@article{RathoreGargGarg2009, author = {Rathore, R. S. and Garg, Neha and Garg, Sarika}, title = {Starch phosphorylase : role in starch metabolism and biotechnological applications}, issn = {0738-8551}, doi = {10.1080/07388550902926063}, year = {2009}, abstract = {The alpha-glucan phosphorylases of the glycosyltransferase family are important enzymes of carbohydrate metabolism in prokaryotes and eukaryotes. The plant a-glucan phosphorylase, commonly called starch phosphorylase (EC 2.4.1.1), is largely known for the phosphorolytic degradation of starch. Starch phosphorylase catalyzes the reversible transfer of glucosyl units from glucose-1-phosphate to the nonreducing end of alpha-1,4-D-glucan chains with the release of phosphate. Two distinct forms of starch phosphorylase, plastidic phosphorylase and cytosolic phosphorylase, have been consistently observed in higher plants. Starch phosphorylase is industrially useful and a preferred enzyme among all glucan phosphorylases for phosphorolytic reactions for the production of glucose-1-phosphate and for the development of engineered varieties of glucans and starch. Despite several investigations, the precise functional mechanisms of its characteristic multiple forms and the structural details are still eluding us. Recent discoveries have shed some light on their physiological substrates, precise biological functions, and regulatory aspects. in this review, we have highlighted important developments in understanding the role of starch phosphorylases and their emerging applications in industry.}, language = {en} } @article{RaabovaMuenzbergovaFischer2009, author = {Raabov{\´a}, Jana and Muenzbergov{\´a}, Zuzana and Fischer, Markus}, title = {Consequences of near and far between-population crosses for offspring fitness in a rare herb}, issn = {1435-8603}, doi = {10.1111/j.1438-8677.2008.00186.x}, year = {2009}, abstract = {Crosses between plants from different populations may result in heterosis or outbreeding depression. However, despite its importance for conservation, little is known about the spatial scale over which these effects may arise. To investigate the consequences of between-population crosses at two distinct spatial scales, we conducted reciprocal crosses between four populations from two regions in the rare perennial herb Aster amellus. We assessed seed set and offspring fitness in a common garden experiment. Overall, between-population crosses within regions (10 km) resulted in 8\% lower seed set than within-population crosses, while between-region crosses (70 km) resulted in 17\% higher seed set than within-population crosses. Moreover, offspring from between-population crosses produced 18\% more flower heads than offspring from within-population crosses. We conclude that hybridisation between A. amellus plants from different populations did not lead to immediate outbreeding depression and, thus, could represent a valid conservation option to increase genetic diversity. Moreover, our results suggest that the distance between populations affects the outputs of between-population crosses and therefore needs to be taken into account when promoting gene flow between populations.}, language = {en} } @article{PlathKromuszczynskiTiedemann2009, author = {Plath, Martin and Kromuszczynski, Katja and Tiedemann, Ralph}, title = {Audience effect alters male but not female mating preferences}, issn = {0340-5443}, doi = {10.1007/s00265-008-0672-7}, year = {2009}, abstract = {Males often face strong mating competition by neighboring males in their social environment. A recent study by Plath et al. (Anim Behav 75:21-29, 2008a) has demonstrated that the visual presence of a male competitor (i.e., an audience male) affects the expression of male mating preferences in a poeciliid fish (Poecilia mexicana) with a weaker expression of mating preferences when an audience male observed the focal male. This may be a tactic to reduce sperm competition, since surrounding males likely share intrinsic preferences for female traits or copy mate choice decisions. Here, we examined the hypothesis that a same-sex audience would affect female mate preferences less than male mating preferences. Our hypothesis was based on the assumptions that (1) competition for mates in a fashion that would be comparable in strength to sperm competition or overt male-male aggression is absent among Poecilia females, and (2) P. mexicana females typically form female-biased shoals, such that almost any female mate choice in nature occurs in front of a female audience. Poecilia females (P. mexicana, surface and cave form, and the closely related gynogenetic Poecilia formosa) were given a choice between a large and a small male, and the tests were repeated while a conspecific, a heterospecific, or no audience female (control) was presented. Females spent more time in the neutral zone and, thus, less time near the males during the second part of a trial when an audience was presented, but-consistent with predictions-females showed only slightly weaker expression of mate preferences during the second part of the tests. This decline was not specific to the treatment involving an audience and was significantly weaker than the effect seen in the male sex.