@article{PohankovaHlavinkaKersebaumetal.2022, author = {Pohankov{\´a}, Eva and Hlavinka, Petr and Kersebaum, Kurt-Christian and Rodr{\´i}guez, Alfredo and Balek, Jan and Bednař{\´i}k, Martin and Dubrovsk{\´y}, Martin and Gobin, Anne and Hoogenboom, Gerrit and Moriondo, Marco and Nendel, Claas and Olesen, J{\o}rgen E. E. and R{\"o}tter, Reimund Paul and Ruiz-Ramos, Margarita and Shelia, Vakhtang and Stella, Tommaso and Hoffmann, Munir Paul and Tak{\´a}č, Jozef and Eitzinger, Josef and Dibari, Camilla and Ferrise, Roberto and Bl{\´a}hov{\´a}, Monika and Trnka, Miroslav}, title = {Expected effects of climate change on the production and water use of crop rotation management reproduced by crop model ensemble for Czech Republic sites}, series = {European journal of agronomy}, volume = {134}, journal = {European journal of agronomy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1161-0301}, doi = {10.1016/j.eja.2021.126446}, pages = {27}, year = {2022}, abstract = {Crop rotation, fertilization and residue management affect the water balance and crop production and can lead to different sensitivities to climate change. To assess the impacts of climate change on crop rotations (CRs), the crop model ensemble (APSIM,AQUACROP, CROPSYST, DAISY, DSSAT, HERMES, MONICA) was used. The yields and water balance of two CRs with the same set of crops (winter wheat, silage maize, spring barley and winter rape) in a continuous transient run from 1961 to 2080 were simulated. CR1 was without cover crops and without manure application. Straw after the harvest was exported from the fields. CR2 included cover crops, manure application and crop residue retention left on field. Simulations were performed using two soil types (Chernozem, Cambisol) within three sites in the Czech Republic, which represent temperature and precipitation gradients for crops in Central Europe. For the description of future climatic conditions, seven climate scenarios were used. Six of them had increasing CO \& nbsp;concentrations according RCP 8.5, one had no CO2 increase in the future. The output of an ensemble expected higher productivity by 0.82 t/ha/year and 2.04 t/ha/year for yields and aboveground biomass in the future (2051-2080). However, if the direct effect of a CO2 increase is not considered, the average yields for lowlands will be lower. Compared to CR1, CR2 showed higher average yields of 1.26 t/ha/year for current climatic conditions and 1.41 t/ha/year for future climatic conditions. For the majority of climate change scenarios, the crop model ensemble agrees on the projected yield increase in C3 crops in the future for CR2 but not for CR1. Higher agreement for future yield increases was found for Chernozem, while for Cambisol, lower yields under dry climate scenarios are expected. For silage maize, changes in simulated yields depend on locality. If the same hybrid will be used in the future, then yield reductions should be expected within lower altitudes. The results indicate the potential for higher biomass production from cover crops, but CR2 is associated with almost 120 mm higher evapotranspiration compared to that of CR1 over a 5-year cycle for lowland stations in the future, which in the case of the rainfed agriculture could affect the long-term soil water balance. This could affect groundwater replenishment, especially for locations with fine textured soils, although the findings of this study highlight the potential for the soil water-holding capacity to buffer against the adverse weather conditions.}, language = {en} } @article{IlicicWoodhouseKarstenetal.2022, author = {Ilicic, Doris and Woodhouse, Jason Nicholas and Karsten, Ulf and Zimmermann, Jonas and Wichard, Thomas and Quartino, Maria Liliana and Campana, Gabriela Laura and Livenets, Alexandra and Van den Wyngaert, Silke and Grossart, Hans-Peter}, title = {Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones}, series = {Frontiers in microbiology}, journal = {Frontiers in microbiology}, number = {13}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.805694}, pages = {12}, year = {2022}, abstract = {Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.}, language = {en} } @article{NumbergerZoccaratoWoodhouseetal.2022, author = {Numberger, Daniela and Zoccarato, Luca and Woodhouse, Jason Nicholas and Ganzert, Lars and Sauer, Sascha and Garc{\´i}a M{\´a}rquez, Jaime Ricardo and Domisch, Sami and Grossart, Hans-Peter and Greenwood, Alex}, title = {Urbanization promotes specific bacteria in freshwater microbiomes including potential pathogens}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {845}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2022.157321}, pages = {13}, year = {2022}, abstract = {Freshwater ecosystems are characterized by complex and highly dynamic microbial communities that are strongly structured by their local environment and biota. Accelerating urbanization and growing city populations detrimentally alter freshwater environments. To determine differences in freshwater microbial communities associated with urban-ization, full-length 16S rRNA gene PacBio sequencing was performed in a case study from surface waters and sedi-ments from a wastewater treatment plant, urban and rural lakes in the Berlin-Brandenburg region, Northeast Germany. Water samples exhibited highly habitat specific bacterial communities with multiple genera showing clear urban signatures. We identified potentially harmful bacterial groups associated with environmental parameters specific to urban habitats such as Alistipes, Escherichia/Shigella, Rickettsia and Streptococcus. We demonstrate that urban-ization alters natural microbial communities in lakes and, via simultaneous warming and eutrophication and creates favourable conditions that promote specific bacterial genera including potential pathogens. Our findings are evidence to suggest an increased potential for long-term health risk in urbanized waterbodies, at a time of rapidly expanding global urbanization. The results highlight the urgency for undertaking mitigation measures such as targeted lake restoration projects and sustainable water management efforts.}, language = {en} } @article{McHuronAdamczakArnouldetal.2022, author = {McHuron, Elizabeth A. and Adamczak, Stephanie and Arnould, John P. Y. and Ashe, Erin and Booth, Cormac and Bowen, W. Don and Christiansen, Fredrik and Chudzinska, Magda and Costa, Daniel P. and Fahlman, Andreas and Farmer, Nicholas A. and Fortune, Sarah M. E. and Gallagher, Cara A. and Keen, Kelly A. and Madsen, Peter T. and McMahon, Clive R. and Nabe-Nielsen, Jacob and Noren, Dawn P. and Noren, Shawn R. and Pirotta, Enrico and Rosen, David A. S. and Speakman, Cassie N. and Villegas-Amtmann, Stella and Williams, Rob}, title = {Key questions in marine mammal bioenergetics}, series = {Conservation physiology}, volume = {10}, journal = {Conservation physiology}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2051-1434}, doi = {10.1093/conphys/coac055}, pages = {17}, year = {2022}, abstract = {Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioenergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were identified as 'key'questions because they received votes from at least 50\% of survey participants. Key questions included those related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies and better conserve marine mammal populations.}, language = {en} } @article{ZurellKoenigMalchowetal.2022, author = {Zurell, Damaris and K{\"o}nig, Christian and Malchow, Anne-Kathleen and Kapitza, Simon and Bocedi, Greta and Travis, Justin M. J. and Fandos, Guillermo}, title = {Spatially explicit models for decision-making in animal conservation and restoration}, series = {Ecography : pattern and diversity in ecology / Nordic Ecologic Society Oikos}, journal = {Ecography : pattern and diversity in ecology / Nordic Ecologic Society Oikos}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1600-0587}, doi = {10.1111/ecog.05787}, pages = {1 -- 16}, year = {2022}, abstract = {Models are useful tools for understanding and predicting ecological patterns and processes. Under ongoing climate and biodiversity change, they can greatly facilitate decision-making in conservation and restoration and help designing adequate management strategies for an uncertain future. Here, we review the use of spatially explicit models for decision support and to identify key gaps in current modelling in conservation and restoration. Of 650 reviewed publications, 217 publications had a clear management application and were included in our quantitative analyses. Overall, modelling studies were biased towards static models (79\%), towards the species and population level (80\%) and towards conservation (rather than restoration) applications (71\%). Correlative niche models were the most widely used model type. Dynamic models as well as the gene-to-individual level and the community-to-ecosystem level were underrepresented, and explicit cost optimisation approaches were only used in 10\% of the studies. We present a new model typology for selecting models for animal conservation and restoration, characterising model types according to organisational levels, biological processes of interest and desired management applications. This typology will help to more closely link models to management goals. Additionally, future efforts need to overcome important challenges related to data integration, model integration and decision-making. We conclude with five key recommendations, suggesting that wider usage of spatially explicit models for decision support can be achieved by 1) developing a toolbox with multiple, easier-to-use methods, 2) improving calibration and validation of dynamic modelling approaches and 3) developing best-practise guidelines for applying these models. Further, more robust decision-making can be achieved by 4) combining multiple modelling approaches to assess uncertainty, and 5) placing models at the core of adaptive management. These efforts must be accompanied by long-term funding for modelling and monitoring, and improved communication between research and practise to ensure optimal conservation and restoration outcomes.