. 5-Deoxy-3′-prenylbiochanin A (59), erysubin F (61) and 7,4′-dihydroxy-8,3′-diprenylflavone (129), were tested against three bacterial strains and one fungal pathogen. All the three compounds were inactive against Salmonella enterica subsp. enterica (NCTC 13349), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028), with MIC values greater than 80.0 μM. The diprenylated isoflavone erysubin F (61) and its flavone isomer 129 showed in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) at MIC values of 15.4 and 20.5 μM, respectively. 5-Deoxy-3′-prenylbiochanin A (59) was inactive against this MRSA strain. Erysubin F (61) and its flavone isomer 129 could serve as lead compounds for the development of new alternative drugs for the treatment of MRSA infections.}, language = {en} } @phdthesis{MichalikOnichimowska2022, author = {Michalik-Onichimowska, Aleksandra}, title = {Real-time monitoring of (photo)chemical reactions in micro flow reactors and levitated droplets by IR-MALDI ion mobility and mass spectrometry}, doi = {10.25932/publishup-55729}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557298}, school = {Universit{\"a}t Potsdam}, pages = {v, 68}, year = {2022}, abstract = {Eine nachhaltigere chemische Industrie erfordert eine Minimierung der L{\"o}sungsmittel und Chemikalien. Daher werden Optimierung und Entwicklung chemischer Prozesse vor einer Produktion in großem Maßstab in kleinen Chargen durchgef{\"u}hrt. Der entscheidende Schritt bei diesem Ansatz ist die Skalierbarkeit von kleinen Reaktionssystemen auf große, kosteneffiziente Reaktoren. Die Vergr{\"o}ßerung des Volumens des Reaktionsmediums geht immer mit der Vergr{\"o}ßerung der Oberfl{\"a}che einher, die mit dem begrenzenden Gef{\"a}ß in Kontakt steht. Da das Volumen kubisch, w{\"a}hrend die Oberfl{\"a}che quadratisch mit zunehmendem Radius skaliert, nimmt ihr Verh{\"a}ltnis nicht linear zu. Viele an der Grenzfl{\"a}che zwischen Oberfl{\"a}che und Fl{\"u}ssigkeit auftretende Ph{\"a}nomene k{\"o}nnen die Reaktionsgeschwindigkeiten und Ausbeuten beeinflussen, was zu falschen Prognosen aufgrund der kleinskaligen Optimierung f{\"u}hrt. Die Anwendung von schwebenden Tropfen als beh{\"a}lterlose Reaktionsgef{\"a}ße bietet eine vielversprechende M{\"o}glichkeit, die oben genannten Probleme zu vermeiden. In der vorgestellten Arbeit wurde eine effiziente Kopplung von akustisch schwebenden Tropfen und IM Spektrometer f{\"u}r die Echtzeit{\"u}berwachung chemischer Reaktionen entwickelt, bei denen akustisch schwebende Tropfen als Reaktionsgef{\"a}ße fungieren. Das Design des Systems umfasst die ber{\"u}hrungslose Probenahme und Ionisierung, die durch Laserdesorption und -ionisation bei 2,94 µm realisiert wird. Der Umfang der Arbeit umfasst grundlegende Studien zum Verst{\"a}ndnis der Laserbestrahlung von Tropfen im akustischen Feld. Das Verst{\"a}ndnis dieses Ph{\"a}nomens ist entscheidend, um den Effekt der zeitlichen und r{\"a}umlichen Aufl{\"o}sung der erzeugten Ionenwolke zu verstehen, die die Aufl{\"o}sung des Systems beeinflusst. Der Aufbau umfasst eine akustische Falle, Laserbestrahlung und elektrostatische Linsen, die bei hoher Spannung unter Umgebungsdruck arbeiten. Ein effektiver Ionentransfer im Grenzfl{\"a}chenbereich zwischen dem schwebenden Tropfen und dem IMS muss daher elektrostatische und akustische Felder vollst{\"a}ndig ber{\"u}cksichtigen. F{\"u}r die Probenahme und Ionisation wurden zwei unterschiedliche Laserpulsl{\"a}ngen untersucht, n{\"a}mlich im ns- und µs-Bereich. Die Bestrahlung {\"u}ber µs-Laserpulse bietet gegen{\"u}ber ns-Pulse mehrere Vorteile: i) das Tropfenvolumen wird nicht stark beeinflusst, was es erm{\"o}glichet, nur ein kleines Volumen des Tropfens abzutasten; ii) die geringere Fluenz f{\"u}hrt zu weniger ausgepr{\"a}gten Schwingungen des im akustischen Feld eingeschlossenen Tropfens und der Tropfen wird nicht aus dem akustischen Feld r{\"u}ckgeschlagen, was zum Verlust der Probe f{\"u}hren w{\"u}rde; iii) die milde Laserbestrahlung f{\"u}hrt zu einer besseren r{\"a}umlichen und zeitlichen Begrenzung der Ionenwolken, was zu einer besseren Aufl{\"o}sung der detektierten Ionenpakete f{\"u}hrt. Schließlich erm{\"o}glicht dieses Wissen die Anwendung der Ionenoptik, die erforderlich ist, um den Ionenfluss zwischen dem im akustischen Feld suspendierten Tropfen und dem IM Spektrometer zu induzieren. Die Ionenoptik aus 2 elektrostatischen Linsen in der N{\"a}he des Tropfens erm{\"o}glicht es, die Ionenwolke effektiv zu fokussieren und direkt zum IM Spektrometer-Eingang zu f{\"u}hren. Diese neuartige Kopplung hat sich beim Nachweis einiger basischer Molek{\"u}le als erfolgreich erwiesen. Um die Anwendbarkeit des Systems zu belegen, wurde die Reaktion zwischen N-Boc Cysteine Methylester und Allylalkohol in einem Chargenreaktor durchgef{\"u}hrt und online {\"u}berwacht. F{\"u}r eine Kalibrierung wurde der Reaktionsfortschritt parallel mittels 1H-NMR verfolgt. Der beobachtete Reaktionsumsatz von mehr als 50\% innerhalb der ersten 20 Minuten demonstrierte die Eignung der Reaktion, um die Einsatzpotentiale des entwickelten Systems zu bewerten.}, language = {en} } @misc{RethfeldtBrinkmannRiebeetal.2021, author = {Rethfeldt, Nina and Brinkmann, Pia and Riebe, Daniel and Beitz, Toralf and K{\"o}llner, Nicole and Altenberger, Uwe and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {Detection of Rare Earth Elements in Minerals and Soils by Laser-Induced Breakdown Spectroscopy (LIBS) Using Interval PLS}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55746}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557469}, pages = {1 -- 17}, year = {2021}, abstract = {The numerous applications of rare earth elements (REE) has lead to a growing global demand and to the search for new REE deposits. One promising technique for exploration of these deposits is laser-induced breakdown spectroscopy (LIBS). Among a number of advantages of the technique is the possibility to perform on-site measurements without sample preparation. Since the exploration of a deposit is based on the analysis of various geological compartments of the surrounding area, REE-bearing rock and soil samples were analyzed in this work. The field samples are from three European REE deposits in Sweden and Norway. The focus is on the REE cerium, lanthanum, neodymium and yttrium. Two different approaches of data analysis were used for the evaluation. The first approach is univariate regression (UVR). While this approach was successful for the analysis of synthetic REE samples, the quantitative analysis of field samples from different sites was influenced by matrix effects. Principal component analysis (PCA) can be used to determine the origin of the samples from the three deposits. The second approach is based on multivariate regression methods, in particular interval PLS (iPLS) regression. In comparison to UVR, this method is better suited for the determination of REE contents in heterogeneous field samples. View Full-Text}, language = {en} } @phdthesis{Gaebert2022, author = {G{\"a}bert, Chris}, title = {Light-responsive polymer systems aiming towards programmable friction}, doi = {10.25932/publishup-55338}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553380}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 108, XXVI}, year = {2022}, abstract = {The development of novel programmable materials aiming to control friction in real-time holds potential to facilitate innovative lubrication solutions for reducing wear and energy losses. This work describes the integration of light-responsiveness into two lubricating materials, silicon oils and polymer brush surfaces. The first part focusses on the assessment on 9-anthracene ester-terminated polydimethylsiloxanes (PDMS-A) and, in particular, on the variability of rheological properties and the implications that arise with UV-light as external trigger. The applied rheometer setup contains an UV-transparent quartz-plate, which enables radiation and simultaneous measurement of the dynamic moduli. UV-A radiation (354 nm) triggers the cycloaddition reaction between the terminal functionalities of linear PDMS, resulting in chain extension. The newly-formed anthracene dimers cleave by UV-C radiation (254 nm) or at elevated temperatures (T > 130 °C). The sequential UV-A radiation and thermal reprogramming over three cycles demonstrate high conversions and reproducible programming of rheological properties. In contrast, the photochemical back reaction by UV-C is incomplete and can only partially restore the initial rheological properties. The dynamic moduli increase with each cycle in photochemical programming, presumably resulting from a chain segment re-arrangement as a result of the repeated partial photocleavage and subsequent chain length-dependent dimerization. In addition, long periods of radiation cause photooxidative degradation, which damages photo-responsive functions and consequently reduces the programming range. The absence of oxygen, however, reduces undesired side reactions. Anthracene-functionalized PDMS and native PDMS mix depending on the anthracene ester content and chain length, respectively, and allow fine-tuning of programmable rheological properties. The work shows the influence of mixing conditions during the photoprogramming step on the rheological properties, indicating that material property gradients induced by light attenuation along the beam have to be considered. Accordingly, thin lubricant films are suggested as potential application for light-programmable silicon fluids. The second part compares strategies for the grafting of spiropyran (SP) containing copolymer brushes from Si wafers and evaluates the light-responsiveness of the surfaces. Pre-experiments on the kinetics of the thermally initiated RAFT copolymerization of 2-hydroxyethyl acrylate (HEA) and spiropyran acrylate (SPA) in solution show, first, a strong retardation by SP and, second, the dependence of SPA polymerization on light. Surprisingly, the copolymerization of SPA is inhibited in the dark. These findings contribute to improve the synthesis of polar, spiropyran-containing copolymers. The comparison between initiator systems for the grafting-from approach indicates PET-RAFT superior to thermally initiated RAFT, suggesting a more efficient initiation of surface-bound CTA by light. Surface-initiated polymerization via PET-RAFT with an initiator system of EosinY (EoY) and ascorbic acid (AscA) facilitates copolymer synthesis from HEA and 5-25 mol\% SPA. The resulting polymer film with a thickness of a few nanometers was detected by atomic force microscopy (AFM) and ellipsometry. Water contact angle (CA) measurements demonstrate photo-switchable surface polarity, which is attributed to the photoisomerization between non-polar spiropyran and zwitterionic merocyanine isomer. Furthermore, the obtained spiropyran brushes show potential for further studies on light-programmable properties. In this context, it would be interesting to investigate whether swollen spiropyran-containing polymers change their configuration and thus their film thickness under the influence of light. In addition, further experiments using an AFM or microtribometer should evaluate whether light-programmable solvation enables a change in frictional properties between polymer brush surfaces.}, language = {en} } @phdthesis{Michaelis2022, author = {Michaelis, Marcus}, title = {Molekulare Erkennung von Cellulose und Cellulose-Fragmenten durch Cellulose-Bindemodule \& Interaktionsstudien zwischen den zytoplasmatischen Dom{\"a}nen von Integrin-β1/β3 und dem fokalen Adh{\"a}sionsprotein Paxillin}, doi = {10.25932/publishup-55516}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555162}, school = {Universit{\"a}t Potsdam}, pages = {VI, 171}, year = {2022}, abstract = {Proteine erf{\"u}llen bei einer Vielzahl von Prozessen eine essenzielle Rolle. Um diese Funktionsweisen zu verstehen, bedarf es der Aufkl{\"a}rung derer Struktur und deren Bindungsverhaltens mit anderen Molek{\"u}len wie Proteinen, Peptiden, Kohlenhydraten oder kleinen Molek{\"u}len. Im ersten Teil dieser Arbeit wurden der Wildtyp und die Punktmutante N126W eines Kohlenhydrat-bindenden Proteins aus dem hitzestabilen Bakterium C. thermocellum untersucht, welches Teil eines Komplexes ist, der Kohlenhydrate wie Cellulose erkennen, binden und abbauen kann. Dazu wurde dieses Protein mit E.coli Bakterien hergestellt und durch Metallchelat- und Gr{\"o}ßenausschlusschromatographie gereinigt. Die Proteine konnten isotopenmarkiert mittels Kernspinresonanz-Spektroskopie (NMR) untersucht werden. H/D-Austauschexperimente zeigten leicht und schwer zug{\"a}ngliche Stellen im Protein f{\"u}r eine m{\"o}gliche Ligandenwechselwirkung. Anschließend konnte eine Interaktion beider Proteine mit Cellulosefragmenten festgestellt werden. Diese interagieren {\"u}ber zwischenmolekulare Kr{\"a}fte mit den Seitenketten von aromatischen Aminos{\"a}uren und {\"u}ber Wasserstoffbr{\"u}ckenbindungen mit anderen Resten. Weiterhin wurde die Calcium-Bindestelle analysiert und es konnte gezeigt werden, das diese nach der Proteinherstellung mit einem Calcium-Ion besetzt ist und dieses mit dem Komplexbildner EDTA entfernbar ist, jedoch wieder reversibel besetzt werden kann. Zum Schluss wurde mittels zweier Methoden versucht (grafting from und grafting to), das Protein mit einem temperatursensorischen Polymer (Poly-N-Isopropylacrylamid) zu koppeln, um so Eigenschaften wie L{\"o}slichkeit oder Stabilit{\"a}t zu beeinflussen. Es zeigte sich, das w{\"a}hrend die grafting from Methode (Polymer w{\"a}chst direkt vom Protein) zu einer teilweisen Entfaltung und Destabilisierung des Proteins f{\"u}hrte, bei der grafting to Methode (Polymer wird separat hergestellt und dann an das Protein gekoppelt) das Protein seine Stabilit{\"a}t behielt und nur wenige Polymerketten angebaut waren. Der zweite Teil dieser Arbeit besch{\"a}ftigte sich mit der Interaktion von zwei LIM-Dom{\"a}nen des Proteins Paxillin und der zytoplasmatischen Dom{\"a}ne der Peptide Integrin-β1 und Integrin-β3. Diese spielen eine wichtige Rolle bei der Bewegung von Zellen. Dabei interagieren sie mit einer Vielzahl an anderen Proteinen, um fokale Adh{\"a}sionen (Multiproteinkomplexe) zu bilden. Bei der Herstellung des Peptids Integrin-β3 zeigte sich durch Gr{\"o}ßenausschlusschromatographie und Massenspektrometrie ein Abbau, bei dem verschiedene Aminos{\"a}uregruppen abgespalten werden. Dieser konnte durch eine Zugabe des Serinprotease-Inhibitors AEBSF verhindert werden. Anschließend wurde die direkte Interaktion der Proteine untereinander mittels NMR untersucht. Dabei zeigte sich, das Integrin-β1 und Integrin-β3 an die gleiche Position binden, n{\"a}mlich an den flexiblen Loop der LIM3-Dom{\"a}ne von Paxillin. Die Dissoziationskonstanten zeigten, dass Integrin-β1 mit einer zirka zehnfach h{\"o}heren Affinit{\"a}t im Vergleich zu Integrin-β3 an Paxillin bindet. W{\"a}hrend Paxillins Bindestelle an Integrin-β1 in der Mitte des Peptids liegt, ist bei Integrin-β3 der C-Terminus essenziell. Daher wurden die drei C-terminalen Aminos{\"a}uren entfernt und erneut Bindungsstudien durchgef{\"u}hrt, welche gezeigt haben, das die Affinit{\"a}t dadurch fast vollst{\"a}ndig unterbunden wurde. Final wurde der flexible Loop der LIM3-Dom{\"a}ne in zwei andere Aminos{\"a}uresequenzen mutiert, um die Bindung auf der Paxillin-Seite auszul{\"o}schen. Jedoch zeigten sowohl Zirkulardichroismus-Spektroskopie als auch NMR-Spektroskopie, dass die Mutationen zu einer teilweisen Entfaltung der Dom{\"a}ne gef{\"u}hrt haben und somit nicht als geeignete Kandidaten f{\"u}r diese Studien identifiziert werden konnten.