}, language = {en} } @article{Plath2009, author = {Plath, Martin}, title = {A test for conspecific cueing in two sympatric species of pupfish (Cyprinodon beltrani, C. simus)}, issn = {0378-1909}, doi = {10.1007/s10641-009-9455-x}, year = {2009}, abstract = {In many fishes, individuals prefer to associate with phenotypically similar or conspecific individuals (conspecific cueing). Such phenotypic segregation can be an important evolutionary driver, for example, in intralacustric sympatric speciation processes. I examined conspecific cueing in two species of sympatric pupfish from Laguna Chichancanab in southern Mexico: the little shoaling and highly territorial Cyprinodon beltrani and the highly shoaling but non-territorial C. simus. Females were tested for shoal species preferences in two testing scenarios: (1) a sequential choice test where shoals of four conspecific or four heterospecific (Cyprinodon sp. or Poecilia reticulata) females were presented in succession, and (2) a simultaneous choice test where female shoals of both Cyprindon species were presented concurrently. Overall, higher shoaling in C. simus was corroborated in this study. In the sequential test, no effect of the type of stimulus shoal (con- or heterospecific) on shoaling behavior was detected. In the simultaneous tests, C. beltrani, but not C. simus females showed a preference for the conspecific shoal. It seems possible that C. simus females did not evolve species recognition mechanisms because no other Cyprinodon species in the Laguna Chichancanab shows equally high shoaling, which automatically leads to the formation of single-species (i.e., C. simus-) shoals. C. simus males do not establish long-term territories, but rather spawn within shoals, whereas C. beltrani females approach males in their breeding territories to spawn. I discuss that this behavioral difference still provides a powerful reproductive isolation mechanism even in the absence of conspecific cueing in C. simus.}, language = {en} } @article{PinkernelleAbrahamSeideletal.2009, author = {Pinkernelle, Josephine and Abraham, Andreas and Seidel, Katja and Braun, Katharina}, title = {Paternal deprivation induces dendritic and synaptic changes and hemispheric asymmetry of pyramidal neurons in the somatosensory cortex}, issn = {1932-8451}, doi = {10.1002/Dneu.20726}, year = {2009}, abstract = {Similar to maternal care, paternal care is a source of neonatal sensory stimulation, which in primates and rodents has been shown to be essential for developing structure and function of sensory cortices. The aim of our study in the biparental rodent Octodon degus was to assess the impact of paternal deprivation on dendritic and synaptic development in the somatosensory cortex. We (i) quantified the amount of paternal care in relation to total parental investment and (ii) compared dendritic and synaptic development of pyramidal neurons in the somatosensory cortex of animals raised by a single mother or by both parents. On the behavioral level we show that paternal care comprises 37\% of total parent-offspring interactions, and that the somatosensory stimulation provided by the fathers primarily consists of huddling, licking/grooming, and playing. On the morphological level we found that, compared with offspring raised by both parents (mother and father), the father-deprived animals displayed significantly reduced spine numbers on the basal dendrites of pyramidal neurons. Furthermore, paternal deprivation induces hemispheric asymmetry of the dendritic morphology of somatosensory pyramidal neurons. Father-deprived animals show shorter and less complex basal dendrites in the left somatosensory cortex compared with the right hemisphere. These findings indicate that paternal deprivation results in delayed or retarded dendritic and synaptic development of somatosensory circuits.}, language = {en} } @article{PadurWedekindOeztuerketal.2009, author = {Padur, Lisa and Wedekind, Juliane and {\"O}zt{\"u}rk, {\"O}znur and Streit, Bruno and Tiedemann, Ralph and Plath, Martin}, title = {Do audience effects lead to relaxed male sexual harassment?