}, language = {en} } @article{MuellerNedielkovArndt2022, author = {M{\"u}ller, Marik and Nedielkov, Ruslan and Arndt, Katja M.}, title = {Strategies for Enzymatic Inactivation of the Veterinary Antibiotic Florfenicol}, series = {Antibiotics}, volume = {11}, journal = {Antibiotics}, number = {4}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2079-6382}, doi = {10.3390/antibiotics11040443}, pages = {1 -- 18}, year = {2022}, abstract = {Large quantities of the antibiotic florfenicol are used in animal farming and aquaculture, contaminating the ecosystem with antibiotic residues and promoting antimicrobial resistance, ultimately leading to untreatable multidrug-resistant pathogens. Florfenicol-resistant bacteria often activate export mechanisms that result in resistance to various structurally unrelated antibiotics. We devised novel strategies for the enzymatic inactivation of florfenicol in different media, such as saltwater or milk. Using a combinatorial approach and selection, we optimized a hydrolase (EstDL136) for florfenicol cleavage. Reaction kinetics were followed by time-resolved NMR spectroscopy. Importantly, the hydrolase remained active in different media, such as saltwater or cow milk. Various environmentally-friendly application strategies for florfenicol inactivation were developed using the optimized hydrolase. As a potential filter device for cost-effective treatment of waste milk or aquacultural wastewater, the hydrolase was immobilized on Ni-NTA agarose or silica as carrier materials. In two further application examples, the hydrolase was used as cell extract or encapsulated with a semi-permeable membrane. This facilitated, for example, florfenicol inactivation in whole milk, which can help to treat waste milk from medicated cows, to be fed to calves without the risk of inducing antibiotic resistance. Enzymatic inactivation of antibiotics, in general, enables therapeutic intervention without promoting antibiotic resistance.}, language = {en} } @article{KindermannDoblerNiedeggenetal.2022, author = {Kindermann, Liana and Dobler, Magnus and Niedeggen, Daniela and Chimbioputo Fabiano, Ezequiel and Linst{\"a}dter, Anja}, title = {Dataset on woody aboveground biomass, disturbance losses, and wood density from an African savanna ecosystem}, series = {Data in Brief}, volume = {42}, journal = {Data in Brief}, publisher = {Elsevier}, address = {Amsterdam, Niederlande}, issn = {2352-3409}, doi = {10.1016/j.dib.2022.108155}, pages = {1 -- 16}, year = {2022}, abstract = {This dataset comprises tree inventories and damage assessments performed in Namibia's semi-arid Zambezi Region. Data were sampled in savannas and savanna woodlands along steep gradients of elephant population densities to capture the effects of those (and other) disturbances on individual-level and stand-level aboveground woody biomass (AGB). The dataset contains raw data on dendrometric measures and processed data on specific wood density (SWD), woody aboveground biomass, and biomass losses through disturbance impacts. Allometric proxies (height, canopy diameters, and in adult trees also stem circumferences) were recorded for n = 6,179 tree and shrub individuals. Wood samples were taken for each encountered species to measure specific wood density. These measurements have been used to estimate woody aboveground biomass via established allometric models, advanced through our improved methodologies and workflows that accounted for tree and shrub architecture shaped by disturbance impacts. To this end, we performed a detailed damage assessment on each woody individual in the field. In addition to estimations of standing biomass, our new method also delivered data on biomass losses to different disturbance agents (elephants, fire, and others) on the level of plant individuals and stands. The data presented here have been used within a study published with Ecological Indicators (Kindermann et al., 2022) to evaluate the benefits of our improved methodology in comparison to a standard reference method of aboveground biomass estimations. Additionally, it has been employed in a study on carbon storage and sequestration in vegetation and soils (Sandhage-Hofmann et al., 2021). The raw data of dendrometric measurements can be subjected to other available allometric models for biomass estimation. The processed data can be used to analyze disturbance impacts on woody aboveground biomass, or for regional carbon storage estimates. The data on species-specific wood density can be used for application to other dendrometric datasets to (re-) estimate biomass through allometric models requiring wood density. It can further be used for plant functional trait analyses.}, language = {en} } @article{OgunkolaGuiraudieCaprazFeronetal.2023, author = {Ogunkola, Moses Olalekan and Guiraudie-Capraz, Gaelle and F{\´e}ron, Fran{\c{c}}ois and Leimk{\"u}hler, Silke}, title = {The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells}, series = {Biomolecules}, volume = {13}, journal = {Biomolecules}, edition = {1}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2218-273X}, doi = {10.3390/biom13010144}, pages = {1 -- 23}, year = {2023}, abstract = {Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.}, language = {en} } @article{MarggrafLindeckeVoigtetal.2023, author = {Marggraf, Lara Christin and Lindecke, Oliver and Voigt, Christian C. and Pētersons, Gunārs and Voigt-Heucke, Silke Luise}, title = {Nathusius' bats, Pipistrellus nathusii, bypass mating opportunities of their own species, but respond to foraging heterospecifics on migratory transit flights}, series = {Frontiers in Ecology and Evolution}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {2296-701X}, doi = {10.3389/fevo.2022.908560}, pages = {1 -- 10}, year = {2023}, abstract = {In late summer, migratory bats of the temperate zone face the challenge of accomplishing two energy-demanding tasks almost at the same time: migration and mating. Both require information and involve search efforts, such as localizing prey or finding potential mates. In non-migrating bat species, playback studies showed that listening to vocalizations of other bats, both con-and heterospecifics, may help a recipient bat to find foraging patches and mating sites. However, we are still unaware of the degree to which migrating bats depend on con-or heterospecific vocalizations for identifying potential feeding or mating opportunities during nightly transit flights. Here, we investigated the vocal responses of Nathusius' pipistrelle bats, Pipistrellus nathusii, to simulated feeding and courtship aggregations at a coastal migration corridor. We presented migrating bats either feeding buzzes or courtship calls of their own or a heterospecific migratory species, the common noctule, Nyctalus noctula. We expected that during migratory transit flights, simulated feeding opportunities would be particularly attractive to bats, as well as simulated mating opportunities which may indicate suitable roosts for a stopover. However, we found that when compared to the natural silence of both pre-and post-playback phases, bats called indifferently during the playback of conspecific feeding sounds, whereas P. nathusii echolocation call activity increased during simulated feeding of N. noctula. In contrast, the call activity of P. nathusii decreased during the playback of conspecific courtship calls, while no response could be detected when heterospecific call types were broadcasted. Our results suggest that while on migratory transits, P. nathusii circumnavigate conspecific mating aggregations, possibly to save time or to reduce the risks associated with social interactions where aggression due to territoriality might be expected. This avoidance behavior could be a result of optimization strategies by P. nathusii when performing long-distance migratory flights, and it could also explain the lack of a response to simulated conspecific feeding. However, the observed increase of activity in response to simulated feeding of N. noctula, suggests that P. nathusii individuals may be eavesdropping on other aerial hawking insectivorous species during migration, especially if these occupy a slightly different foraging niche.}, language = {en} } @article{TaguchiGotoMatsuokaetal.2023, author = {Taguchi, Mioko and Goto, Mutsuo and Matsuoka, Koji and Tiedemann, Ralph and Pastene, Luis A.