}, language = {de} } @misc{RajuKoetz2021, author = {Raju, Rajarshi Roy and Koetz, Joachim}, title = {Inner Rotation of Pickering Janus Emulsions}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1249}, issn = {1866-8372}, doi = {10.25932/publishup-55362}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553628}, pages = {6}, year = {2021}, abstract = {Janus droplets were prepared by vortex mixing of three non-mixable liquids, i.e., olive oil, silicone oil and water, in the presence of gold nanoparticles (AuNPs) in the aqueous phase and magnetite nanoparticles (MNPs) in the olive oil. The resulting Pickering emulsions were stabilized by a red-colored AuNP layer at the olive oil/water interface and MNPs at the oil/oil interface. The core-shell droplets can be stimulated by an external magnetic field. Surprisingly, an inner rotation of the silicon droplet is observed when MNPs are fixed at the inner silicon droplet interface. This is the first example of a controlled movement of the inner parts of complex double emulsions by magnetic manipulation via interfacially confined magnetic nanoparticles.}, language = {en} } @phdthesis{Flatken2022, author = {Flatken, Marion A.}, title = {The early stages of halide perovskites thin film formation}, doi = {10.25932/publishup-55259}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-552599}, school = {Universit{\"a}t Potsdam}, pages = {VI, 144}, year = {2022}, abstract = {As climate change worsens, there is a growing urgency to promote renewable energies and improve their accessibility to society. Here, solar energy harvesting is of particular importance. Currently, metal halide perovskite (MHP) solar cells are indispensable in future solar energy generation research. MHPs are crystalline semiconductors increasingly relevant as low-cost, high-performance materials for optoelectronics. Their processing from solution at low temperature enables easy fabrication of thin film elements, encompassing solar cells and light-emitting diodes or photodetectors. Understanding the coordination chemistry of MHPs in their precursor solution would allow control over the thin film crystallization, the material properties and the final device performance. In this work, we elaborate on the key parameters to manipulate the precursor solution with the long-term objective of enabling systematic process control. We focus on the nanostructural characterization of the initial arrangements of MHPs in the precursor solutions. Small-angle scattering is particularly well suited for measuring nanoparticles in solution. This technique proved to be valuable for the direct analyzes of perovskite precursor solutions in standard processing concentrations without causing radiation damage. We gain insights into the chemical nature of widely used precursor structures such as methylammonium lead iodide (MAPbI3), presenting first insights into the complex arrangements and interaction within this precursor state. Furthermore, we transfer the preceding results to other more complex perovskite precursors. The influence of compositional engineering is investigated using the addition of alkali cations as an example. As a result, we propose a detailed working mechanism on how the alkali cations suppress the formation of intermediate phases and improve the quality of the crystalline thin film. In addition, we investigate the crystallization process of a tin-based perovskite composition (FASnI3) under the influence of fluoride chemistry. We prove that the frequently used additive, tin fluoride (SnF2), selectively binds undesired oxidized tin (Sn(IV)) in the precursor solution. This prevents its incorporation into the actual crystal structure and thus reduces the defect density of the material. Furthermore, SnF2 leads to a more homogeneous crystal growth process, which results in improved crystal quality of the thin film material. In total, this study provides a detailed characterization of the complex system of perovskite precursor chemistry. We thereby cover relevant parameters for future MHP solar cell process control, such as (I) the environmental impact based on concentration and temperature (II) the addition of counter ions to reduce the diffuse layer surrounding the precursor nanostructures and (III) the targeted use of additives to eliminate unwanted components selectively and to ensure a more homogeneous crystal growth.}, language = {en} } @phdthesis{Bastian2022, author = {Bastian, Philipp U.}, title = {Core-shell upconversion nanoparticles - investigation of dopant intermixing and surface modification}, doi = {10.25932/publishup-55160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-551607}, school = {Universit{\"a}t Potsdam}, pages = {XII, 108, xxiii}, year = {2022}, abstract = {Frequency upconversion nanoparticles (UCNPs) are inorganic nanocrystals capable to up-convert incident photons of the near-infrared electromagnetic spectrum (NIR) into higher energy photons. These photons are re-emitted in the range of the visible (Vis) and even ultraviolet (UV) light. The frequency upconversion process (UC) is realized with nanocrystals doped with trivalent lanthanoid ions (Ln(III)). The Ln(III) ions provide the electronic (excited) states forming a ladder-like electronic structure for the Ln(III) electrons in the nanocrystals. The absorption of at least two low energy photons by the nanoparticle and the subsequent energy transfer to one Ln(III) ion leads to the promotion of one Ln(III) electron into higher excited electronic states. One high energy photon will be emitted during the radiative relaxation of the electron in the excited state back into the electronic ground state of the Ln(III) ion. The excited state electron is the result of the previous absorption of at least two low energy photons. The UC process is very interesting in the biological/medical context. Biological samples (like organic tissue, blood, urine, and stool) absorb high-energy photons (UV and blue light) more strongly than low-energy photons (red and NIR light). Thanks to a naturally occurring optical window, NIR light can penetrate deeper than UV light into biological samples. Hence, UCNPs in bio-samples can be excited by NIR light. This possibility opens a pathway for in vitro as well as in vivo applications, like optical imaging by cell labeling or staining of specific organic tissue. Furthermore, early detection and diagnosis of diseases by predictive and diagnostic biomarkers can be realized with bio-recognition elements being labeled to the UCNPs. Additionally, "theranostic" becomes possible, in which the identification and the treatment of a disease are tackled simultaneously. For this to succeed, certain parameters for the UCNPs must be met: high upconversion efficiency, high photoluminescence quantum yield, dispersibility, and dispersion stability in aqueous media, as well as availability of functional groups to introduce fast and easy bio-recognition elements. The UCNPs used in this work were prepared with a solvothermal decomposition synthesis yielding in particles with NaYF4 or NaGdF4 as host lattice. They have been doped with the Ln(III) ions Yb3+ and Er3+, which is only one possible upconversion pair. Their upconversion efficiency and photoluminescence quantum yield were improved by adding a passivating shell to reduce surface quenching. However, the brightness of core-shell UCNPs stays behind the expectations compared to their bulk material (being at least μm-sized particles). The core-shell structures are not clearly separated from each other, which is a topic in literature. Instead, there is a transition layer between the core and the shell structure, which relates to the migration of the dopants within the host lattice during the synthesis. The ion migration has been examined by time-resolved laser spectroscopy and the interlanthanoid resonance energy transfer (LRET) in the two different host lattices from above. The results are presented in two publications, which dealt with core-shell-shell structured nanoparticles. The core is doped with the LRET-acceptor (either Nd3+ or Pr3+). The intermediate shell serves as an insulation shell of pure host lattice material, whose shell thickness has been varied within one set of samples having the same composition, so that the spatial separation of LRET-acceptor and -donor changes. The outer shell with the same host lattice is doped with the LRET-donor (Eu3+). The effect of the increasing insulation shell thickness is significant, although the LRET cannot be suppressed completely. Next to the Ln(III) migration within a host lattice, various phase transfer reactions were investigated in order to subsequently perform surface modifications for bioapplications. One result out of this research has been published using a promising ligand, that equips the UCNP with bio-modifiable groups and has good potential for bio-medical applications. This particular ligand mimics natural occurring mechanisms of mussel protein adhesion and of blood coagulation, which is why the UCNPs are encapsulated very effectively. At the same time, bio-functional groups are introduced. In a proof-of-concept, the encapsulated UCNP has been coupled successfully with a dye (which is representative for a biomarker) and the system's photoluminescence properties have been investigated.}, language = {en} } @phdthesis{Freyse2022, author = {Freyse, Daniel}, title = {Thioacetal-Bausteine f{\"u}r Fluoreszenzfarbstoffe und molekulare St{\"a}be}, doi = {10.25932/publishup-54925}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549252}, school = {Universit{\"a}t Potsdam}, pages = {292}, year = {2022}, abstract = {Im Rahmen dieser Dissertation wurde der Sauerstoff im Grundger{\"u}st der [1,3]-Dioxolo[4.5-f]benzodioxol-Fluoreszenzfarbstoffe (DBD-Fluoreszenzfarbstoffe) vollst{\"a}ndig mit Schwefel ausgetauscht und daraus eine neue Klasse von Fluoreszenzfarbstoffen entwickelt, die Benzo[1,2-d:4,5-d']bis([1,3]dithiol)-Fluorophore (S4-DBD-Fluorophore). Insgesamt neun der besonders interessanten, difunktionalisierten Vertreter konnten synthetisiert werden, die sich in ihren elektronenziehenden Gruppen und in ihrer Anordnung unterschieden. Durch den Austausch von Sauerstoff mit Schwefel kam es zu teilweise auff{\"a}lligen Ver{\"a}nderungen in den Fluoreszenzparametern, wie eine Abnahme der Fluoreszenzquantenausbeuten und -lebenszeiten aber auch eine deutliche Rotverschiebung in den Absorptions- und Emissionswellenl{\"a}ngen mit großen STOKES-Verschiebungen. Damit sind die S4-DBD-Fluorophore eine wertvolle Erg{\"a}nzung f{\"u}r die DBD-Farbstoffe. Die Ursachen f{\"u}r die Abnahme der Lebenszeiten und Quantenausbeuten konnte auf eine hohe Besetzung des Triplett-Zustandes zur{\"u}ckgef{\"u}hrt werden, welcher durch die verst{\"a}rkten Spin-Bahn-Kopplungen des Schwefels hervorgerufen wird. Zusammen mit dem Arbeitskreis physikalische Chemie der Universit{\"a}t Potsdam konnten auch die photophysikalischen Prozesse {\"u}ber die Transienten-Absorptionsspektroskopie (TAS) aufgekl{\"a}rt werden. Eine Strategie zur Funktionalisierung der S4-DBD-Farbstoffe am Thioacetalger{\"u}st konnte entwickelt werden. So gelang es Alkohol-, Propargyl-, Azid-, NHS-Ester-, Carbons{\"a}ure-, Maleimid- und Tosyl-Gruppen an S4-DBD-Dialdehyden anzubringen. Erweiternd wurden molekulare St{\"a}be auf Basis von Schwefel-Oligo-Spiro-Ketalen (SOSKs) untersucht, bei denen Sauerstoff durch Schwefel ersetzt wurde. Hier konnten die Synthesen der l{\"o}slichkeitsvermittelnden TER-Muffe und auch des Tetrathiapentaerythritols als Grundbaustein deutlich verbessert werden. Aus diesen konnte ein einfaches SOSK-Polymer hergestellt werden. Weitere Versuche zum Aufbau eines Stabes m{\"u}ssen aber noch untersucht werden. Um einen S-OSK-Stab aufzubauen hat sich dabei die Dithiocarbonat-Gruppe in ersten Versuchen als potenzielle geeignete Schutzgruppe f{\"u}r das Tetrathiapentaerythritol herausgestellt.}, language = {de} } @phdthesis{Luedecke2022, author = {L{\"u}decke, Nils}, title = {Bio-sourced adsorbing poly(2-oxazoline)s mimicking mussel glue proteins for antifouling applications}, doi = {10.25932/publishup-54983}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549836}, school = {Universit{\"a}t Potsdam}, pages = {iii, 224}, year = {2022}, abstract = {Nature developed countless systems for many applications. In maritime environments, several organisms established extra-ordinary mechanisms to attach to surfaces. Over the past years, the scientific interest to employ those mechanisms for coatings and long-lasting adhering materials gained significant attention. This work describes the synthesis of bio-inspired adsorbing copoly(2-oxazoline)s for surface coatings with protein repelling effects, mimicking mussel glue proteins. From a set of methoxy substituted phenyl, benzyl, and cinnamyl acids, 2-oxazoline monomers were synthesized. All synthesized 2-oxazolines were analyzed by FT-IR spectroscopy, NMR spectroscopy, and EI mass spectrometry. With those newly synthesized 2-oxazoline monomers and 2-ethyl-2-oxazoline, kinetic studies concerning homo- and copolymerization in a microwave reactor were conducted. The success of the polymerization reactions was demonstrated by FT-IR spectroscopy, NMR spectroscopy, MALDI-TOF mass spectrometry, and size exclusion chromatography (SEC). The copolymerization of 2-ethyl-2-oxazoline with a selection of methoxy-substituted 2-oxazolines resulted in water-soluble copolymers. To release the adsorbing catechol and cationic units, the copoly(2-oxazoline)s were modified. The catechol units were (partially) released by a methyl aryl ether cleavage reaction. A subsequent partial acidic hydrolysis of the ethyl unit resulted in mussel glue protein-inspired catechol and cation-containing copolymers. The modified copolymers were analyzed by NMR spectroscopy, UV-VIS spectroscopy, and SEC. The catechol- and cation-containing copolymers and their precursors were examined by a Quartz Crystal Microbalance with Dissipation (QCM-D), so study the adsorption performance on gold, borosilicate, iron, and polystyrene surfaces. An exemplary study revealed that a catechol and cation-containing copoly(2-oxazoline)-coated gold surface exhibits strong protein repelling properties.