}, title = {Population genetic structure of Bryde's whales (Balaenoptera brydei) on the central and western North Pacific feeding grounds}, series = {Canadian Journal of Fisheries and Aquatic Sciences}, volume = {80}, journal = {Canadian Journal of Fisheries and Aquatic Sciences}, number = {1}, publisher = {Canadian science publishing}, address = {Ottawa}, issn = {0706-652X}, doi = {10.1139/cjfas-2022-0005}, pages = {142 -- 155}, year = {2023}, abstract = {The genetic structure of Bryde's whale (Balaenoptera brydei) on the central and western North Pacific feeding grounds was investigated using a total of 1195 mitochondrial control region sequences and 1182 microsatellite genotypes at 17 loci in specimens collected from three longitudinal areas, 1W (135 degrees E-165 degrees E), 1E (165 degrees E-180 degrees), and 2 (180 degrees-155 degrees W). Genetic diversities were similar among areas and a haplotype network did not show any geographic structure, while an analysis of molecular variance found evidence of genetic structure in this species. Pairwise FST and G'ST estimates and heterogeneity tests attributed this structure to weak but significant differentiation between areas 1W/1E and 2. A Mantel test and a high-resolution analysis of genetic diversity statistics showed a weak spatial cline of genetic differentiation. These findings could be reconciled by two possible stock structure scenarios: (1) a single population with kin-association affecting feeding ground preference and (2) two populations with feeding ground preference for either area 1W or area 2. An estimated dispersal rate between areas 1W and 2 indicates that both scenarios should be considered as a precautionary principle in stock assessments.}, language = {en} } @article{Pandey2023, author = {Pandey, Yogesh}, title = {Enriched cell-free and cell-based native membrane derived vesicles (nMV) enabling rapid in-vitro electrophysiological analysis of the voltage-gated sodium channel 1.5.}, series = {Biochimica et Biophysica Acta (BBA) - Biomembranes}, volume = {1865}, journal = {Biochimica et Biophysica Acta (BBA) - Biomembranes}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-2642}, doi = {10.1016/j.bbamem.2023.184144}, year = {2023}, abstract = {Here, we demonstrate the utility of native membrane derived vesicles (nMVs) as tools for expeditious electrophysiological analysis of membrane proteins. We used a cell-free (CF) and a cell-based (CB) approach for preparing protein-enriched nMVs. We utilized the Chinese Hamster Ovary (CHO) lysate-based cell-free protein synthesis (CFPS) system to enrich ER-derived microsomes in the lysate with the primary human cardiac voltage-gated sodium channel 1.5 (hNaV1.5; SCN5A) in 3 h. Subsequently, CB-nMVs were isolated from fractions of nitrogen-cavitated CHO cells overexpressing the hNaV1.5. In an integrative approach, nMVs were micro-transplanted into Xenopus laevis oocytes. CB-nMVs expressed native lidocaine-sensitive hNaV1.5 currents within 24 h; CF-nMVs did not elicit any response. Both the CB- and CF-nMV preparations evoked single-channel activity on the planar lipid bilayer while retaining sensitivity to lidocaine application. Our findings suggest a high usability of the quick-synthesis CF-nMVs and maintenance-free CB-nMVs as ready-to-use tools for in-vitro analysis of electrogenic membrane proteins and large, voltage-gated ion channels.}, language = {en} } @article{GlowinskiAutenrieth2023, author = {Glowinski, Ingrid and Autenrieth, Marijke}, title = {Eigene Forschung im Labor, um naturwissenschaftliche Erkenntnisgewinnung kompetent unterrichten zu k{\"o}nnen?}, series = {PSI-Potsdam: Ergebnisbericht zu den Aktivit{\"a}ten im Rahmen der Qualit{\"a}tsoffensive Lehrerbildung (2019-2023) (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 3)}, journal = {PSI-Potsdam: Ergebnisbericht zu den Aktivit{\"a}ten im Rahmen der Qualit{\"a}tsoffensive Lehrerbildung (2019-2023) (Potsdamer Beitr{\"a}ge zur Lehrerbildung und Bildungsforschung ; 3)}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-568-2}, issn = {2626-3556}, doi = {10.25932/publishup-61792}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617922}, pages = {273 -- 293}, year = {2023}, abstract = {Im Rahmen des PSI-Projekts wurde eine Lehrveranstaltung konzipiert, die Lehramtsstudierenden einen vertieften Einblick sowohl in den Ablauf von Forschung als auch eine Bearbeitung einer eigenen experimentellen Forschungsaufgabe erm{\"o}glichen soll. Anlass waren die Ber{\"u}cksichtigung eines „Wissens {\"u}ber Erkenntnisgewinnung in der Disziplin" im Modell des „Erweiterten Fachwissens f{\"u}r den schulischen Kontext" (PSI) sowie Erkenntnisse empirischer Studien, die die Relevanz eigener Forschungserfahrung f{\"u}r das Unterrichten naturwissenschaftlicher Erkenntnisgewinnungsprozesse zeigen. Hier stellen wir eine neue Lehrveranstaltung (4 SWS) vor, die den angehenden Lehrkr{\"a}ften Forschungserfahrung erm{\"o}glicht (Seminar und Praktikum). Die Lehrveranstaltung vermittelt Einblicke in Forschung und die „Natur der Naturwissenschaften", erm{\"o}glicht das Durchf{\"u}hren eigener wissenschaftlicher und schulrelevanter Experimente und bietet eine angemessene Reflexion {\"u}ber die verschiedenen Kurselemente. Die Evaluationsergebnisse sind {\"u}berwiegend positiv, zeigen aber auch, dass f{\"u}r die Studierenden die wahrgenommene Schulrelevanz und die fachdidaktischen Aspekte ein wichtiges Kriterium f{\"u}r die positive Bewertung sind.}, language = {de} } @article{HermanussenSchefflerPulunganetal.2023, author = {Hermanussen, Michael and Scheffler, Christiane and Pulungan, Aman B. and Bandyopadhyay, Arup Ratan and Ghosh, Jyoti Ratan and {\"O}zdemir, Ay{\c{s}}eg{\"u}l and Koca {\"O}zer, Ba{\c{s}}ak and Musalek, Martin and Lebedeva, Lidia and Godina, Elena and Bogin, Barry and Tutkuviene, Janina and Budrytė, Milda and Gervickaite, Simona and Limony, Yehuda and Kirchengast, Sylvia and Buston, Peter and Groth, Detlef and R{\"o}sler, Antonia and Gasparatos, Nikolaos and Erofeev, Sergei and Novine, Masiar and Navazo, B{\´a}rbara and Dahinten, Silvia and Gomuła, Aleksandra and Nowak-Szczepańska, Natalia and Kozieł, Sławomir}, title = {Environment, social behavior, and growth}, series = {Human biology and public health}, volume = {1}, journal = {Human biology and public health}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2023.1.59}, pages = {14}, year = {2023}, abstract = {Twenty-four scientists met for the annual Auxological conference held at Krobielowice castle, Poland, to discuss the diverse influences of the environment and of social behavior on growth following last year's focus on growth and public health concerns (Hermanussen et al., 2022b). Growth and final body size exhibit marked plastic responses to ecological conditions. Among the shortest are the pygmoid people of Rampasasa, Flores, Indonesia, who still live under most secluded insular conditions. Genetics and nutrition are usually considered responsible for the poor growth in many parts of this world, but evidence is accumulating on the prominent impact of social embedding on child growth. Secular trends not only in the growth of height, but also in body proportions, accompany the secular changes in the social, economic and political conditions, with major influences on the emotional and educational circumstances under which the children grow up (Bogin, 2021). Aspects of developmental tempo and aspects of sports were discussed, and the impact of migration by the example of women from Bangladesh who grew up in the UK. Child growth was considered in particular from the point of view of strategic adjustments of individual size within the network of its social group. Theoretical considerations on network characteristics were presented and related to the evolutionary conservation of growth regulating hypothalamic neuropeptides that have been shown to link behavior and physical growth in the vertebrate species. New statistical approaches were presented for the evaluation of short term growth measurements that permit monitoring child growth at intervals of a few days and weeks.}, language = {en} } @article{GasparatosSchefflerHermanussen2023, author = {Gasparatos, Nikolaos and Scheffler, Christiane and Hermanussen, Michael}, title = {Assessing the applicability of changepoint analysis to analyse short-term growth}, series = {Human biology and public health}, volume = {1}, journal = {Human biology and public health}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2023.1.62}, pages = {15}, year = {2023}, abstract = {Background: Assessing short-term growth in humans is still fraught with difficulties. Especially when looking for small variations and increments, such as mini growth spurts, high precision instruments or frequent measurements are necessary. Daily measurements however require a lot of effort, both for anthropologists and for the subjects. Therefore, new sophisticated approaches are needed that reduce fluctuations and reveal underlying patterns. Objectives: Changepoints are abrupt variations in the properties of time series data. In the context of growth, such variations could be variation in mean height. By adjusting the variance and using different growth models, we assessed the ability of changepoint analysis to analyse short-term growth and detect mini growth spurts. Sample and Methods: We performed Bayesian changepoint analysis on simulated growth data using the bcp package in R. Simulated growth patterns included stasis, linear growth, catch-up growth, and mini growth spurts. Specificity and a normalised variant of the Matthews correlation coefficient (MCC) were used to assess the algorithm's performance. Welch's t-test was used to compare differences of the mean. Results: First results show that changepoint analysis can detect mini growth spurts. However, the ability to detect mini growth spurts is highly dependent on measurement error. Data preparation, such as ranking and rotating time series data, showed negligible improvements. Missing data was an issue and may affect the prediction quality of the classification metrics. Conclusion: Changepoint analysis is a promising tool to analyse short-term growth. However, further optimisation and analysis of real growth data is needed to make broader generalisations.}, language = {en} } @article{GrothSchefflerHermanussen2023, author = {Groth, Detlef and Scheffler, Christiane and Hermanussen, Michael}, title = {Human growth data analysis and statistics - the 5th G{\"u}lpe International Student Summer School}, series = {Human biology and public health}, volume = {1}, journal = {Human biology and public health}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2023.1.70}, pages = {5}, year = {2023}, abstract = {The Summer School in G{\"u}lpe (Ecological Station of the University of Potsdam) offers an exceptional learning opportunity for students to apply their knowledge and skills to real-world problems. With the guidance of experienced human biologists, statisticians, and programmers, students have the unique chance to analyze their own data and gain valuable insights. This interdisciplinary setting not only bridges different research areas but also leads to highly valuable outputs. The progress of students within just a few days is truly remarkable, especially when they are motivated and receive immediate feedback on their questions, problems, and results. The Summer School covers a wide range of topics, with this year's focus mainly on two areas: understanding the impact of socioeconomic and physiological factors on human development and mastering statistical techniques for analyzing data such as changepoint analysis and the St. Nicolas House Analysis (SNHA) to visualize interacting variables. The latter technique, born out of the Summer School's emphasis on gaining comprehensive data insights and understanding major relationships, has proven to be a valuable tool for researchers in the field. The articles in this special issue demonstrate that the Summer School in G{\"u}lpe stands as a testament to the power of practical learning and collaboration. Students who attend not only gain hands-on experience but also benefit from the expertise of professionals and the opportunity to engage with peers from diverse disciplines.}, language = {en} } @article{RoeslerSchefflerHermanussen2023, author = {R{\"o}sler, Antonia and Scheffler, Christiane and Hermanussen, Michael}, title = {No evidence of growth impairment after forced migration in Polish school children after World War II}, series = {Human biology and public health}, volume = {1}, journal = {Human biology and public health}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2023.1.68}, pages = {8}, year = {2023}, abstract = {Background: Migration is omnipresent. It can come hand in hand with emotional stress which is known to influence the growth of children. Objective: The aim of this study was to analyse whether type of migration (forced or voluntary) and the geographic direction had influenced the growth of Polish children after World War II. Sample and Methods: A sub dataset of 2,208 individuals between the ages of 2-20, created from data of the 2nd Polish Anthropological Survey carried out in 1966-1969, including anthropometrical data and social and demographic information based on questionnaire, was used to analyse migration effects. Results: No association could be found between the direction of migration and the height of the children. The confidence intervals of the means of all classified migration categories overlap significantly and the effect size of the influence of migration category on height is ds=.140, which is too low to see any effects, even if there were one. Conclusion: Neither forced nor voluntary migration in Poland after World War II led to a change in height in children of migrating families.}, language = {en} } @article{HermanussenScheffler2023, author = {Hermanussen, Michael and Scheffler, Christiane}, title = {Nutrition, size, and tempo}, series = {Human biology and public health}, volume = {2022}, journal = {Human biology and public health}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2022.3.37}, pages = {11}, year = {2023}, abstract = {Nutrition is a prerequisite, but not a regulator of growth. Growth is defined as increase in size over time. The understanding of growth includes an understanding of the binary concept of physical time and individual tempo. Excess food causes tempo acceleration. Food restriction delays tempo. Tempo reflects the pace of life. It is a dynamic physical response to a broad spectrum of social, economic, political, and emotional (SEPE) factors and can affect life expectancy. Variations in tempo create distortions of the z-score patterns of height and weight. Illness or intermediate food shortage lead to intermediate halts in development and create short dips in the z-score patterns. Children who develop throughout life at delayed pace usually run at lower z-scores for height and weight, and show a characteristic adolescent trough; children who develop throughout life at faster than average pace usually run at higher z-scores and show a characteristic adolescent peak in their z-score patterns. During adolescence, almost half of the height variance is due to tempo variation. There is not one tempo for the whole body. Different organ systems grow and mature at different pace.}, language = {en} } @article{SchefflerHermanussen2023, author = {Scheffler, Christiane and Hermanussen, Michael}, title = {What does stunting tell us?}, series = {Human biology and public health}, volume = {2022}, journal = {Human biology and public health}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2022.3.36}, pages = {1 -- 15}, year = {2023}, abstract = {Stunting is commonly linked with undernutrition. Yet, already after World War I, German pediatricians questioned this link and stated that no association exists between nutrition and height. Recent analyses within different populations of Low- and middle-income countries with high rates of stunted children failed to support the assumption that stunted children have a low BMI and skinfold sickness as signs of severe caloric deficiency. So, stunting is not a synonym of malnutrition. Parental education level has a positive influence on body height in stunted populations, e.g., in India and in Indonesia. Socially disadvantaged children tend to be shorter and lighter than children from affluent families. Humans are social mammals; they regulate growth similar to other social mammals. Also in humans, body height is strongly associated with the position within the social hierarchy, reflecting the personal and group-specific social, economic, political, and emotional environment. These non-nutritional impact factors on growth are summarized by the concept of SEPE (Social-Economic-Political-Emotional) factors. SEPE reflects on prestige, dominance-subordination, social identity, and ego motivation of individuals and social groups.}, language = {en} } @article{HakeBodenbergerGroth2023, author = {Hake, Tim and Bodenberger, Bernhard and Groth, Detlef}, title = {In Python available: St. Nicolas House Algorithm (SNHA) with bootstrap support for improved performance in dense networks}, series = {Human biology and public health}, volume = {1}, journal = {Human biology and public health}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2023.1.63}, pages = {16}, year = {2023}, abstract = {The St. Nicolas House Algorithm (SNHA) finds association chains of direct dependent variables in a data set. The dependency is based on the correlation coefficient, which is visualized as an undirected graph. The network prediction is improved by a bootstrap routine. It enables the computation of the empirical p-value, which is used to evaluate the significance of the predicted edges. Synthetic data generated with the Monte Carlo method were used to firstly compare the Python package with the original R package, and secondly to evaluate the predicted network using the sensitivity, specificity, balanced classification rate and the Matthew's correlation coefficient (MCC). The Python implementation yields the same results as the R package. Hence, the algorithm was correctly ported into Python. The SNHA scores high specificity values for all tested graphs. For graphs with high edge densities, the other evaluation metrics decrease due to lower sensitivity, which could be partially improved by using bootstrap,while for graphs with low edge densities the algorithm achieves high evaluation scores. The empirical p-values indicated that the predicted edges indeed are significant.