}, language = {en} } @phdthesis{MathieuGaedke2021, author = {Mathieu-Gaedke, Maria}, title = {Grafting-to and grafting-from proteins - synthesis and characterization of protein-polymer conjugates on the way to biohybrid membrane materials}, doi = {10.25932/publishup-54292}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542921}, school = {Universit{\"a}t Potsdam}, pages = {XVIII, 149}, year = {2021}, abstract = {The incorporation of proteins in artificial materials such as membranes offers great opportunities to avail oneself the miscellaneous qualities of proteins and enzymes perfected by nature over millions of years. One possibility to leverage proteins is the modification with artificial polymers. To obtain such protein-polymer conjugates, either a polymer can be grown from the protein surface (grafting-from) or a pre-synthesized polymer attached to the protein (grafting-to). Both techniques were used to synthesize conjugates of different proteins with thermo-responsive polymers in this thesis. First, conjugates were analyzed by protein NMR spectroscopy. Typical characterization techniques for conjugates can verify the successful conjugation and give hints on the secondary structure of the protein. However, the 3-dimensional structure, being highly important for the protein function, cannot be probed by standard techniques. NMR spectroscopy is a unique method allowing to follow even small alterations in the protein structure. A mutant of the carbohydrate binding module 3b (CBM3bN126W) was used as model protein and functionalized with poly(N-isopropylacrylamide). Analysis of conjugates prepared by grafting-to or grafting-from revealed a strong impact of conjugation type on protein folding. Whereas conjugates prepared by grafting a pre-formed polymer to the protein resulted in complete preservation of protein folding, grafting the polymer from the protein surface led to (partial) disruption of the protein structure. Next, conjugates of bovine serum albumin (BSA) as cheap and easily accessible protein were synthesized with PNIPAm and different oligoethylene glycol (meth)acrylates. The obtained protein-polymer conjugates were analyzed by an in-line combination of size exclusion chromatography and multi-angle laser light scattering (SEC-MALS). This technique is particular advantageous to determine molar masses, as no external calibration of the system is needed. Different SEC column materials and operation conditions were tested to evaluate the applicability of this system to determine absolute molar masses and hydrodynamic properties of heterogeneous conjugates prepared by grafting-from and grafting-to. Hydrophobic and non-covalent interactions of conjugates lead to error-prone values not in accordance to expected molar masses based on conversions and extents of modifications. As alternative to this method, conjugates were analyzed by sedimentation velocity analytical ultracentrifugation (SV-AUC) to gain insights in the hydrodynamic properties and how they change after conjugation. Within a centrifugal field, a sample moves and fractionates according to the mass, density, and shape of its individual components. Conjugates of BSA with PNIPAm were analyzed below and above the cloud point temperature of the thermo-responsive polymer component. It was identified that the polymer characteristics were transferred to the conjugate molecule which than showed a decreased ideality - defined as increased deviation from a perfect sphere model - below and increased ideality above the cloud point temperature. This effect can be attributed to an arrangement of the polymer chain pointing towards the solvent (expanded state) or snuggling around the protein surface depending on the applied temperature. The last project dealt with the synthesis of ferric hydroxamate uptake protein component A (FhuA)-polymer conjugates as building blocks for novel membrane materials. The shape of FhuA can be described as barrel and removal of a cork domain inside the protein results in a passive channel aimed to be utilized as pores in the membrane system. The polymer matrix surrounding the membrane protein is composed of a thermo-responsive and a UV-crosslinkable part. Therefore, an external trigger for covalent immobilization of these building blocks in the membrane and switchability of the membrane between different states was incorporated. The overall performance of membranes prepared by a drying-mediated self-assembly approach was evaluated by permeability and size exclusion experiments. The obtained membranes displayed an insufficiency in interchain crosslinking and therefore a lack in performance. Furthermore, the aimed switch between a hydrophilic and hydrophobic state of the polymer matrix did not occur. Correspondingly, size exclusion experiments did not result in a retention of analytes larger than the pores defined by the dimension of the used FhuA variant. Overall, different paths to generate protein-polymer conjugates by either grafting-from or grafting-to the protein surface were presented paving the way to the generation of new hybrid materials. Different analytical methods were utilized to describe the folding and hydrodynamic properties of conjugates providing a deeper insight in the overall characteristics of these seminal building blocks.}, language = {en} } @phdthesis{Saretia2021, author = {Saretia, Shivam}, title = {Modulating ultrathin films of semi-crystalline oligomers by Langmuir technique}, doi = {10.25932/publishup-54210}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542108}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 109}, year = {2021}, abstract = {Polymeric films and coatings derived from semi-crystalline oligomers are of relevance for medical and pharmaceutical applications. In this context, the material surface is of particular importance, as it mediates the interaction with the biological system. Two dimensional (2D) systems and ultrathin films are used to model this interface. However, conventional techniques for their preparation, such as spin coating or dip coating, have disadvantages, since the morphology and chain packing of the generated films can only be controlled to a limited extent and adsorption on the substrate used affects the behavior of the films. Detaching and transferring the films prepared by such techniques requires additional sacrificial or supporting layers, and free-standing or self supporting domains are usually of very limited lateral extension. The aim of this thesis is to study and modulate crystallization, melting, degradation and chemical reactions in ultrathin films of oligo(ε-caprolactone)s (OCL)s with different end-groups under ambient conditions. Here, oligomeric ultrathin films are assembled at the air-water interface using the Langmuir technique. The water surface allows lateral movement and aggregation of the oligomers, which, unlike solid substrates, enables dynamic physical and chemical interaction of the molecules. Parameters like surface pressure (π), temperature and mean molecular area (MMA) allow controlled assembly and manipulation of oligomer molecules when using the Langmuir technique. The π-MMA isotherms, Brewster angle microscopy (BAM), and interfacial infrared spectroscopy assist in detecting morphological and physicochemical changes in the film. Ultrathin films can be easily transferred to the solid silicon surface via Langmuir Schaefer (LS) method (horizontal substrate dipping). Here, the films transferred on silicon are investigated using atomic force microscopy (AFM) and optical microscopy and are compared to the films on the water surface. The semi-crystalline morphology (lamellar thicknesses, crystal number densities, and lateral crystal dimensions) is tuned by the chemical structure of the OCL end-groups (hydroxy or methacrylate) and by the crystallization temperature (Tc; 12 or 21 °C) or MMAs. Compression to lower MMA of ~2 {\AA}2, results in the formation of a highly crystalline film, which consists of tightly packed single crystals. Preparation of tightly packed single crystals on a cm2 scale is not possible by conventional techniques. Upon transfer to a solid surface, these films retain their crystalline morphology whereas amorphous films undergo dewetting. The melting temperature (Tm) of OCL single crystals at the water and the solid surface is found proportional to the inverse crystal thickness and is generally lower than the Tm of bulk PCL. The impact of OCL end-groups on melting behavior is most noticeable at the air-solid interface, where the methacrylate end-capped OCL (OCDME) melted at lower temperatures than the hydroxy end-capped OCL (OCDOL). When comparing the underlying substrate, melting/recrystallization of OCL ultrathin films is possible at lower temperatures at the air water interface than at the air-solid interface, where recrystallization is not visible. Recrystallization at the air-water interface usually occurs at a higher temperature than the initial Tc. Controlled degradation is crucial for the predictable performance of degradable polymeric biomaterials. Degradation of ultrathin films is carried out under acidic (pH ~ 1) or enzymatic catalysis (lipase from Pseudomonas cepcia) on the water surface or on a silicon surface as transferred films. A high crystallinity strongly reduces the hydrolytic but not the enzymatic degradation rate. As an influence of end-groups, the methacrylate end-capped linear oligomer, OCDME (~85 ± 2 \% end-group functionalization) hydrolytically degrades faster than the hydroxy end capped linear oligomer, OCDOL (~95 ± 3 \% end-group functionalization) at different temperatures. Differences in the acceleration of hydrolytic degradation of semi-crystalline films were observed upon complete melting, partial melting of the crystals, or by heating to temperatures close to Tm. Therefore, films of densely packed single crystals are suitable as barrier layers with thermally switchable degradation rates. Chemical modification in ultrathin films is an intricate process applicable to connect functionalized molecules, impart stability or create stimuli-sensitive cross-links. The reaction of end-groups is explored for transferred single crystals on a solid surface or amorphous monolayer at the air-water interface. Bulky methacrylate end-groups are expelled to the crystal surface during chain-folded crystallization. The density of end-groups is inversely proportional to molecular weight and hence very pronounced for oligomers. The methacrylate end-groups at the crystal surface, which are present at high concentration, can be used for further chemical functionalization. This is demonstrated by fluorescence microscopy after reaction with fluorescein dimethacrylate. The thermoswitching behavior (melting and recrystallization) of fluorescein functionalized single crystals shows the temperature-dependent distribution of the chemically linked fluorescein moieties, which are accumulated on the surfaces of crystals, and homogeneously dispersed when the crystals are molten. In amorphous monolayers at the air-water interface, reversible cross-linking of hydroxy-terminated oligo(ε-caprolactone) monolayers using dialdehyde (glyoxal) lead to the formation of 2D networks. Pronounced contraction in the area occurred for 2D OCL films in dependence of surface pressure and time indicating the reaction progress. Cross linking inhibited crystallization and retarded enzymatic degradation of the OCL film. Altering the subphase pH to ~2 led to cleavage of the covalent acetal cross-links. Besides as model systems, these reversibly cross-linked films are applicable for drug delivery systems or cell substrates modulating adhesion at biointerfaces.}, language = {en} } @phdthesis{Schutjajew2021, author = {Schutjajew, Konstantin}, title = {Electrochemical sodium storage in non-graphitizing carbons - insights into mechanisms and synthetic approaches towards high-energy density materials}, doi = {10.25932/publishup-54189}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541894}, school = {Universit{\"a}t Potsdam}, pages = {v, 148}, year = {2021}, abstract = {To achieve a sustainable energy economy, it is necessary to turn back on the combustion of fossil fuels as a means of energy production and switch to renewable sources. However, their temporal availability does not match societal consumption needs, meaning that renewably generated energy must be stored in its main generation times and allocated during peak consumption periods. Electrochemical energy storage (EES) in general is well suited due to its infrastructural independence and scalability. The lithium ion battery (LIB) takes a special place, among EES systems due to its energy density and efficiency, but the scarcity and uneven geological occurrence of minerals and ores vital for many cell components, and hence the high and fluctuating costs will decelerate its further distribution. The sodium ion battery (SIB) is a promising successor to LIB technology, as the fundamental setup and cell chemistry is similar in the two systems. Yet, the most widespread negative electrode material in LIBs, graphite, cannot be used in SIBs, as it cannot store sufficient amounts of sodium at reasonable potentials. Hence, another carbon allotrope, non-graphitizing or hard carbon (HC) is used in SIBs. This material consists of turbostratically disordered, curved graphene layers, forming regions of graphitic stacking and zones of deviating layers, so-called internal or closed pores. The structural features of HC have a substantial impact of the charge-potential curve exhibited by the carbon when it is used as the negative electrode in an SIB. At defects and edges an adsorption-like mechanism of sodium storage is prevalent, causing a sloping voltage curve, ill-suited for the practical application in SIBs, whereas a constant voltage plateau of relatively high capacities is found immediately after the sloping region, which recent research attributed to the deposition of quasimetallic sodium into the closed pores of HC. Literature on the general mechanism of sodium storage in HCs and especially the role of the closed pore is abundant, but the influence of the pore geometry and chemical nature of the HC on the low-potential sodium deposition is yet in an early stage. Therefore, the scope of this thesis is to investigate these relationships using suitable synthetic and characterization methods. Materials of precisely known morphology, porosity, and chemical structure are prepared in clear distinction to commonly obtained ones and their impact on the sodium storage characteristics is observed. Electrochemical impedance spectroscopy in combination with distribution of relaxation times analysis is further established as a technique to study the sodium storage process, in addition to classical direct current techniques, and an equivalent circuit model is proposed to qualitatively describe the HC sodiation mechanism, based on the recorded data. The obtained knowledge is used to develop a method for the preparation of closed porous and non-porous materials from open porous ones, proving not only the necessity of closed pores for efficient sodium storage, but also providing a method for effective pore closure and hence the increase of the sodium storage capacity and efficiency of carbon materials. The insights obtained and methods developed within this work hence not only contribute to the better understanding of the sodium storage mechanism in carbon materials of SIBs, but can also serve as guidance for the design of efficient electrode materials.