}, language = {en} } @article{PetrichAjiDunsingetal.2023, author = {Petrich, Annett and Aji, Amit Koikkarah and Dunsing, Valentin and Chiantia, Salvatore}, title = {Benchmarking of novel green fluorescent proteins for the quantification of protein oligomerization in living cells}, series = {PLoS one}, volume = {18}, journal = {PLoS one}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0285486}, pages = {13}, year = {2023}, abstract = {Protein-protein-interactions play an important role in many cellular functions. Quantitative non-invasive techniques are applied in living cells to evaluate such interactions, thereby providing a broader understanding of complex biological processes. Fluorescence fluctuation spectroscopy describes a group of quantitative microscopy approaches for the characterization of molecular interactions at single cell resolution. Through the obtained molecular brightness, it is possible to determine the oligomeric state of proteins. This is usually achieved by fusing fluorescent proteins (FPs) to the protein of interest. Recently, the number of novel green FPs has increased, with consequent improvements to the quality of fluctuation-based measurements. The photophysical behavior of FPs is influenced by multiple factors (including photobleaching, protonation-induced "blinking" and long-lived dark states). Assessing these factors is critical for selecting the appropriate fluorescent tag for live cell imaging applications. In this work, we focus on novel green FPs that are extensively used in live cell imaging. A systematic performance comparison of several green FPs in living cells under different pH conditions using Number \& Brightness (N \& B) analysis and scanning fluorescence correlation spectroscopy was performed. Our results show that the new FP Gamillus exhibits higher brightness at the cost of lower photostability and fluorescence probability (pf), especially at lower pH. mGreenLantern, on the other hand, thanks to a very high pf, is best suited for multimerization quantification at neutral pH. At lower pH, mEGFP remains apparently the best choice for multimerization investigation. These guidelines provide the information needed to plan quantitative fluorescence microscopy involving these FPs, both for general imaging or for protein-protein-interactions quantification via fluorescence fluctuation-based methods.}, language = {en} } @article{KappelFriedrichOberkofleretal.2023, author = {Kappel, Christian and Friedrich, Thomas and Oberkofler, Vicky and Jiang, Li and Crawford, Tim and Lenhard, Michael and B{\"a}urle, Isabel}, title = {Genomic and epigenomic determinants of heat stress-induced transcriptional memory in Arabidopsis}, series = {Genome biology : biology for the post-genomic era}, volume = {24}, journal = {Genome biology : biology for the post-genomic era}, number = {1}, publisher = {BioMed Central}, address = {London}, issn = {1474-760X}, doi = {10.1186/s13059-023-02970-5}, pages = {23}, year = {2023}, abstract = {Background Transcriptional regulation is a key aspect of environmental stress responses. Heat stress induces transcriptional memory, i.e., sustained induction or enhanced re-induction of transcription, that allows plants to respond more efficiently to a recurrent HS. In light of more frequent temperature extremes due to climate change, improving heat tolerance in crop plants is an important breeding goal. However, not all heat stress-inducible genes show transcriptional memory, and it is unclear what distinguishes memory from non-memory genes. To address this issue and understand the genome and epigenome architecture of transcriptional memory after heat stress, we identify the global target genes of two key memory heat shock transcription factors, HSFA2 and HSFA3, using time course ChIP-seq. Results HSFA2 and HSFA3 show near identical binding patterns. In vitro and in vivo binding strength is highly correlated, indicating the importance of DNA sequence elements. In particular, genes with transcriptional memory are strongly enriched for a tripartite heat shock element, and are hallmarked by several features: low expression levels in the absence of heat stress, accessible chromatin environment, and heat stress-induced enrichment of H3K4 trimethylation. These results are confirmed by an orthogonal transcriptomic data set using both de novo clustering and an established definition of memory genes. Conclusions Our findings provide an integrated view of HSF-dependent transcriptional memory and shed light on its sequence and chromatin determinants, enabling the prediction and engineering of genes with transcriptional memory behavior.}, language = {en} } @article{FerreiraDammhahnEccard2023, author = {Ferreira, Clara Mendes and Dammhahn, Melanie and Eccard, Jana}, title = {So many choices, so little time}, series = {Ecology and evolution}, volume = {13}, journal = {Ecology and evolution}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.10330}, pages = {15}, year = {2023}, abstract = {Spatial and temporal variation in perceived predation risk is an important determinant of movement and foraging activity of animals. Foraging in this landscape of fear, individuals need to decide where and when to move, and what resources to choose. Foraging theory predicts the outcome of these decisions based on energetic trade-offs, but complex interactions between perceived predation risk and preferences of foragers for certain functional traits of their resources are rarely considered. Here, we studied the interactive effects of perceived predation risk on food trait preferences and foraging behavior in bank voles (Myodes glareolus) in experimental landscapes. Individuals (n = 19) were subjected for periods of 24 h to two extreme, risk-uniform landscapes (either risky or safe), containing 25 discrete food patches, filled with seeds of four plant species in even amounts. Seeds varied in functional traits: size, nutrients, and shape. We evaluated whether and how risk modifies forager preference for functional traits. We also investigated whether perceived risk and distance from shelter affected giving-up density (GUD), time in patches, and number of patch visits. In safe landscapes, individuals increased time spent in patches, lowered GUD and visited distant patches more often compared to risky landscapes. Individuals preferred bigger seeds independent of risk, but in the safe treatment they preferred fat-rich over carb-rich seeds. Thus, higher densities of resource levels remained in risky landscapes, while in safe landscapes resource density was lower and less diverse due to selective foraging. Our results suggest that the interaction of perceived risk and dietary preference adds an additional layer to the cascading effects of a landscape of fear which affects biodiversity at resource level.}, language = {en} } @article{ApriyantoCompartFettke2023, author = {Apriyanto, Ardha and Compart, Julia and Fettke, J{\"o}rg}, title = {Transcriptomic analysis of mesocarp tissue during fruit development of the oil palm revealed specific isozymes related to starch metabolism that control oil yield}, series = {Frontiers in plant science}, volume = {14}, journal = {Frontiers in plant science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2023.1220237}, pages = {13}, year = {2023}, abstract = {The oil palm (Elaeis guineensis Jacq.) produces a large amount of oil from the fruit. However, increasing the oil production in this fruit is still challenging. A recent study has shown that starch metabolism is essential for oil synthesis in fruit-producing species. Therefore, the transcriptomic analysis by RNA-seq was performed to observe gene expression alteration related to starch metabolism genes throughout the maturity stages of oil palm fruit with different oil yields. Gene expression profiles were examined with three different oil yields group (low, medium, and high) at six fruit development phases (4, 8, 12, 16, 20, and 22 weeks after pollination). We successfully identified and analyzed differentially expressed genes in oil palm mesocarps during development. The results showed that the transcriptome profile for each developmental phase was unique. Sucrose flux to the mesocarp tissue, rapid starch turnover, and high glycolytic activity have been identified as critical factors for oil production in oil palms. For starch metabolism and the glycolytic pathway, we identified specific gene expressions of enzyme isoforms (isozymes) that correlated with oil production, which may determine the oil content. This study provides valuable information for creating new high-oil-yielding palm varieties via breeding programs or genome editing approaches.}, language = {en} } @article{CompartSinghFettkeetal.2023, author = {Compart, Julia and Singh, Aakanksha and Fettke, J{\"o}rg and Apriyanto, Ardha}, title = {Customizing starch properties}, series = {Polymers}, volume = {15}, journal = {Polymers}, number = {16}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym15163491}, pages = {20}, year = {2023}, abstract = {Starch has been a convenient, economically important polymer with substantial applications in the food and processing industry. However, native starches present restricted applications, which hinder their industrial usage. Therefore, modification of starch is carried out to augment the positive characteristics and eliminate the limitations of the native starches. Modifications of starch can result in generating novel polymers with numerous functional and value-added properties that suit the needs of the industry. Here, we summarize the possible starch modifications in planta and outside the plant system (physical, chemical, and enzymatic) and their corresponding applications. In addition, this review will highlight the implications of each starch property adjustment.}, language = {en} } @article{BerryDammhahnBlaum2023, author = {Berry, Paul E. and Dammhahn, Melanie and Blaum, Niels}, title = {Keeping cool on hot days}, series = {Frontiers in ecology and evolution}, volume = {11}, journal = {Frontiers in ecology and evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2023.1172303}, pages = {13}, year = {2023}, abstract = {Long-lived organisms are likely to respond to a rapidly changing climate with behavioral flexibility. Animals inhabiting the arid parts of southern Africa face a particularly rapid rise in temperature which in combination with food and water scarcity places substantial constraints on the ability of animals to tolerate heat. We investigated how three species of African antelope-springbok Antidorcas marsupialis, kudu Tragelaphus strepsiceros and eland T. oryx-differing in body size, habitat preference and movement ecology, change their activity in response to extreme heat in an arid savanna. Serving as a proxy for activity, dynamic body acceleration data recorded every five minutes were analyzed for seven to eight individuals per species for the three hottest months of the year. Activity responses to heat during the hottest time of day (the afternoons) were investigated and diel activity patterns were compared between hot and cool days. Springbok, which prefer open habitat, are highly mobile and the smallest of the species studied, showed the greatest decrease in activity with rising temperature. Furthermore, springbok showed reduced mean activity over the 24 h cycle on hot days compared to cool days. Large-bodied eland seemed less affected by afternoon heat than springbok. While eland also reduced diurnal activity on hot days compared to cool days, they compensated for this by increasing nocturnal activity, possibly because their predation risk is lower. Kudu, which are comparatively sedentary and typically occupy shady habitat, seemed least affected during the hottest time of day and showed no appreciable difference in diel activity patterns between hot and cool days. The interplay between habitat preference, body size, movement patterns, and other factors seems complex and even sub-lethal levels of heat stress have been shown to impact an animal's long-term survival and reproduction. Thus, differing heat tolerances among species could result in a shift in the composition of African herbivore communities as temperatures continue to rise, with significant implications for economically important wildlife-based land use and conservation.}, language = {en} } @article{StieglerPahlGuillenetal.2023, author = {Stiegler, Jonas and Pahl, Janice and Guillen, Rafael Arce and Ullmann, Wiebke and Blaum, Niels}, title = {The heat is on}, series = {Frontiers in Ecology and Evolution}, volume = {11}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2023.1193861}, pages = {10}, year = {2023}, abstract = {Climate conditions severely impact the activity and, consequently, the fitness of wildlife species across the globe. Wildlife can respond to new climatic conditions, but the pace of human-induced change limits opportunities for adaptation or migration. Thus, how these changes affect behavior, movement patterns, and activity levels remains unclear. In this study, we investigate how extreme weather conditions affect the activity of European hares (Lepus europaeus) during their peak reproduction period. When hares must additionally invest energy in mating, prevailing against competitors, or lactating, we investigated their sensitivities to rising temperatures, wind speed, and humidity. To quantify their activity, we used the overall dynamic body acceleration (ODBA) calculated from tri-axial acceleration measurements of 33 GPS-collared hares. Our analysis revealed that temperature, humidity, and wind speed are important in explaining changes in activity, with a strong response for high temperatures above 25 \& DEG;C and the highest change in activity during temperature extremes of over 35 \& DEG;C during their inactive period. Further, we found a non-linear relationship between temperature and activity and an interaction of activity changes between day and night. Activity increased at higher temperatures during the inactive period (day) and decreased during the active period (night). This decrease was strongest during hot tropical nights. At a stage of life when mammals such as hares must substantially invest in reproduction, the sensitivity of females to extreme temperatures was particularly pronounced. Similarly, both sexes increased their activity at high humidity levels during the day and low wind speeds, irrespective of the time of day, while the effect of humidity was stronger for males. Our findings highlight the importance of understanding the complex relationships between extreme weather conditions and mammal behavior, critical for conservation and management. With ongoing climate change, extreme weather events such as heat waves and heavy rainfall are predicted to occur more often and last longer. These events will directly impact the fitness of hares and other wildlife species and hence the population dynamics of already declining populations across Europe.}, language = {en} } @article{AgarwalHamidizadehBier2023, author = {Agarwal, Saloni and Hamidizadeh, Mojdeh and Bier, Frank Fabian}, title = {Detection of reverse transcriptase LAMP-amplified nucleic acid from oropharyngeal viral swab samples using biotinylated DNA probes through a lateral flow assay}, series = {Biosensors : open access journal}, volume = {13}, journal = {Biosensors : open access journal}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios13110988}, pages = {15}, year = {2023}, abstract = {This study focuses on three key aspects: (a) crude throat swab samples in a viral transport medium (VTM) as templates for RT-LAMP reactions; (b) a biotinylated DNA probe with enhanced specificity for LFA readouts; and (c) a digital semi-quantification of LFA readouts. Throat swab samples from SARS-CoV-2 positive and negative patients were used in their crude (no cleaning or pre-treatment) forms for the RT-LAMP reaction. The samples were heat-inactivated but not treated for any kind of nucleic acid extraction or purification. The RT-LAMP (20 min processing time) product was read out by an LFA approach using two labels: FITC and biotin. FITC was enzymatically incorporated into the RT-LAMP amplicon with the LF-LAMP primer, and biotin was introduced using biotinylated DNA probes, specifically for the amplicon region after RT-LAMP amplification. This assay setup with biotinylated DNA probe-based LFA readouts of the RT-LAMP amplicon was 98.11\% sensitive and 96.15\% specific. The LFA result was further analysed by a smartphone-based IVD device, wherein the T-line intensity was recorded. The LFA T-line intensity was then correlated with the qRT-PCR Ct value of the positive swab samples. A digital semi-quantification of RT-LAMP-LFA was reported with a correlation coefficient of R2 = 0.702. The overall RT-LAMP-LFA assay time was recorded to be 35 min with a LoD of three RNA copies/µL (Ct-33). With these three advancements, the nucleic acid testing-point of care technique (NAT-POCT) is exemplified as a versatile biosensor platform with great potential and applicability for the detection of pathogens without the need for sample storage, transportation, or pre-processing.}, language = {en} } @article{ChengDennisOsuohaetal.2023, author = {Cheng, Feng and Dennis, Alice B. and Osuoha, Josephine Ijeoma and Canitz, Julia and Kirschbaum, Frank and Tiedemann, Ralph}, title = {A new genome assembly of an African weakly electric fish (Campylomormyrus compressirostris, Mormyridae) indicates rapid gene family evolution in Osteoglossomorpha}, series = {BMC genomics}, volume = {24}, journal = {BMC genomics}, number = {1}, publisher = {BMC}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-023-09196-6}, pages = {13}, year = {2023}, abstract = {Background Teleost fishes comprise more than half of the vertebrate species. Within teleosts, most phylogenies consider the split between Osteoglossomorpha and Euteleosteomorpha/Otomorpha as basal, preceded only by the derivation of the most primitive group of teleosts, the Elopomorpha. While Osteoglossomorpha are generally species poor, the taxon contains the African weakly electric fish (Mormyroidei), which have radiated into numerous species. Within the mormyrids, the genus Campylomormyrus is mostly endemic to the Congo Basin. Campylomormyrus serves as a model to understand mechanisms of adaptive radiation and ecological speciation, especially with regard to its highly diverse species-specific electric organ discharges (EOD). Currently, there are few well-annotated genomes available for electric fish in general and mormyrids in particular. Our study aims at producing a high-quality genome assembly and to use this to examine genome evolution in relation to other teleosts. This will facilitate further understanding of the evolution of the osteoglossomorpha fish in general and of electric fish in particular. Results A high-quality weakly electric fish (C. compressirostris) genome was produced from a single individual with a genome size of 862 Mb, consisting of 1,497 contigs with an N50 of 1,399 kb and a GC-content of 43.69\%. Gene predictions identified 34,492 protein-coding genes, which is a higher number than in the two other available Osteoglossomorpha genomes of Paramormyrops kingsleyae and Scleropages formosus. A Computational Analysis of gene Family Evolution (CAFE5) comparing 33 teleost fish genomes suggests an overall faster gene family turnover rate in Osteoglossomorpha than in Otomorpha and Euteleosteomorpha. Moreover, the ratios of expanded/contracted gene family numbers in Osteoglossomorpha are significantly higher than in the other two taxa, except for species that had undergone an additional genome duplication (Cyprinus carpio and Oncorhynchus mykiss). As potassium channel proteins are hypothesized to play a key role in EOD diversity among species, we put a special focus on them, and manually curated 16 Kv1 genes. We identified a tandem duplication in the KCNA7a gene in the genome of C. compressirostris. Conclusions We present the fourth genome of an electric fish and the third well-annotated genome for Osteoglossomorpha, enabling us to compare gene family evolution among major teleost lineages. Osteoglossomorpha appear to exhibit rapid gene family evolution, with more gene family expansions than contractions. The curated Kv1 gene family showed seven gene clusters, which is more than in other analyzed fish genomes outside Osteoglossomorpha. The KCNA7a, encoding for a potassium channel central for EOD production and modulation, is tandemly duplicated which may related to the diverse EOD observed among Campylomormyrus species.