}, language = {en} } @phdthesis{Mazzanti2022, author = {Mazzanti, Stefano}, title = {Novel photocatalytic processes mediated by carbon nitride photocatalysis}, doi = {10.25932/publishup-54209}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542099}, school = {Universit{\"a}t Potsdam}, pages = {418}, year = {2022}, abstract = {The key to reduce the energy required for specific transformations in a selective manner is the employment of a catalyst, a very small molecular platform that decides which type of energy to use. The field of photocatalysis exploits light energy to shape one type of molecules into others, more valuable and useful. However, many challenges arise in this field, for example, catalysts employed usually are based on metal derivatives, which abundance is limited, they cannot be recycled and are expensive. Therefore, carbon nitrides materials are used in this work to expand horizons in the field of photocatalysis. Carbon nitrides are organic materials, which can act as recyclable, cheap, non-toxic, heterogeneous photocatalysts. In this thesis, they have been exploited for the development of new catalytic methods, and shaped to develop new types of processes. Indeed, they enabled the creation of a new photocatalytic synthetic strategy, the dichloromethylation of enones by dichloromethyl radical generated in situ from chloroform, a novel route for the making of building blocks to be used for the productions of active pharmaceutical compounds. Then, the ductility of these materials allowed to shape carbon nitride into coating for lab vials, EPR capillaries, and a cell of a flow reactor showing the great potential of such flexible technology in photocatalysis. Afterwards, their ability to store charges has been exploited in the reduction of organic substrates under dark conditions, gaining new insights regarding multisite proton coupled electron transfer processes. Furthermore, the combination of carbon nitrides with flavins allowed the development of composite materials with improved photocatalytic activity in the CO2 photoreduction. Concluding, carbon nitrides are a versatile class of photoactive materials, which may help to unveil further scientific discoveries and to develop a more sustainable future.}, language = {en} } @phdthesis{Hechenbichler2021, author = {Hechenbichler, Michelle}, title = {New thermoresponsive amphiphilic block copolymers with unconventional chemical structure and architecture}, doi = {10.25932/publishup-54182}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541822}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 186}, year = {2021}, abstract = {Das Aggregationsverhalten von amphiphilen Blockcpoolymeren ist wichtig f{\"u}r zahlreiche Anwendungen, beispielsweise in der Waschmittelindustrie als Verdicker oder in der Pharmazie zur kontrollierten Freisetzung von Wirkstoffen. Wenn einer der Bl{\"o}cke thermoresponsiv ist, kann das Aggregationsverhalten zus{\"a}tzlich {\"u}ber die Temperatur gesteuert werden. W{\"a}hrend sich die bisherigen Untersuchungen solcher „intelligenten" Systeme zumeist auf einfache Diblockcopolymere beschr{\"a}nkt haben, wurde in der vorliegenden Arbeit die Komplexit{\"a}t der Polymere und damit die Vielseitigkeit dieser Systeme erh{\"o}ht. Dazu wurden spezifische Monomere, verschiedene Blockl{\"a}ngen, unterschiedliche Architekturen und zus{\"a}tzliche funktionelle Gruppen eingef{\"u}hrt. Durch systematische {\"A}nderungen wurde das Struktur-Wirkungsverhalten solcher thermoresponsiver amphiphiler Blockcopolymere untersucht. Dabei sind die Blockcopolymere typischerweise aus einem permanent hydrophoben „Sticker", einem permanent hydrophilen Block sowie einem thermoresponsiven Block, der ein Lower Critical Solution Temperature (LCST) Verhalten zeigt, aufgebaut. W{\"a}hrend der permanent hydrophile Block aus N,N Dimethylacrylamid (DMAm) bestand, wurden f{\"u}r den thermoresponsiven Block unterschiedliche Monomere, n{\"a}mlich N n Propylacrylamid (NPAm), N iso Propylacrylamid (NiPAm), N,N Diethylacrylamid (DEAm), N,N Bis(2 methoxyethyl)acrylamid (bMOEAm), oder N Acryloylpyrrolidin (NAP) mit entsprechend unterschiedlichen LCSTs von 25, 32, 33, 42 und 56 °C verwendet. Die Blockcopolymere wurden mittels aufeinanderfolgender reversibler Additions-Fragmentierungs-Ketten{\"u}bertragungspolymerisation (RAFT Polymerisation) hergestellt, um Polymere mit linearer, doppelt hydrophober sowie symmetrischer Quasi Miktoarm Architektur zu erhalten. Dabei wurden wohldefinierte Blockgr{\"o}ßen, Endgruppen und enge Molmassenverteilungen (Ɖ ≤ 1.3) erzielt. F{\"u}r komplexere Architekturen, wie die doppelt thermoresponsive und die nicht symmetrische Quasi Miktoarm Architekturen, wurde RAFT mit Atomtransfer-Radikalpolymerisation (ATRP) oder Single Unit Monomer Insertion (SUMI), kombiniert. Die dabei erhaltenen Blockcopolymere hatten ebenfalls wohldefinierte Blockl{\"a}ngen, allerdings war die Molmassenverteilung generell breiter (Ɖ ≤ 1.8) und Endgruppen gingen zum Teil verloren, da komplexere Syntheseschritte n{\"o}tig waren. Das thermoresponsive Verhalten in w{\"a}ssriger L{\"o}sung wurde mittels Tr{\"u}bungspunktmessung und Dynamischer Lichtstreuung (DLS) untersucht. Unterhalb der Phasen{\"u}berganstemperatur waren die Polymere l{\"o}slich in Wasser und mizellare Strukturen waren in der DLS sichtbar. Oberhalb der Phasen{\"u}bergangstemperatur war das Aggregationsverhalten dann stark abh{\"a}ngig von der Architektur und der chemischen Struktur des thermoresponsiven Blocks. Thermoresponsive Bl{\"o}cke aus PNAP und PbMOEAm mit einer Blockl{\"a}nge von DPn = 40 zeigten keinen Tr{\"u}bungspunkt (CP) bis hin zu 80 °C, da durch den angebrachten hydrophilen PDMAm Block die bereits hohe LCST der entsprechenden Homopolymere bei den Blockcopolymeren weiter erh{\"o}ht wurde. Blockcopolymere mit PNiPAm, PDEAm und PNPAm hinggeen zeigten abh{\"a}ngig von der Architektur und Blockgr{\"o}ße unterschiedliche CP's. Oberhalb der CP's waren gr{\"o}ßere Aggregate vor allem f{\"u}r die Blockcopolymere mit PNiPAm und PDEAm sichtbar, wohingegen der Phasen{\"u}bergang f{\"u}r Blockcopolymere mit PNPAm stark abh{\"a}ngig von der jeweiligen Architektur war und entsprechend kleinere oder gr{\"o}ßere Aggregate zeigte. Um das Aggregationsverhalten besser zu verstehen, wurden Fluoreszenzstudien an PDMAm und PNiPAm Homo und Blockcopolymeren mit linearer Architektur durchgef{\"u}hrt, welche mit komplement{\"a}ren Fluoreszenzfarbstoffen an den entgegengesetzten Kettenenden funktionalisiert wurden. Das thermoresponsive Verhalten wurde dabei sowohl in Wasser als auch in {\"O}l-in-Wasser Mikroemulsion untersucht. Die Ergebnisse zeigten, dass das Blockcopolymer sich, {\"a}hnlich wie die anderen hergestellten Architekturen, bei niedrigen Temperaturen wie ein Polymertensid verh{\"a}lt. Dabei bilden die hydrophoben Stickergruppen den Kern und die hydrophilen Arme die Corona der Mizelle. Oberhalb des Phasen{\"u}bergangs des PNiPAm Blocks verhielten sich die Blockcopolymere allerdings wie assoziative Telechele mit zwei nicht symmetrischen hydrophoben Endgruppen, die sich untereinander nicht mischten. Daher bildeten die Blockcopolymere anstatt aggregierter „Blumen"-Mizellen gr{\"o}ßere, dynamische Aggregate. Diese sind einerseits {\"u}ber die urspr{\"u}nglichen Mizellkerne bestehend aus den hydrophoben Sticker als auch {\"u}ber Cluster der kollabierten thermoresponsiven Bl{\"o}cke miteinander verkn{\"u}pft. In Mikroemulsion ist diese Art der Netzwerkbildung noch st{\"a}rker ausgepr{\"a}gt.}, language = {en} } @phdthesis{Lood2021, author = {Lood, Kajsa}, title = {Stereoselective Construction of C-C Double Bonds via Olefin Metathesis: From Tethered Reactions to Water-Soluble Catalysts for Stereoretentive Metathesis}, doi = {10.25932/publishup-53914}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-539142}, school = {Universit{\"a}t Potsdam}, pages = {95}, year = {2021}, abstract = {Natural products have proved to be a major resource in the discovery and development of many pharmaceuticals that are in use today. There is a wide variety of biologically active natural products that contain conjugated polyenes or benzofuran structures. Therefore, new synthetic methods for the construction of such building blocks are of great interest to synthetic chemists. The recently developed one-pot tethered ring-closing metathesis approach allows for the formation of Z,E-dienoates in high stereoselectivity. The extension of this method with a Julia-Kocienski olefination protocol would allow for the formation of conjugated trienes in a stereoselective manner. This strategy was applied in the total synthesis of conjugated triene containing (+)-bretonin B. Additionally, investigations of cross metathesis using methyl substituted olefins were pursued. This methodology was applied, as a one-pot cross metathesis/ring-closing metathesis sequence, in the total synthesis of benzofuran containing 7-methoxywutaifuranal. Finally, the design and synthesis of a catalyst for stereoretentive metathesis in aqueous media was investigated.}, language = {en} } @phdthesis{Youk2022, author = {Youk, Sol}, title = {Molecular design of heteroatom-doped nanoporous carbons with controlled porosity and surface polarity for gas physisorption and energy storage}, doi = {10.25932/publishup-53909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-539098}, school = {Universit{\"a}t Potsdam}, pages = {145}, year = {2022}, abstract = {The world energy consumption has constantly increased every year due to economic development and population growth. This inevitably caused vast amount of CO2 emission, and the CO2 concentration in the atmosphere keeps increasing with economic growth. To reduce CO2 emission, various methods have been developed but there are still many bottlenecks to be solved. Solvents easily absorbing CO2 such as monoethanol-amine (MEA) and diethanolamine, for example, have limitations of solvent loss, amine degradation, vulnerability to heat and toxicity, and the high cost of regeneration which is especially caused due to chemisorption process. Though some of these drawbacks can be compensated through physisorption with zeolites and metal-organic frameworks (MOFs) by displaying significant adsorption selectivity and capacity even in ambient conditions, limitations for these materials still exist. Zeolites demand relatively high regeneration energy and have limited adsorption kinetics due to the exceptionally narrow pore structure. MOFs have low stability against heat and moisture and high manufacturing cost. Nanoporous carbons have recently received attention as an attractive functional porous material due to their unique properties. These materials are crucial in many applications of modern science and industry such as water and air purification, catalysis, gas separation, and energy storage/conversion due to their high chemical and thermal stability, and in particular electronic conductivity in combination with high specific surface areas. Nanoporous carbons can be used to adsorb environmental pollutants or small gas molecules such as CO2 and to power electrochemical energy storage devices such as batteries and fuel cells. In all fields, their pore structure or electrical properties can be modified depending on their purposes. This thesis provides an in-depth look at novel nanoporous carbons from the synthetic and the application point of view. The interplay between pore structure, atomic construction, and the adsorption properties of nanoporous carbon materials are investigated. Novel nanoporous carbon materials are synthesized by using simple precursor molecules containing heteroatoms through a facile templating method. The affinity, and in turn the adsorption capacity, of carbon materials toward polar gas molecules (CO2 and H2O) is enhanced by the modification of their chemical construction. It is also shown that these properties are important in electrochemical energy storage, here especially for supercapacitors with aqueous electrolytes which are basically based on the physisorption of ions on carbon surfaces. This shows that nanoporous carbons can be a "functional" material with specific physical or chemical interactions with guest species just like zeolites and MOFs. The synthesis of sp2-conjugated materials with high heteroatom content from a mixture of citrazinic acid and melamine in which heteroatoms are already bonded in specific motives is illustrated. By controlling the removal procedure of the salt-template and the condensation temperature, the role of salts in the formation of porosity and as coordination sites for the stabilization of heteroatoms is proven. A high amount of nitrogen of up to 20 wt. \%, oxygen contents of up to 19 wt.