}, language = {en} } @article{CordobaTongBurgosetal.2023, author = {C{\´o}rdoba, Sandra Correa and Tong, Hao and Burgos, Asdrubal and Zhu, Feng and Alseekh, Saleh and Fernie, Alisdair R. and Nikoloski, Zoran}, title = {Identification of gene function based on models capturing natural variability of Arabidopsis thaliana lipid metabolism}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-023-40644-9}, pages = {12}, year = {2023}, abstract = {The use of automated tools to reconstruct lipid metabolic pathways is not warranted in plants. Here, the authors construct Plant Lipid Module for Arabidopsis rosette using constraint-based modeling, demonstrate its integration in other plant metabolic models, and use it to dissect the genetic architecture of lipid metabolism. Lipids play fundamental roles in regulating agronomically important traits. Advances in plant lipid metabolism have until recently largely been based on reductionist approaches, although modulation of its components can have system-wide effects. However, existing models of plant lipid metabolism provide lumped representations, hindering detailed study of component modulation. Here, we present the Plant Lipid Module (PLM) which provides a mechanistic description of lipid metabolism in the Arabidopsis thaliana rosette. We demonstrate that the PLM can be readily integrated in models of A. thaliana Col-0 metabolism, yielding accurate predictions (83\%) of single lethal knock-outs and 75\% concordance between measured transcript and predicted flux changes under extended darkness. Genome-wide associations with fluxes obtained by integrating the PLM in diel condition- and accession-specific models identify up to 65 candidate genes modulating A. thaliana lipid metabolism. Using mutant lines, we validate up to 40\% of the candidates, paving the way for identification of metabolic gene function based on models capturing natural variability in metabolism.}, language = {en} } @article{TomowskiLozadaGobilardJeltschetal.2023, author = {Tomowski, Maxi and Lozada-Gobilard, Sissi Donna and Jeltsch, Florian and Tiedemann, Ralph}, title = {Recruitment and migration patterns reveal a key role for seed banks in the meta-population dynamics of an aquatic plant}, series = {Scientific reports}, volume = {13}, journal = {Scientific reports}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-023-37974-5}, pages = {16}, year = {2023}, abstract = {Progressive habitat fragmentation threatens plant species with narrow habitat requirements. While local environmental conditions define population growth rates and recruitment success at the patch level, dispersal is critical for population viability at the landscape scale. Identifying the dynamics of plant meta-populations is often confounded by the uncertainty about soil-stored population compartments. We combined a landscape-scale assessment of an amphibious plant's population structure with measurements of dispersal complexity in time to track dispersal and putative shifts in functional connectivity. Using 13 microsatellite markers, we analyzed the genetic structure of extant Oenanthe aquatica populations and their soil seed banks in a kettle hole system to uncover hidden connectivity among populations in time and space. Considerable spatial genetic structure and isolation-by-distance suggest limited gene flow between sites. Spatial isolation and patch size showed minor effects on genetic diversity. Genetic similarity found among extant populations and their seed banks suggests increased local recruitment, despite some evidence of migration and recent colonization. Results indicate stepping-stone dispersal across adjacent populations. Among permanent and ephemeral demes the resulting meta-population demography could be determined by source-sink dynamics. Overall, these spatiotemporal connectivity patterns support mainland-island dynamics in our system, highlighting the importance of persistent seed banks as enduring sources of genetic diversity.}, language = {en} } @article{ArendZimmerXuetal.2023, author = {Arend, Marius and Zimmer, David and Xu, Rudan and Sommer, Frederik and M{\"u}hlhaus, Timo and Nikoloski, Zoran}, title = {Proteomics and constraint-based modelling reveal enzyme kinetic properties of Chlamydomonas reinhardtii on a genome scale}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-023-40498-1}, pages = {9}, year = {2023}, abstract = {Metabolic engineering of microalgae offers a promising solution for sustainable biofuel production, and rational design of engineering strategies can be improved by employing metabolic models that integrate enzyme turnover numbers. However, the coverage of turnover numbers for Chlamydomonas reinhardtii, a model eukaryotic microalga accessible to metabolic engineering, is 17-fold smaller compared to the heterotrophic cell factory Saccharomyces cerevisiae. Here we generate quantitative protein abundance data of Chlamydomonas covering 2337 to 3708 proteins in various growth conditions to estimate in vivo maximum apparent turnover numbers. Using constrained-based modeling we provide proxies for in vivo turnover numbers of 568 reactions, representing a 10-fold increase over the in vitro data for Chlamydomonas. Integration of the in vivo estimates instead of in vitro values in a metabolic model of Chlamydomonas improved the accuracy of enzyme usage predictions. Our results help in extending the knowledge on uncharacterized enzymes and improve biotechnological applications of Chlamydomonas.}, language = {en} } @article{ZavorkaBlancoChaguacedaetal.2023, author = {Zavorka, Libor and Blanco, Andreu and Chaguaceda, Fernando and Cucherousset, Julien and Killen, Shaun S. and Lienart, Camilla and Mathieu-Resuge, Margaux and Nemec, Pavel and Pilecky, Matthias and Scharnweber, Inga Kristin and Twining, Cornelia W. and Kainz, Martin J.}, title = {The role of vital dietary biomolecules in eco-evo-devo dynamics}, series = {Trends in ecology and evolution}, volume = {38}, journal = {Trends in ecology and evolution}, number = {1}, publisher = {Cell Press}, address = {Cambridge}, issn = {0169-5347}, doi = {10.1016/j.tree.2022.08.010}, pages = {72 -- 84}, year = {2023}, abstract = {The physiological dependence of animals on dietary intake of vitamins, amino acids, and fatty acids is ubiquitous. Sharp differences in the availability of these vital dietary biomolecules among different resources mean that consumers must adopt a range of strategies to meet their physiological needs. We review the emerging work on omega-3 long-chain polyunsaturated fatty acids, focusing predominantly on predator-prey interactions, to illustrate that trade-off between capacities to consume resources rich in vital biomolecules and internal synthesis capacity drives differences in phenotype and fitness of consumers. This can then feedback to impact ecosystem functioning. We outline how focus on vital dietary biomolecules in eco-eco-devo dynamics can improve our understanding of anthropogenic changes across multiple levels of biological organization.}, language = {en} } @article{GrdseloffBouldayRoedeletal.2023, author = {Grdseloff, Nastasja and Boulday, Gwenola and Roedel, Claudia J. and Otten, Cecile and Vannier, Daphne Raphaelle and Cardoso, Cecile and Faurobert, Eva and Dogra, Deepika and Tournier-Lasserve, Elisabeth and Abdelilah-Seyfried, Salim}, title = {Impaired retinoic acid signaling in cerebral cavernous malformations}, series = {Scientific reports}, volume = {13}, journal = {Scientific reports}, number = {1}, publisher = {Nature Portfolio}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-023-31905-0}, pages = {11}, year = {2023}, abstract = {The capillary-venous pathology cerebral cavernous malformation (CCM) is caused by loss of CCM1/Krev interaction trapped protein 1 (KRIT1), CCM2/MGC4607, or CCM3/PDCD10 in some endothelial cells. Mutations of CCM genes within the brain vasculature can lead to recurrent cerebral hemorrhages. Pharmacological treatment options are urgently needed when lesions are located in deeply-seated and in-operable regions of the central nervous system. Previous pharmacological suppression screens in disease models of CCM led to the discovery that treatment with retinoic acid improved CCM phenotypes. This finding raised a need to investigate the involvement of retinoic acid in CCM and test whether it has a curative effect in preclinical mouse models. Here, we show that components of the retinoic acid synthesis and degradation pathway are transcriptionally misregulated across disease models of CCM. We complemented this analysis by pharmacologically modifying retinoic acid levels in zebrafish and human endothelial cell models of CCM, and in acute and chronic mouse models of CCM. Our pharmacological intervention studies in CCM2-depleted human umbilical vein endothelial cells (HUVECs) and krit1 mutant zebrafish showed positive effects when retinoic acid levels were increased. However, therapeutic approaches to prevent the development of vascular lesions in adult chronic murine models of CCM were drug regiment-sensitive, possibly due to adverse developmental effects of this hormone. A treatment with high doses of retinoic acid even worsened CCM lesions in an adult chronic murine model of CCM. This study provides evidence that retinoic acid signaling is impaired in the CCM pathophysiology and suggests that modification of retinoic acid levels can alleviate CCM phenotypes.}, language = {en} } @article{StueblerKloftHuisinga2023, author = {St{\"u}bler, Sabine and Kloft, Charlotte and Huisinga, Wilhelm}, title = {Cell-level systems biology model to study inflammatory bowel diseases and their treatment options}, series = {CPT: pharmacometrics \& systems pharmacology}, volume = {12}, journal = {CPT: pharmacometrics \& systems pharmacology}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {2163-8306}, doi = {10.1002/psp4.12932}, pages = {690 -- 705}, year = {2023}, abstract = {To help understand the complex and therapeutically challenging inflammatory bowel diseases (IBDs), we developed a systems biology model of the intestinal immune system that is able to describe main aspects of IBD and different treatment modalities thereof. The model, including key cell types and processes of the mucosal immune response, compiles a large amount of isolated experimental findings from literature into a larger context and allows for simulations of different inflammation scenarios based on the underlying data and assumptions. In the context of a large and diverse virtual IBD population, we characterized the patients based on their phenotype (in contrast to healthy individuals, they developed persistent inflammation after a trigger event) rather than on a priori assumptions on parameter differences to a healthy individual. This allowed to reproduce the enormous diversity of predispositions known to lead to IBD. Analyzing different treatment effects, the model provides insight into characteristics of individual drug therapy. We illustrate for anti-TNF-alpha therapy, how the model can be used (i) to decide for alternative treatments with best prospects in the case of nonresponse, and (ii) to identify promising combination therapies with other available treatment options.}, language = {en} } @article{NendelRecklingDebaekeetal.2023, author = {Nendel, Claas and Reckling, Moritz and Debaeke, Philippe and Schulz, Susanne and Berg-Mohnicke, Michael and Constantin, Julie and Fronzek, Stefan and Hoffmann, Munir and Jakšić, Snežana and Kersebaum, Kurt-Christian and Klimek-Kopyra, Agnieszka and Raynal, H{\´e}l{\`e}ne and Schoving, C{\´e}line and Stella, Tommaso and Battisti, Rafael}, title = {Future area expansion outweighs increasing drought risk for soybean in Europe}, series = {Global change biology}, volume = {29}, journal = {Global change biology}, number = {5}, publisher = {Wiley-Blackwell}, address = {Ocford [u.a]}, issn = {1354-1013}, doi = {10.1111/gcb.16562}, pages = {1340 -- 1358}, year = {2023}, abstract = {The European Union is highly dependent on soybean imports from overseas to meet its protein demands. Individual Member States have been quick to declare self-sufficiency targets for plant-based proteins, but detailed strategies are still lacking. Rising global temperatures have painted an image of a bright future for soybean production in Europe, but emerging climatic risks such as drought have so far not been included in any of those outlooks. Here, we present simulations of future soybean production and the most prominent risk factors across Europe using an ensemble of climate and soybean growth models. Projections suggest a substantial increase in potential soybean production area and productivity in Central Europe, while southern European production would become increasingly dependent on supplementary irrigation. Average productivity would rise by 8.3\% (RCP 4.5) to 8.7\% (RCP 8.5) as a result of improved growing conditions (plant physiology benefiting from rising temperature and CO2 levels) and farmers adapting to them by using cultivars with longer phenological cycles. Suitable production area would rise by 31.4\% (RCP 4.5) to 37.7\% (RCP 8.5) by the mid-century, contributing considerably more than productivity increase to the production potential for closing the protein gap in Europe. While wet conditions at harvest and incidental cold spells are the current key challenges for extending soybean production, the models and climate data analysis anticipate that drought and heat will become the dominant limitations in the future. Breeding for heat-tolerant and water-efficient genotypes is needed to further improve soybean adaptation to changing climatic conditions.}, language = {en} } @article{KuekenTrevesNikoloski2023, author = {K{\"u}ken, Anika and Treves, Haim and Nikoloski, Zoran}, title = {A simulation-free constrained regression approach for flux estimation in isotopically nonstationary metabolic flux analysis with applications in microalgae}, series = {Frontiers in plant science : FPLS}, volume = {14}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2023.1140829}, pages = {12}, year = {2023}, abstract = {Introduction Flux phenotypes from different organisms and growth conditions allow better understanding of differential metabolic networks functions. Fluxes of metabolic reactions represent the integrated outcome of transcription, translation, and post-translational modifications, and directly affect growth and fitness. However, fluxes of intracellular metabolic reactions cannot be directly measured, but are estimated via metabolic flux analysis (MFA) that integrates data on isotope labeling patterns of metabolites with metabolic models. While the application of metabolomics technologies in photosynthetic organisms have resulted in unprecedented data from 13CO2-labeling experiments, the bottleneck in flux estimation remains the application of isotopically nonstationary MFA (INST-MFA). INST-MFA entails fitting a (large) system of coupled ordinary differential equations, with metabolite pools and reaction fluxes as parameters. Here, we focus on the Calvin-Benson cycle (CBC) as a key pathway for carbon fixation in photosynthesizing organisms and ask if approaches other than classical INST-MFA can provide reliable estimation of fluxes for reactions comprising this pathway. Methods First, we show that flux estimation with the labeling patterns of all CBC intermediates can be formulated as a single constrained regression problem, avoiding the need for repeated simulation of time-resolved labeling patterns. Results We then compare the flux estimates of the simulation-free constrained regression approach with those obtained from the classical INST-MFA based on labeling patterns of metabolites from the microalgae Chlamydomonas reinhardtii, Chlorella sorokiniana and Chlorella ohadii under different growth conditions. Discussion Our findings indicate that, in data-rich scenarios, simulation-free regression-based approaches provide a suitable alternative for flux estimation from classical INST-MFA since we observe a high qualitative agreement (rs=0.89) to predictions obtained from INCA, a state-of-the-art tool for INST-MFA.}, language = {en} } @article{LangaryKuekenNikoloski2023, author = {Langary, Damoun and K{\"u}ken, Anika and Nikoloski, Zoran}, title = {The effective deficiency of biochemical networks}, series = {Scientific reports}, volume = {13}, journal = {Scientific reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-023-41767-1}, pages = {12}, year = {2023}, abstract = {The deficiency of a (bio)chemical reaction network can be conceptually interpreted as a measure of its ability to support exotic dynamical behavior and/or multistationarity. The classical definition of deficiency relates to the capacity of a network to permit variations of the complex formation rate vector at steady state, irrespective of the network kinetics. However, the deficiency is by definition completely insensitive to the fine details of the directionality of reactions as well as bounds on reaction fluxes. While the classical definition of deficiency can be readily applied in the analysis of unconstrained, weakly reversible networks, it only provides an upper bound in the cases where relevant constraints on reaction fluxes are imposed. Here we propose the concept of effective deficiency, which provides a more accurate assessment of the network's capacity to permit steady state variations at the complex level for constrained networks of any reversibility patterns. The effective deficiency relies on the concept of nonstoichiometric balanced complexes, which we have already shown to be present in real-world biochemical networks operating under flux constraints. Our results demonstrate that the effective deficiency of real-world biochemical networks is smaller than the classical deficiency, indicating the effects of reaction directionality and flux bounds on the variation of the complex formation rate vector at steady state.}, language = {en} }