\%, and a high CO2/N2 selectivity with maximum CO2 uptake at 273 K of 5.31 mmol g-1 are achieved. Besides, the further controlled thermal condensation of precursor molecules and advanced functional properties on applications of the synthesized porous carbons are described. The materials have different porosity and atomic construction exhibiting a high nitrogen content up to 25 wt. \% as well as a high porosity with a specific surface area of more than 1800 m2 g-1, and a high performance in selective CO2 gas adsorption of 62.7. These pore structure as well as properties of surface affect to water adsorption with a remarkably high Qst of over 100 kJ mol-1 even higher than that of zeolites or CaCl2 well known as adsorbents. In addition to that, the pore structure of HAT-CN-derived carbon materials during condensation in vacuum is fundamentally understood which is essential to maximize the utilization of porous system in materials showing significant difference in their pore volume of 0.5 cm3 g-1 and 0.25 cm3 g-1 without and with vacuum, respectively. The molecular designs of heteroatom containing porous carbon derived from abundant and simple molecules are introduced in the presented thesis. Abundant precursors that already containing high amount of nitrogen or oxygen are beneficial to achieve enhanced interaction with adsorptives. The physical and chemical properties of these heteroatom-doped porous carbons are affected by mainly two parameters, that is, the porosity from the pore structure and the polarity from the atomic composition on the surface. In other words, controlling the porosity as well as the polarity of the carbon materials is studied to understand interactions with different guest species which is a fundamental knowledge for the utilization on various applications.}, language = {en} } @phdthesis{Sand2021, author = {Sand, Patrick}, title = {{\"U}bergangsmetallkatalysierte Funktionalisierungsreaktionen an Vinylsulfonylverbindungen}, doi = {10.25932/publishup-53687}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-536879}, school = {Universit{\"a}t Potsdam}, pages = {ix, 169}, year = {2021}, abstract = {Innerhalb dieser Arbeit erfolgte die erstmalige systematische Untersuchung von Vinylsulfons{\"a}ureethylester (1a), Phenylvinylsulfon (1b), N-Benzyl-N-methylethensulfonamid (1c) in der FUJIWARA-MORITANI Reaktion (alternativ als DHR bezeichnet). Bei dieser {\"u}bergangsmetallkatalysierten Reaktion erfolgt der Aufbau einer neuen C-C-Bindung unter der doppelten Aktivierung einer C-H-Bindung. Somit kann ein atom{\"o}konomischer Aufbau von Molek{\"u}len realisiert werden, da keine Beiprodukte in Form von Salzen entstehen. Als aromatischer Reaktant wurden Acetanilide (2) verwendet, damit eine regiospezifische Kupplung durch die katalysatordirigierende Acetamid-Gruppe (CDG) erfolgt. F{\"u}r die Pd-katalysierte DHR wurde eine umfangreiche Optimierung durchgef{\"u}hrt und anschließend konnten neun verschieden, substituierte 2 mit 1a und sieben verschieden, substituierte 2 mit 1b funktionalisiert werden. Da eine Reaktion mit 1c ausblieb, erfolgte ein Wechsel auf eine Ru-katalysierte Methode f{\"u}r die DHR. Mit dieser Methode konnte 1c mit Acetaniliden funktionalisiert werden und das Spektrum der verwendeten 2, in Form von deaktivierenden Substituenten erweitert werden. Im Anschluss wurden die sulfalkenylierten Acetanilide in weiterf{\"u}hrenden Reaktionen untersucht. Hierf{\"u}r wurde eine Reaktionssequenz bestehend aus einer DeacetylierungDiazotierung-Kupplungsreaktion verwendet, um die Acetamid-Gruppe in eine Abgangsgruppe zu {\"u}berf{\"u}hren und danach in einer MATSUDA-HECK Reaktion zu kuppeln. Mit dieser Methode konnten mehrere 1,2-Dialkenylbenzole erhalten werden und die CDG ein weiteres Mal genutzt werden. Neben der {\"U}berf{\"u}hrung der CDG in eine Abgangsgruppe konnte diese auch in die Synthese verschiedener Heterozyklen integriert werden. Daf{\"u}r erfolgte zun{\"a}chst eine 1,3-Zykloaddition durch deprotonierten Tosylmethylisocanid an der elektronenarmen Sulfalkenylgruppe zur Synthese von Pyrrolen. Anschließend erfolgte eine Kupplung der PyrrolFunktion und der CDG durch Zyklokondensation, wodurch Quinoline dargestellt wurden. Durch diese Synthesen konnten Schwefelanaloga des Naturstoffes Marinoquionolin A erhalten werden. Ein weitere {\"u}bergangsmetallkatalysierte C-H-Aktivierungsreaktion, die MATSUDA-HECK Reaktion, wurde genutzt, um 1b zu mit verschieden, subtituierten Diazoniumsalzen zu arylieren. Hier konnten zahlreichen Styrenylsulfone erhalten werden. Der erfolgreiche Einsatz der Vinylsulfonylverbindungen in der Kreuzmetathese konnte innerhalb dieser Arbeit nicht erreicht werden. Daher erfolgte die Synthese verschiedener dialkenylierter Sulfonamide. Hierf{\"u}r wurde die Kettenl{\"a}nge der Alkenyl-Gruppe am Schwefel zwischen 2-3 und am Stickstoff zwischen 3-4 variiert. Der Einsatz der dialkenylierten Sulfonamide erfolgte in den zuvor untersuchten C-H-Aktivierungsmethoden. N-Allyl-N-phenylethensulfonamid (3) konnte erfolgreich in der DHR und HECK Reaktion funktionalisiert werden. Hierbei erfolgte eine methodenspezifische Kupplung in Abh{\"a}ngigkeit von der Elektronendichte der entsprechenden Alkenyl-Gruppe. Die DHR f{\"u}hrte zur selektiven Arylierung der Vinyl-Gruppe und die HECK Reaktion zur Arylierung an der Allyl-Gruppe. Gemischte Produkte wurden nicht erhalten. F{\"u}r die weiteren Diolefine wurde komplexe Produktgemische erhalten. Des Weiteren wurden die Diolefine in der Ringschlussmetathese untersucht und die entsprechenden Sultame in sehr guten Ausbeuten erhalten. Die Verwendung der Sultame in der C-H-Aktivierung war erfolglos. Es wird vermutet, dass f{\"u}r diese zweifachsubstituierten Sulfonamide die vorhandenen Reaktionsbedingungen optimiert werden m{\"u}ssen. Abschließend wurden verschiedene, enantiomerenreine Olefine ausgehend von Levoglucosenon dargestellt. Hierf{\"u}r wurde Levoglucosenon zun{\"a}chst mit einem Allyl- und 3-Butenylgrignard Reagenz umgesetzt. Die entsprechenden Produkte wurden in moderaten Ausbeuten erhalten. Eine weitere Methode begann mit der Reduktion von Levoglucosenon zum Levoglucosenol. Dieser Alkohol wurde mit Allylbromid erfolgreich verethert. Neben der Untersuchungen zur Ethersynthese, erfolgte die Veresterung von Levoglucosenol mit verschiedenen Sulfonylchloriden zu den entsprechenden Sulfons{\"a}ureestern. Diese Olefine wurden in einer Dominometathesereaktion untersucht. Ausgehend vom Allyllevoglucosenylether erfolgte die Darstellung eines Dihydrofurans.}, language = {de} } @phdthesis{Kossmann2021, author = {Kossmann, Janina}, title = {Controlled condensation to functional materials - synergetic effect of nitrogen content and pore structure}, doi = {10.25932/publishup-53693}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-536935}, school = {Universit{\"a}t Potsdam}, pages = {vi, 148}, year = {2021}, abstract = {The development and optimization of carbonaceous materials is of great interest for several applications including gas sorption, electrochemical storage and conversion, or heterogeneous catalysis. In this thesis, the exploration and optimization of nitrogen containing carbonaceous materials by direct condensation of smart chosen, molecular precursors will be presented. As suggested with the concept of noble carbons, the choice of a stable, nitrogen-containing precursor will lead to an even more stable, nitrogen doped carbonaceous material with a controlled structure and electronic properties. Molecules fulfilling this requirement are for example nucleobases. The direct condensation of nucleobases leads to highly nitrogen containing carbonaceous materials without any further post or pretreatment. By using salt melt templating, pore structure adjustment is possible without the use of hazardous or toxic reagents and the template can be reused. Using these simple tools, the synergetic effect of the pore structure and nitrogen content of the materials can be explored. Within this thesis, the influence of the condensation parameters will be correlated to the structure and performance of the materials. First, the influence of the condensation temperature to the porosity and nitrogen content of guanine will be discussed and the exploration of highly CO2 selective structural pores in C1N1 materials will be shown. Further tuning the pore structure of the materials by salt melt templating will be then explored, the potential of the prepared materials as heterogeneous catalysts and their basic catalytic strength will be correlated to their nitrogen content and pore morphology. A similar approach is used to explore the water sorption behavior of uric acid derived carbonaceous materials as potential sorbents for heat transformation applications. Changes in maximum water uptake and hydrophilicity of the prepared materials will be correlated to the nitrogen content and pore architecture. Due to the high thermal stability, porosity, and nitrogen content of ionic liquid derived nitrogen doped carbonaceous materials, a simple impregnation and calcination route can be conducted to obtain copper nano cluster decorated nitrogen-doped carbonaceous materials. The activity as catalyst for the oxygen reduction reaction of the obtained materials will be shown and structure performance relations are discussed. In conclusion, the versatility of nitrogen doped carbonaceous materials with a nitrogen to carbon ratio of up to one will be shown. The possibility to tune the pore structure as well as the nitrogen content by using a simple procedure including salt melt templating as well as the use of molecular precursors and their effect on the performance will be discussed.}, language = {en} } @phdthesis{Brandi2022, author = {Brandi, Francesco}, title = {Integrated biorefinery in continuous flow systems using sustainable heterogeneous catalysts}, doi = {10.25932/publishup-53766}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-537660}, school = {Universit{\"a}t Potsdam}, pages = {xii, 201}, year = {2022}, abstract = {The negative impact of crude oil on the environment has led to a necessary transition toward alternative, renewable, and sustainable resources. In this regard, lignocellulosic biomass (LCB) is a promising renewable and sustainable alternative to crude oil for the production of fine chemicals and fuels in a so-called biorefinery process. LCB is composed of polysaccharides (cellulose and hemicellulose), as well as aromatics (lignin). The development of a sustainable and economically advantageous biorefinery depends on the complete and efficient valorization of all components. Therefore, in the new generation of biorefinery, the so-called biorefinery of type III, the LCB feedstocks are selectively deconstructed and catalytically transformed into platform chemicals. For this purpose, the development of highly stable and efficient catalysts is crucial for progress toward viability in biorefinery. Furthermore, a modern and integrated biorefinery relies on process and reactor design, toward more efficient and cost-effective methodologies that minimize waste. In this context, the usage of continuous flow systems has the potential to provide safe, sustainable, and innovative transformations with simple process integration and scalability for biorefinery schemes. This thesis addresses three main challenges for future biorefinery: catalyst synthesis, waste feedstock valorization, and usage of continuous flow technology. Firstly, a cheap, scalable, and sustainable approach is presented for the synthesis of an efficient and stable 35 wt.-\% Ni catalyst on highly porous nitrogen-doped carbon support (35Ni/NDC) in pellet shape. Initially, the performance of this catalyst was evaluated for the aqueous phase hydrogenation of LCB-derived compounds such as glucose, xylose, and vanillin in continuous flow systems. The 35Ni/NDC catalyst exhibited high catalytic performances in three tested hydrogenation reactions, i.e., sorbitol, xylitol, and 2-methoxy-4-methylphenol with yields of 82 mol\%, 62 mol\%, and 100 mol\% respectively. In addition, the 35Ni/NDC catalyst exhibited remarkable stability over a long time on stream in continuous flow (40 h). Furthermore, the 35Ni/NDC catalyst was combined with commercially available Beta zeolite in a dual-column integrated process for isosorbide production from glucose (yield 83 mol\%). Finally, 35Ni/NDC was applied for the valorization of industrial waste products, namely sodium lignosulfonate (LS) and beech wood sawdust (BWS) in continuous flow systems. The LS depolymerization was conducted combining solvothermal fragmentation of water/alcohol mixtures (i.e.,methanol/water and ethanol/water) with catalytic hydrogenolysis/hydrogenation (SHF). The depolymerization was found to occur thermally in absence of catalyst with a tunable molecular weight according to temperature. Furthermore, the SHF generated an optimized cumulative yield of lignin-derived phenolic monomers of 42 mg gLS-1. Similarly, a solvothermal and reductive catalytic fragmentation (SF-RCF) of BWS was conducted using MeOH and MeTHF as a solvent. In this case, the optimized total lignin-derived phenolic monomers yield was found of 247 mg gKL-1.}, language = {en} } @phdthesis{Haubitz2021, author = {Haubitz, Toni}, title = {Transient absorption spectroscopy}, doi = {10.25932/publishup-53509}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-535092}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 176}, year = {2021}, abstract = {The optical properties of chromophores, especially organic dyes and optically active inorganic molecules, are determined by their chemical structures, surrounding media, and excited state behaviors. The classical optical go-to techniques for spectroscopic investigations are absorption and luminescence spectroscopy. While both techniques are powerful and easy to apply spectroscopic methods, the limited time resolution of luminescence spectroscopy and its reliance on luminescent properties can make its application, in certain cases, complex, or even impossible. This can be the case when the investigated molecules do not luminesce anymore due to quenching effects, or when they were never luminescent in the first place. In those cases, transient absorption spectroscopy is an excellent and much more sophisticated technique to investigate such systems. This pump-probe laser-spectroscopic method is excellent for mechanistic investigations of luminescence quenching phenomena and photoreactions. This is due to its extremely high time resolution in the femto- and picosecond ranges, where many intermediate or transient species of a reaction can be identified and their kinetic evolution can be observed. Furthermore, it does not rely on the samples being luminescent, due to the active sample probing after excitation. In this work it is shown, that with transient absorption spectroscopy it was possible to identify the luminescence quenching mechanisms and thus luminescence quantum yield losses of the organic dye classes O4-DBD, S4-DBD, and pyridylanthracenes. Hence, the population of their triplet states could be identified as the competitive mechanism to their luminescence. While the good luminophores O4-DBD showed minor losses, the S4-DBD dye luminescence was almost entirely quenched by this process. However, for pyridylanthracenes, this phenomenon is present in both the protonated and unprotonated forms and moderately effects the luminescence quantum yield. Also, the majority of the quenching losses in the protonated forms are caused by additional non-radiative processes introduced by the protonation of the pyridyl rings. Furthermore, transient absorption spectroscopy can be applied to investigate the quenching mechanisms of uranyl(VI) luminescence by chloride and bromide. The reduction of the halides by excited uranyl(VI) leads to the formation of dihalide radicals X^(·-2). This excited state redox process is thus identified as the quenching mechanism for both halides, and this process, being diffusion-limited, can be suppressed by cryogenically freezing the samples or by observing these interactions in media with a lower dielectric constant, such as ACN and acetone.}, language = {en} } @phdthesis{Kluge2021, author = {Kluge, Steven}, title = {Integration anorganischer F{\"u}llstoffe in Polysulfonmembranen und Auswirkungen auf die Gastransporteigenschaften}, doi = {10.25932/publishup-53270}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-532700}, school = {Universit{\"a}t Potsdam}, pages = {110}, year = {2021}, abstract = {In der vorliegenden Arbeit wird die Herstellung und Charakterisierung von Mixed-Matrix-Membranen (MMM) f{\"u}r die Gastrennung thematisiert. Dazu wurden verschiedene F{\"u}llstoffe genutzt, um in Verbindung mit dem Membranmaterial Polysulfon MMMs herzustellen. Als F{\"u}llstoffe wurden 3 aktive und 2 passive F{\"u}llstoffe verwendet. Die aktiven F{\"u}llstoffe besaßen Poren{\"o}ffnungen, die in der Lage sind Gase in Abh{\"a}ngigkeit der Molek{\"u}lgr{\"o}ße zu trennen. Daraus folgt ein h{\"o}herer idealer Trennfaktor f{\"u}r bestimmte Gaspaare als in Polysulfon selbst. Aufgrund der durch die Poren gebildeten permanenten Kan{\"a}le in den aktiven F{\"u}llstoffen ergibt sich ein schnellerer Gastransport (Permeabilit{\"a}t) als in Polysulfon. Es handelte sich bei den aktiven F{\"u}llstoffen um den Zeolith SAPO-34 und 2 Chargen eines Zeolitic Imidazolate Framework (ZIF) ZIF-8. Die beiden Chargen ZIF-8 unterschieden sich in ihrer spezifischen Oberfl{\"a}che, was diesen Einfluss speziell in die Untersuchungen zum Gastransport einbeziehen sollte. Bei den passiven F{\"u}llstoffen handelte es sich um ein aminofunktionalisiertes Kieselgel und unpor{\"o}se (dichte) Glask{\"u}gelchen. Das Kieselgel besaß Poren, die zu groß waren, um Gase effektiv zu trennen. Die Glask{\"u}gelchen konnten keine Gastrennung erm{\"o}glichen, da sie keine Poren besaßen. Aus der Literatur ist bekannt, dass die Einbettung von F{\"u}llstoffen oft zu Defekten in MMMs f{\"u}hrt. Ein Ziel dieser Arbeit war es daher die Einbettung zu optimieren. Weiterhin sollte der Gastransport in MMMs dieser Arbeit mit dem in einer unbeladenen Polysulfonmembran verglichen werden. Aufgrund des selektiveren Trennverhaltens der aktiven F{\"u}llstoffe im Vergleich zum Membranmaterial, sollte mit der Einbettung aktiver F{\"u}llstoffe die Trennleistung der MMMs mit steigender F{\"u}llstoffbeladung immer weiter verbessert werden. Um die Eigenschaften der MMMs zu untersuchen, wurden diese mittels Rasterelektronenmikroskop (REM), Gaspermeationsmessungen (GP) und Thermogravimetrischer Analyse gekoppelt mit Massenspektrometrie (TGA-MS) charakterisiert. Untersuchungen am REM konnten eine Verbesserung der Einbettung zeigen, wenn ein polymerer Haftvermittler verwendet wurde. Verglichen wurde die optimierte Einbettung mit der Einbettung ohne Haftvermittler und Ergebnissen aus der Literatur, in der die Verwendung verschiedener Silane als Haftvermittler beschrieben wurde. Trotz der verbesserten Einbettung konnte lediglich bei geringen Beladungen an F{\"u}llstoff (10 und 20 Ma-\% bezogen auf das Membranmaterial) eine geringe Steigerung des idealen Trennfaktors in den MMMs gegen{\"u}ber der unbeladenen Polysulfonmembranen beobachtet werden. Bei h{\"o}heren F{\"u}llstoffbeladungen (30, 40 und 50 Ma-\%) war ein deutlicher Anstieg der Permeabilit{\"a}t bei stark sinkendem idealen Trennfaktor zu beobachten. Mit Hilfe von TGA-MS Messungen konnte dar{\"u}ber hinaus festgestellt werden, dass der verwendete Zeolith SAPO-34 durch Wassermolek{\"u}le blockierte Poren{\"o}ffnungen besaß. Das verhinderte den Gastransport im F{\"u}llstoff, wodurch die Trennleistung des F{\"u}llstoffes nicht ausgenutzt werden konnte. Die F{\"u}llstoffe ZIF-8 (chargenunabh{\"a}ngig) und aminofunktionalisiertes Kieselgel wiesen keine blockierten Poren auf. Dennoch zeigte sich in diesen MMMs keine Verbesserung der Gastrenn- oder Gastransporteigenschaften. MMMs mit dichten Glask{\"u}gelchen als F{\"u}llstoff zeigten dasselbe Gastrenn- und Gastransportverhalten, wie alle MMMs mit den zuvor genannten F{\"u}llstoffen. In dieser Arbeit konnte, trotz optimierter Einbettung anorganischer F{\"u}llstoffe, f{\"u}r MMMs keine Verbesserung der Gastrenn- oder Gastransporteigenschaften nachgewiesen werden. Vielmehr wurde ein Einfluss der F{\"u}llstoffmenge auf die Gastransporteigenschaften in MMMs festgestellt. Die {\"A}nderungen der MMMs gegen{\"u}ber Polysulfon stammen von den Folgen der Einbettung von F{\"u}llstoffen in das Matrixpolymer. Durch die Einbettung werden die Eigenschaften des Matrixpolymers {\"a}ndern, sodass auch der Gastransport beeinflusst wird. Des Weiteren wurde dokumentiert, dass in Abh{\"a}ngigkeit der F{\"u}llstoffbeladung die entstehende Membranstruktur beeinflusst wird. Die Beeinflussung war dabei unabh{\"a}ngig von der F{\"u}llstoffart. Es wurde eine Korrelation zwischen F{\"u}llstoffmenge und ver{\"a}nderter Membranstruktur gefunden.}, language = {de} } @phdthesis{ChandrakanthShetty2021, author = {Chandrakanth Shetty, Sunidhi}, title = {Directed chemical communication in artificial eukaryotic cells}, doi = {10.25932/publishup-53364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-533642}, school = {Universit{\"a}t Potsdam}, year = {2021}, abstract = {Eukaryotic cells can be regarded as complex microreactors capable of performing various biochemical reactions in parallel which are necessary to sustain life. An essential prerequisite for these complex metabolic reactions to occur is the evolution of lipid membrane-bound organelles enabling compartmental- ization of reactions and biomolecules. This allows for a spatiotemporal control over the metabolic reactions within the cellular system. Intracellular organi- zation arising due to compartmentalization is a key feature of all living cells and has inspired synthetic biologists to engineer such systems with bottom-up approaches. Artificial cells provide an ideal platform to isolate and study specific re- actions without the interference from the complex network of biomolecules present in biological cells. To mimic the hierarchical architecture of eukaryotic cells, multi-compartment assemblies with nested liposomal structures also re- ferred to as multi-vesicular vesicles (MVVs) have been widely adopted. Most of the previously reported multi-compartment systems adopt bulk method- ologies which suffer from low yield and poor control over size. Microfluidic strategies help circumvent these issues and facilitate a high-throughput and robust technique to assemble MVVs of uniform size distribution. In this thesis, firstly, the bulk methodologies are explored to build MVVs and implement a synthetic signalling cascade. Next, a polydimethylsiloxane (PDMS)-based microfluidic platform is introduced to build MVVs and the significance of PEGylated lipids for the successful encapsulation of inner com- partments to generate stable multi-compartment systems is highlighted. Next, a novel two-inlet channel PDMS-based microfluidic device to create MVVs encompassing a three-step enzymatic reaction cascade is presented. A directed reaction pathway comprising of the enzymes α-glucosidase (α-Glc), glucose oxidase (GOx), and horseradish peroxidase (HRP) spanning across three compartments via reconstitution of size-selective membrane proteins is described. Furthermore, owing to the monodispersity of our MVVs due to microfluidic strategies, this platform is employed to study the effect of com- partmentalization on reaction kinetics. Further integration of cell-free expression module into the MVVs would allow for gene-mediated signal transduction within artificial eukaryotic cells. Therefore, the chemically inducible cell-free expression of a membrane protein alpha-hemolysin and its further reconstitution into liposomes is carried out. In conclusion, the present thesis aims to build artificial eukaryotic cells to achieve size-selective chemical communication that also show potential for applications as micro reactors and as vehicles for drug delivery.}, language = {en} } @phdthesis{Bagdahn2021, author = {Bagdahn, Christian}, title = {Synthese und Charakterisierung von Polymerionogelen basierend auf ionischen Fl{\"u}ssigkeiten und Polymethylmethacrylat}, doi = {10.25932/publishup-53287}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-532874}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2021}, abstract = {Zentrales Element dieser Arbeit ist die Synthese und Charakterisierung praktisch nutzbarer Ionogele. Die Basis der Polymerionogele bildet das Modellpolymer Polymethylmethacrylat. Als Additive kommen ionische Fl{\"u}ssigkeiten zum Einsatz, deren Grundlage Derivate des vielfach verwendeten Imidazoliumkations sind. Die Eigenschaften der eingebetteten ionischen Fl{\"u}ssigkeiten sind f{\"u}r die Ionogele funktionsgebend. Die Funktionalit{\"a}t der jeweiligen Gele und damit der Transfer der Eigenschaften von ionischen Fl{\"u}ssigkeiten auf die Ionogele wurde in der vorliegenden Arbeit mittels zahlreicher Charakterisierungstechniken {\"u}berpr{\"u}ft und best{\"a}tigt. In dieser Arbeit wurden durch Ionogelbildung makroskopische Ionogelobjekte in Form von Folien und Vliesen erzeugt. Dabei kamen das Filmgießen und das Elektrospinnen als Methoden zur Erzeugung dieser Folien und Vliese zum Einsatz, woraus jeweils ein Modellsystem resultiert. Dadurch wird die vorliegende Arbeit in die Themenkomplexe „elektrisch halbleitende Ionogelfolien" und „antimikrobiell aktive Ionogelvliese" gegliedert. Der Einsatz von triiodidhaltigen ionischen Fl{\"u}ssigkeiten und einer Polymermatrix in einem diskontinuierlichen Gießprozess resultiert in elektrisch halbleitenden Ionogelfolien. Die flexiblen und transparenten Folien k{\"o}nnen Mittelpunkt zahlreicher neuer Anwendungsfelder im Bereich flexibler Elektronik sein. Das Elektrospinnen von Polymethylmethacrylat mit einer ionischen Fl{\"u}ssigkeit f{\"u}hrte zu einem homogen Ionogelvlies, welches ein Modell f{\"u}r die {\"U}bertragung antimikrobiell aktiver Eigenschaften ionischer Fl{\"u}ssigkeiten auf por{\"o}se Strukturen zur Filtration darstellt. Gleichzeitig ist es das erste Beispiel f{\"u}r ein kupferchloridhaltiges Ionogel. Ionogele sind attraktive Materialien mit zahlreichen Anwendungsm{\"o}glichkeiten. Mit der vorliegenden Arbeit wird das Spektrum der Ionogele um ein elektrisch halbleitendes und ein antimikrobiell aktives Ionogel erweitert. Gleichzeitig wurden durch diese Arbeit der Gruppe der ionischen Fl{\"u}ssigkeiten drei Beispiele f{\"u}r elektrisch halbleitende ionische Fl{\"u}ssigkeiten sowie zahlreiche kupfer(II)chloridbasierte ionische Fl{\"u}ssigkeiten hinzugef{\"u}gt.}, language = {de} } @phdthesis{Altabal2021, author = {Altabal, Osamah}, title = {Design and fabrication of geometry-assisted on-demand dosing systems}, doi = {10.25932/publishup-53244}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-532441}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 122}, year = {2021}, abstract = {The controlled dosage of substances from a device to its environment, such as a tissue or an organ in medical applications or a reactor, room, machinery or ecosystem in technical, should ideally match the requirements of the applications, e.g. in terms of the time point at which the cargo is released. On-demand dosage systems may enable such a desired release pattern, if the device contain suitable features that can translate external signals into a release function. This study is motivated by the opportunities arising from microsystems capable of an on-demand release and the contributions that geometrical design may have in realizing such features. The goals of this work included the design, fabrication, characterization and experimental proof-of-concept of geometry-assisted triggerable dosing effect (a) with a sequential dosing release and (b) in a self-sufficient dosage system. Structure-function relationships were addressed on the molecular, morphological and, with a particular attention, the device design level, which is on the micrometer scale. Models and/or computational tools were used to screen the parameter space and provide guidance for experiments.}, language = {en} } @phdthesis{Kirchhofer2021, author = {Kirchhofer, Tabea}, title = {The development of multi - compartmentalised systems for the directed organisation of artificial cells}, doi = {10.25932/publishup-52842}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-528428}, school = {Universit{\"a}t Potsdam}, pages = {II, 126}, year = {2021}, abstract = {Membrane contact sites are of particular interest in the field of synthetic biology and biophysics. They are involved in a great variety of cellular functions. They form in between two cellular organelles or an organelle and the plasma membrane in order to establish a communication path for molecule transport or signal transmission. The development of an artificial membrane system which can mimic membrane contact sites using bottom up synthetic biology was the goal of this research study. For this, a multi - compartmentalised giant unilamellar vesicle (GUV) system was created with the membrane of the outer vesicle mimicking the plasma membrane and the inner GUVs posing as cellular organelles. In the following steps, three different strategies were used to achieve an internal membrane - membrane adhesion.}, language = {en} } @misc{SchneiderFritzschePuciulMalinowskaetal.2020, author = {Schneider, Matthias and Fritzsche, Nora and Puciul-Malinowska, Agnieszka and Balis, Andrzej and Mostafa, Amr and Bald, Ilko and Zapotoczny, Szczepan and Taubert, Andreas}, title = {Surface etching of 3D printed poly(lactic acid) with NaOH: a systematic approach}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-52508}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525088}, pages = {18}, year = {2020}, abstract = {The article describes a systematic investigation of the effects of an aqueous NaOH treatment of 3D printed poly(lactic acid) (PLA) scaffolds for surface activation. The PLA surface undergoes several morphology changes and after an initial surface roughening, the surface becomes smoother again before the material dissolves. Erosion rates and surface morphologies can be controlled by the treatment. At the same time, the bulk mechanical properties of the treated materials remain unaltered. This indicates that NaOH treatment of 3D printed PLA scaffolds is a simple, yet viable strategy for surface activation without compromising the mechanical stability of PLA scaffolds.}, language = {en} } @misc{BreternitzLehmannBarnettetal.2019, author = {Breternitz, Joachim and Lehmann, Frederike and Barnett, Sarah A. and Nowell, Harriott and Schorr, Susan}, title = {Zur Rolle der Iodid-Methylammonium-Interaktion in der Ferroelektrizit{\"a}t in CH3NH3PbI3}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.1002/ange.201910599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525674}, pages = {7}, year = {2019}, abstract = {Ihre außergew{\"o}hnlich hohen Konversionseffizienzen von {\"u}ber 20 \% und die einfache Zellherstellung machen Hybridperowskite zu heißen Kandidaten f{\"u}r alternative Solarzellenmaterialien. CH3NH3PbI3 als Archetyp dieser Materialklasse besitzt außergew{\"o}hnliche Eigenschaften wie eine sehr effiziente Umwandlung von Solarenergie, wobei besonders Ferroelektrizit{\"a}t als m{\"o}gliche Erkl{\"a}rung in den Fokus ger{\"u}ckt ist. Diese erfordert allerdings eine nicht-zentrosymmetrische Kristallstruktur als notwendige Voraussetzung. Wir stellen hier eine Erkl{\"a}rung des Symmetriebruchs in diesem Material auf kristallographischem, d. h. fernordnungs-basiertem, Wege vor. W{\"a}hrend das Molek{\"u}lkation CH3NH3+ intrinsisch polar ist, ist es extrem fehlgeordnet und kann deshalb nicht die einzige Erkl{\"a}rung darstellen. Es verzerrt allerdings das umgebende Kristallgitter und ruft dadurch eine Verschiebung der Iod-Atome von den zentrosymmetrischen Positionen hervor.}, language = {de} } @misc{BreternitzLehmannBarnettetal.2019, author = {Breternitz, Joachim and Lehmann, Frederike and Barnett, Sarah A. and Nowell, Harriott and Schorr, Susan}, title = {Role of the Iodide-methylammonium interaction in the ferroelectricity of CH3NH3PbI3}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51822}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518227}, pages = {7}, year = {2019}, abstract = {Excellent conversion efficiencies of over 20\% and facile cell production have placed hybrid perovskites at the forefront of novel solar cell materials, with CH3NH3PbI3 being an archetypal compound. The question why CH3NH3PbI3 has such extraordinary characteristics, particularly a very efficient power conversion from absorbed light to electrical power, is hotly debated, with ferroelectricity being a promising candidate. This does, however, require the crystal structure to be non-centrosymmetric and we herein present crystallographic evidence as to how the symmetry breaking occurs on a crystallographic and, therefore, long-range level. Although the molecular cation CH3NH3+ is intrinsically polar, it is heavily disordered and this cannot be the sole reason for the ferroelectricity. We show that it, nonetheless, plays an important role, as it distorts the neighboring iodide positions from their centrosymmetric positions.}, language = {en} } @phdthesis{Dambowsky2021, author = {Dambowsky, Ina}, title = {Bioinspirierte Komposite - Strukturbildung durch Verkleben von Nano- oder Mesokristallen mit funktionalisierten Poly(2-oxazolin)en}, doi = {10.25932/publishup-52367}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523671}, school = {Universit{\"a}t Potsdam}, pages = {XII, 220}, year = {2021}, abstract = {Die herausragenden mechanischen Eigenschaften nat{\"u}rlicher anorganisch-organischer Kompositmaterialien wie Knochen oder Muschelschalen entspringen ihrer hierarchischen Struktur, die von der nano- bis hinauf zur makroskopischen Ebene reicht, und einer kontrollierten Verbindung entlang der Grenzfl{\"a}chen der anorganischen und organischen Komponenten. Ausgehend von diesen Schl{\"u}sselprinzipien des biologischen Materialdesigns wurden in dieser Arbeit zwei Konzepte f{\"u}r die bioinspirierte Strukturbildung von Kompositen untersucht, die auf dem Verkleben von Nano- oder Mesokristallen mit funktionalisierten Poly(2-oxazolin)-Blockcopolymeren beruhen sowie deren Potenzial zur Herstellung bioinspirierter selbstorganisierter hierarchischer anorganisch-organischer Verbundstrukturen ohne {\"a}ußere Kr{\"a}fte beleuchtet. Die Konzepte unterschieden sich in den verwendeten anorganischen Partikeln und in der Art der Strukturbildung. {\"U}ber einen modularen Ansatz aus Polymersynthese und polymeranaloger Thiol-En-Funktionalisierung wurde erfolgreich eine Bibliothek von Poly(2-oxazolin)en mit unterschiedlichen Funktionalit{\"a}ten erstellt. Die Blockcopolymere bestehen aus einem kurzen partikelaffinen "Klebeblock", der aus Thiol-En-funktionalisiertem Poly(2-(3-butenyl)-2-oxazolin) besteht, und einem langen wasserl{\"o}slichen, strukturbildenden Block, der aus thermoresponsivem und kristallisierbarem Poly(2-isopropyl-2-oxazolin) besteht und hierarchische Morphologien ausbildet. Verschiedene analytische Untersuchungen wie Turbidimetrie, DLS, DSC, SEM oder XRD machten das thermoresponsive bzw. das Kristallisationsverhalten der Blockcopolymere in Abh{\"a}ngigkeit vom eingef{\"u}hrten Klebeblock zug{\"a}nglich. Es zeigte sich, dass diese Polymere ein komplexes temperatur- und pH-abh{\"a}ngiges Tr{\"u}bungsverhalten aufweisen. Hinsichtlich der Kristallisation {\"a}nderte der Klebeblock nicht die nanoskopische Kristallstruktur; er beeinflusste jedoch die Kristallisationszeit, den Kristallisationsgrad und die hierarchische Morphologie. Dieses Ergebnis wurde auf das unterschiedliche Aggregationsverhalten der Polymere in Wasser zur{\"u}ckgef{\"u}hrt. F{\"u}r die Herstellung von Kompositen nutzte Konzept 1 mikrometergroße Kupferoxalat-Mesokristalle, die eine innere Nanostruktur aufweisen. Die Strukturbildung {\"u}ber den anorganischen Teil wurde durch das Verkleben und Anordnen dieser Partikel erstrebt. Konzept 1 erm{\"o}glichte homogene freistehende stabile Kompositfilme mit einem hohen anorganischen Anteil. Die Partikel-Polymer-Kombination vereinte jedoch ung{\"u}nstige Eigenschaften in sich, d. h. ihre L{\"a}ngenskalen waren zu unterschiedlich, was die Selbstassemblierung der Partikel verhinderte. Aufgrund des geringen Aspektverh{\"a}ltnisses von Kupferoxalat blieb auch die gegenseitige Ausrichtung durch {\"a}ußere Kr{\"a}fte erfolglos. Im Ergebnis eignet sich das Kupferoxalat-Poly(2-oxazolin)-Modellsystem nicht f{\"u}r die Herstellung hierarchischer Kompositstrukturen. Im Gegensatz dazu verwendet Konzept 2 scheibenf{\"o}rmige Laponit®-Nanopartikel und kristallisierbare Blockcopolymere zur Strukturbildung {\"u}ber die organische Komponente durch polymervermittelte Selbstassemblierung. Komplement{\"a}re Analysemethoden (Zeta-Potenzial, DLS, SEM, XRD, DSC, TEM) zeigten sowohl eine kontrollierte Wechselwirkung zwischen den Komponenten in w{\"a}ssriger Umgebung als auch eine kontrollierte Strukturbildung, die in selbstassemblierten Nanokompositen resultiert, deren Struktur sich {\"u}ber mehrere L{\"a}ngenskalen erstreckt. Es wurde gezeigt, dass die negativ geladenen Klebebl{\"o}cke spezifisch und selektiv an den positiv geladenen R{\"a}ndern der Laponit®-Partikel binden und so Polymer-Laponit®-Nanohybridpartikel entstehen, die als Grundbausteine f{\"u}r die Kompositbildung dienen. Die Hybridpartikel sind bei Raumtemperatur elektrosterisch stabilisiert - sterisch durch ihre langen, mit Wasser wechselwirkenden Poly(2-isopropyl-2-oxazolin)-Bl{\"o}cke und elektrostatisch {\"u}ber die negativ geladenen Laponit®-Fl{\"a}chen. Im Ergebnis ließ sich Konzept 2 und damit die Strukturbildung {\"u}ber die organische Komponente erfolgreich umsetzten. Das Laponit®-Poly(2-oxazolin)-Modellsystem er{\"o}ffnete den Weg zu selbstassemblierten geschichteten quasi-hierarchischen Nanokompositstrukturen mit hohem anorganischen Anteil. Abh{\"a}ngig von der frei verf{\"u}gbaren Polymerkonzentration bei der Kompositbildung entstanden zwei unterschiedliche Komposit-Typen. Dar{\"u}ber hinaus entwarf die Arbeit einen Erkl{\"a}rungsansatz f{\"u}r den polymervermittelten Bildungsprozess der Komposit-Strukturen. Insgesamt legt diese Arbeit Struktur-Prozess-Eigenschafts-Beziehungen offen, um selbstassemblierte bioinspirierte Kompositstrukturen zu bilden und liefert neue Einsichten zu einer geeigneten Kombination an Komponenten und Herstellungsbedingungen, die eine kontrollierte selbstassemblierte Strukturbildung mithilfe funktionalisierter Poly(2-oxazolin)-Blockcopolymere erlauben.}, language = {de} } @misc{PerovicQinOschatz2020, author = {Perovic, Milena and Qin, Qing and Oschatz, Martin}, title = {From molecular precursors to nanoparticles}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51614}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516140}, pages = {23}, year = {2020}, abstract = {Nanoporous carbon materials (NCMs) provide the "function" of high specific surface area and thus have large interface area for interactions with surrounding species, which is of particular importance in applications related to adsorption processes. The strength and mechanism of adsorption depend on the pore architecture of the NCMs. In addition, chemical functionalization can be used to induce changes of electron density and/or electron density distribution in the pore walls, thus further modifying the interactions between carbons and guest species. Typical approaches for functionalization of nanoporous materials with regular atomic construction like porous silica, metal-organic frameworks, or zeolites, cannot be applied to NCMs due to their less defined local atomic construction and abundant defects. Therefore, synthetic strategies that offer a higher degree of control over the process of functionalization are needed. Synthetic approaches for covalent functionalization of NCMs, that is, for the incorporation of heteroatoms into the carbon backbone, are critically reviewed with a special focus on strategies following the concept "from molecules to materials." Approaches for coordinative functionalization with metallic species, and the functionalization by nanocomposite formation between pristine carbon materials and heteroatom-containing carbons, are introduced as well. Particular focus is given to the influences of these functionalizations in adsorption-related applications.}, language = {en} } @misc{SchoenemannKocAldredetal.2019, author = {Sch{\"o}nemann, Eric and Koc, Julian and Aldred, Nick and Clare, Anthony S. and Laschewsky, Andr{\´e} and Rosenhahn, Axel and Wischerhoff, Erik}, title = {Synthesis of novel sulfobetaine polymers with differing dipole orientations in their side chains, and their effects on the antifouling properties}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-52482}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524820}, pages = {9}, year = {2019}, abstract = {The impact of the orientation of zwitterionic groups, with respect to the polymer backbone, on the antifouling performance of thin hydrogel films made of polyzwitterions is explored. In an extension of the recent discussion about differences in the behavior of polymeric phosphatidylcholines and choline phosphates, a quasi-isomeric set of three poly(sulfobetaine methacrylate)s is designed for this purpose. The design is based on the established monomer 3-[N-2-(methacryloyloxy)ethyl-N,N-dimethyl]ammonio-propane-1-sulfonate and two novel sulfobetaine methacrylates, in which the positions of the cationic and the ionic groups relative to the polymerizable group, and thus also to the polymer backbone, are altered. The effect of the varied segmental dipole orientation on their water solubility, wetting behavior by water, and fouling resistance is compared. As model systems, the adsorption of the model proteins bovine serum albumin (BSA), fibrinogen, and lysozyme onto films of the various polyzwitterion surfaces is studied, as well as the settlement of a diatom (Navicula perminuta) and barnacle cyprids (Balanus improvisus) as representatives of typical marine fouling communities. The results demonstrate the important role of the zwitterionic group's orientation on the polymer behavior and fouling resistance}, language = {en} } @misc{WalkowiakLuGradzielskietal.2020, author = {Walkowiak, Jacek and Lu, Yan and Gradzielski, Michael and Zauscher, Stefan and Ballauff, Matthias}, title = {Thermodynamic analysis of the uptake of a protein in a spherical polyelectrolyte brush}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51730}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517307}, pages = {10}, year = {2020}, abstract = {A thermodynamic study of the adsorption of Human Serum Albumin (HSA) onto spherical polyelectrolyte brushes (SPBs) by isothermal titration calorimetry (ITC) is presented. The SPBs are composed of a solid polystyrene core bearing long chains of poly(acrylic acid). ITC measurements done at different temperatures and ionic strengths lead to a full set of thermodynamicbinding constants together with the enthalpies and entropies of binding. The adsorption of HSA onto SPBs is described with a two-step model. The free energy of binding Delta Gb depends only weakly on temperature because of a marked compensation of enthalpy by entropy. Studies of the adsorbed HSA by Fourier transform infrared spectroscopy (FT-IR) demonstrate no significant disturbance in the secondary structure of the protein. The quantitative analysis demonstrates that counterion release is the major driving force for adsorption in a process where proteins become multivalent counterions of the polyelectrolyte chains upon adsorption. A comparison with the analysis of other sets of data related to the binding of HSA to polyelectrolytes demonstrates that the cancellation of enthalpy and entropy is a general phenomenon that always accompanies the binding of proteins to polyelectrolytes dominated by counterion release.}, language = {en} } @misc{NicolaiWeishauptBaesleretal.2021, author = {Nicolai, Merle Marie and Weishaupt, Ann-Kathrin and Baesler, Jessica and Brinkmann, Vanessa and Wellenberg, Anna and Winkelbeiner, Nicola Lisa and Gremme, Anna and Aschner, Michael and Fritz, Gerhard and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1173}, issn = {1866-8372}, doi = {10.25932/publishup-52327}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523275}, pages = {18}, year = {2021}, abstract = {Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms.}, language = {en} } @misc{KopyraWierzbickaTulwinetal.2021, author = {Kopyra, Janina and Wierzbicka, Paulina and Tulwin, Adrian and Thiam, Guillaume and Bald, Ilko and Rabilloud, Franck and Abdoul-Carime, Hassan}, title = {Experimental and theoretical studies of dissociative electron attachment to metabolites oxaloacetic and citric acids}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1156}, issn = {1866-8372}, doi = {10.25932/publishup-52182}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-521829}, pages = {16}, year = {2021}, abstract = {In this contribution the dissociative electron attachment to metabolites found in aerobic organisms, namely oxaloacetic and citric acids, was studied both experimentally by means of a crossed-beam setup and theoretically through density functional theory calculations. Prominent negative ion resonances from both compounds are observed peaking below 0.5 eV resulting in intense formation of fragment anions associated with a decomposition of the carboxyl groups. In addition, resonances at higher energies (3-9 eV) are observed exclusively from the decomposition of the oxaloacetic acid. These fragments are generated with considerably smaller intensities. The striking findings of our calculations indicate the different mechanism by which the near 0 eV electron is trapped by the precursor molecule to form the transitory negative ion prior to dissociation. For the oxaloacetic acid, the transitory anion arises from the capture of the electron directly into some valence states, while, for the citric acid, dipole- or multipole-bound states mediate the transition into the valence states. What is also of high importance is that both compounds while undergoing DEA reactions generate highly reactive neutral species that can lead to severe cell damage in a biological environment.}, language = {en} } @misc{BlockGuenterDuarteRodriguesetal.2021, author = {Block, Inga and G{\"u}nter, Christina and Duarte Rodrigues, Alysson and Paasch, Silvia and Hesemann, Peter and Taubert, Andreas}, title = {Carbon Adsorbents from Spent Coffee for Removal of Methylene Blue and Methyl Orange from Water}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {14}, issn = {1866-8372}, doi = {10.25932/publishup-52165}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-521653}, pages = {20}, year = {2021}, abstract = {Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption. As an alternative to the rather harsh base treatment, calcium carbonate powder, a very common and abundant resource, was also studied as an activator. Mixtures of SCD and CaCO3 (1:1 w/w) yielded effective ACs for MO and MB removal upon pyrolysis needing only small amounts of AC to clear the solutions. A selectivity of the adsorption process toward anionic (MO) or cationic (MB) dyes was not observed.}, language = {en} } @phdthesis{Sanay2021, author = {Sanay, Berran}, title = {Monomers and polymers based on renewable resources for new photopolymer coating}, doi = {10.25932/publishup-51868}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518684}, school = {Universit{\"a}t Potsdam}, pages = {XXXIII, 124}, year = {2021}, abstract = {The present work focuses on minimising the usage of toxic chemicals by integration of the biobased monomers, derived from fatty acid esters, to photopolymerization processes, which are known to be nature friendly. Internal double bond present in the oleic acid was converted to more reactive (meth)acrylate or epoxy group. Biobased starting materials, functionalized by different pendant groups, were used for photopolymerizing formulations to design of new polymeric structures by using ultraviolet light emitting diode (UV-LED) (395 nm) via free radical polymerization or cationic polymerization. New (meth)acrylates (2,3 and 4) consisting of two isomers, methyl 9-((meth)acryloyloxy)-10-hydroxyoctadecanoate / methyl 9-hydroxy-10-((meth)acryloyloxy)octadecanoate (2 and 3) and methyl 9-(1H-imidazol-1-yl)-10-(methacryloyloxy)octadecanoate / methyl 9-(methacryloyloxy)-10-(1H-imidazol-1-yl)octadecanoate (4), modified from oleic acid mix, and ionic liquid monomers (1a and 1b) bearing long alkyl chain were polymerized photochemically. New (meth)acrylates are based on vegetable oil, and ionic liquids (ILs) have nonvolatile behaviour. Therefore, both monomer types have green approach. Photoinitiated polymerization of new (meth)acrylates and ionic liquids was investigated in the presence of ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate (Irgacure® TPO-L) or di(4-methoxybenzoyl)diethylgermane (Ivocerin®) as photoinitiator (PI). Additionally, the results were discussed in comparison with those obtained from commercial 1,6-hexanediol di(meth)acrylate (5 and 6) for deeper investigation of biobased monomer's potential to substitute petroleum derived materials with renewable resources for possible coating applications. Kinetic study shows that methyl 9-(1H-imidazol-1-yl)-10-(methacryloyloxy)octadecanoate / methyl 9-(methacryloyloxy)-10-(1H-imidazol-1-yl)octadecanoate (4) and ionic liquids (1a and 1b) have quantitative conversion after irradiation process which is important for practical applications. On the other hand, heat generation occurs in a longer time during the polymerization of biobased systems or ILs. The poly(meth)acrylates modified from (meth)acrylated fatty acid methyl ester monomers generally show a low glass transition temperature because of the presence of long aliphatic chain in the polymer structure. However, poly(meth)acrylates containing aromatic group have higher glass transition temperature. Therefore, new 4-(4-methacryloyloxyphenyl)-butan-2-one (7) was synthesized which can be a promising candidate for the green techniques, such as light induced polymerization. Photokinetic investigation of the new monomer, 4-(4-methacryloyloxyphenyl)-butan-2-one (7), was discussed using Irgacure® TPO-L or Ivocerin® as photoinitiator. The reactivity of that monomer was compared to commercial 2-phenoxyethyl methacrylate (8) and phenyl methacrylate (9) basis of the differences on monomer structures. The photopolymer of 4-(4-methacryloyloxyphenyl)-butan-2-one (7) might be an interesting candidate for the coating application with the properties of quantitative conversion and high molecular weight. It also shows higher glass transition temperature. In addition to the linear systems based on renewable materials, new crosslinked polymers were also designed in this thesis. Therefore, isomer mixture consisting of ethane-1,2-diyl bis(9-methacryloyloxy-10-hydroxy octadecanoate), ethane-1,2-diyl 9-hydroxy-10-methacryloyloxy-9'-methacryloyloxy10'-hydroxy octadecanoate and ethane-1,2-diyl bis(9-hydroxy-10-methacryloyloxy octadecanoate) (10) was synthesized by derivation of the oleic acid which has not been previously described in the literature. Crosslinked material based on this biobased monomer was produced by photoinitiated free radical polymerization using Irgacure® TPO-L or Ivocerin® as photoinitiator. Furthermore, material properties were diversified by copolymerization of 10 with 4-(4-methacryloyloxyphenyl)-butan-2-one (7) or methyl 9-(1H-imidazol-1-yl)-10-(methacryloyloxy)octadecanoate / methyl 9-(methacryloyloxy)-10-(1H-imidazol-1-yl)octadecanoate (4). In addition to this, influence of comonomer with different chemical structure on the network system was investigated by analysis of thermo-mechanical properties, crosslink density and molecular weight between two crosslink junctions. An increase in the glass transition temperature caused by copolymerization of biobased monomer 10 with the excess amount of 4-(4-methacryloyloxyphenyl)-butan-2-one (7) was confirmed by both techniques, differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). On the other hand, crosslink density decreased as a result of copolymerization reactions due to the reduction in the mean functionality of the system. Furthermore, surface characterization has been tested by contact angle measurements using solvents with different polarity. This work also contributes to the limited data reported about cationic photopolymerization of the epoxidized vegetable oils in the literature in contrast to the widely investigation of thermal curing of the biorenewable epoxy monomers. In addition to the 9,10-epoxystearic acid methyl ester (11), a new monomer of bis-(9,10-epoxystearic acid) 1,2-ethanediyl ester (12) has been synthesized from oleic acid. These two biobased epoxies have been polymerized via cationic photoinitiated polymerization in the presence of bis(t-butyl)-iodonium-tetrakis(perfluoro-t-butoxy)aluminate ([Al(O-t-C4F9)4]-) and isopropylthioxanthone (ITX) as photinitiating system. Polymerization kinetic of 9,10-epoxystearic acid methyl ester (11) and bis-(9,10-epoxystearic acid) 1,2-ethanediyl ester (12) was investigated and compared with the kinetic of commercial monomers being 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate (13), 1,4-butanediol diglycidyl ether (14), and diglycidylether of bisphenol-A (15). Both biobased epoxies (11 and 12) showed higher conversion than cycloaliphatic epoxy (13), and lower reactivity than 1,4-butanediol diglycidyl ether (14). Additional network systems were designed by copolymerization of bis-(9,10-epoxystearic acid) 1,2-ethanediyl ester (12) and diglycidylether of bisphenol-A (15) in different molar ratios (1:1; 1:5; 1:9). It addresses that, final conversion is dependent on polymerization rate as well as physical processes such as vitrification during polymerization. Moreover, low glass transition temperature of homopolymer derived from bis-(9,10-epoxystearic acid) 1,2-ethanediyl ester (12) was successfully increased by copolymerization with diglycidylether bisphenol-A (15). On the other hand, the surface produced from bis-(9,10-epoxystearic acid) 1,2-ethanediyl ester (12) shows hydrophobic character. Higher concentration of biobased diepoxy (12) in the copolymerizing mixture decreases surface free energy. Network systems were also investigated according to the rubber elasticity theory. Crosslinked polymer derived from the mixture of bis-(9,10-epoxystearic acid) 1,2-ethanediyl ester (12) and diglycidylether of bisphenol-A (15) (molar ratio=1:5) exhibits almost ideal polymer network.}, language = {en} } @phdthesis{Izraylit2021, author = {Izraylit, Victor}, title = {Reprogrammable and tunable actuation in multiblock copolymer blends}, doi = {10.25932/publishup-51843}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518434}, school = {Universit{\"a}t Potsdam}, pages = {104}, year = {2021}, abstract = {Soft actuators have drawn significant attention due to their relevance for applications, such as artificial muscles in devices developed for medicine and robotics. Tuning their performance and expanding their functionality are frequently done by means of chemical modification. The introduction of structural elements rendering non-synthetic modification of the performance possible, as well as control over physical appearance and facilitating their recycling is a subject of a great interest in the field of smart materials. The primary aim of this thesis was to create a shape-memory polymeric actuator, where the capability for non-synthetic tuning of the actuation performance is combined with reprocessability. Physically cross-linked polymeric matrices provide a solid material platform, where the in situ processing methods can be employed for modification of the composition and morphology, resulting in the fine tuning of the related mechanical properties and shape-memory actuation capability. The morphological features, required for shape-memory polymeric actuators, namely two crystallisable domains and anchoring points for physical cross-links, were embedded into a multiblock copolymer with poly(ε-caprolactone) and poly(L-lactide) segments (PLLA-PCL). Here, the melting transition of PCL was bisected into the actuating and skeleton-forming units, while the cross-linking was introduced via PLA stereocomplexation in blends with oligomeric poly(D-lactide) (ODLA). PLLA segment number average length of 12-15 repeating units was experimentally defined to be capable of the PLA stereocomplexes formation, but not sufficient for the isotactic crystallisation. Multiblock structure and phase dilution broaden the PCL melting transition, facilitating its separation into two conditionally independent crystalline domains. Low molar mass of the PLA stereocomplex components and a multiblock structure enables processing and reprocessing of the PLLA-PCL / ODLA blends with common non-destructive techniques. The modularity of the PLLA-PCL structure and synthetic approach allows for independent tuning of the properties of its components. The designed material establishes a solid platform for non-synthetic tuning of thermomechanical and structural properties of thermoplastic elastomers. To evaluate the thermomechanical stability of the formed physical network, three criteria were appraised. As physical cross-links, PLA stereocomplexes have to be evenly distributed within the material matrix, their melting temperature shall not overlap with the thermal transitions of the PCL domains and they have to maintain the structural integrity within the strain ε ranges further applied in the shape-memory actuation experiments. Assigning PCL the function of the skeleton-forming and actuating units, and PLA stereocomplexes the role of physical netpoints, shape-memory actuation was realised in the PLLA-PCL / ODLA blends. Reversible strain of shape-memory actuation was found to be a function of PLA stereocomplex crystallinity, i.e. physical cross-linking density, with a maximum of 13.4 ± 1.5\% at PLA stereocomplex content of 3.1 ± 0.3 wt\%. In this way, shape-memory actuation can be tuned via adjusting the composition of the PLLA-PCL / ODLA blend. This makes the developed material a valuable asset in the production of cost-effective tunable soft polymeric actuators for the applications in medicine and soft robotics.}, language = {en} }