}, issn = {0005-7959}, doi = {10.1163/000579509x12483520922124}, year = {2009}, abstract = {Several recent studies reported on so-called audience effects in male Atlantic mollies (Poecilia mexicana), in which the visual presence of a potential rival affects male sexual activity. We asked whether and how audience effects interact with male sexual harassment. Poecilia mexicana almost constantly attempt to mate, while females are mostly non- responsive to male approaches. Females flee from this sexual harassment and, thus, are more vigilant in the presence of males, so females may have hampered feeding opportunities. Do audience effects lead to altered male sexual harassment? Focal females were given an opportunity to feed in the presence of a male or a female partner and the difference in feeding times was interpreted as an effect caused by male harassment. Tests were conducted without an audience (1), or an audience male was visually presented either directly inside the test tank (2), or further away (in an adjoining compartment (3)). We found that levels of pre-mating behaviour did not vary significantly among treatments, but males exhibited more copulation attempts (thrusting) in treatment (3), suggesting that males respond to increased risk of sperm competition with higher sperm expenditure. Females fed less (and started feeding later) when a harassing partner male was around, and this effect was not dependent on the audience treatment, but, overall, females spent more time feeding (and started feeding earlier) when an audience was presented. Hence, feeding time reductions appear to be independent of audience effects, but perceived 'safety in numbers' may lead to increased foraging in larger groups.}, language = {en} } @article{NikoloskiMaySelbig2009, author = {Nikoloski, Zoran and May, Patrick and Selbig, Joachim}, title = {A new network model explains the evolution of plant-specific metabolic networks}, issn = {1095-6433}, doi = {10.1016/j.cbpa.2009.04.567}, year = {2009}, language = {en} } @article{NeumannMittelstaedtSeduketal.2009, author = {Neumann, Meina and Mittelstaedt, Gerd and Seduk, Farida and Iobbi-Nivol, Chantal and Leimk{\"u}hler, Silke}, title = {MocA is a specific cytidylyltransferase involved in molybdopterin cytosine dinucleotide biosynthesis in Escherichia coli}, issn = {0021-9258}, doi = {10.1074/jbc.M109.008565}, year = {2009}, abstract = {We have purified and characterized a specific CTP: molybdopterin cytidylyltransferase for the biosynthesis of the molybdopterin (MPT) cytosine dinucleotide (MCD) cofactor in Escherichia coli. The protein, named MocA, shows 22\% amino acid sequence identity to E. coli MobA, the specific GTP: molybdopterin guanylyltransferase for molybdopterin guanine dinucleotide biosynthesis. MocA is essential for the activity of the MCD-containing enzymes aldehyde oxidoreductase Yag-TSR and the xanthine dehydrogenases XdhABC and XdhD. Using a fully defined in vitro assay, we showed that MocA, Mo-MPT, CTP, and MgCl2 are required and sufficient for MCD biosynthesis in vitro. The activity of MocA is specific for CTP; other nucleotides such as ATP and GTP were not utilized. In the defined in vitro system a turnover number of 0.37 +/- 0.01 min(-1) was obtained. A1:1 binding ratio of MocA to Mo-MPT and CTP was determined to monomeric MocA with dissociation constants of 0.23 +/- 0.02 mu M for CTP and 1.17 +/- 0.18 mu M for Mo-MPT. We showed that MocA was also able to convert MPT to MCD in the absence of molybdate, however, with only one catalytic turnover. The addition of molybdate after one turnover gave rise to a higher MCD production, revealing that MCD remains bound to MocA in the absence of molybdate. This work presents the first characterization of a specific enzyme involved in MCD biosynthesis in bacteria.}, language = {en} } @article{NeumannMittelstaedtIobbiNivoletal.2009, author = {Neumann, Meina and Mittelstaedt, Gerd and Iobbi-Nivol, Chantal and Saggu, Miguel and Lendzian, Friedhelm and Hildebrandt, Peter and Leimk{\"u}hler, Silke}, title = {A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli}, issn = {1742-464X}, doi = {10.1111/j.1742-4658.2009.07000.x}, year = {2009}, abstract = {Three DNA regions carrying genes encoding putative homologs of xanthine dehydrogenases were identified in Escherichia coli, named xdhABC, xdhD, and yagTSRQ. Here, we describe the purification and characterization of gene products of the yagTSRQ operon, a molybdenum-containing iron-sulfur flavoprotein from E. coli, which is located in the periplasm. The 135 kDa enzyme comprised a noncovalent (alpha beta gamma) heterotrimer with a large (78.1 kDa) molybdenum cofactor (Moco)-containing YagR subunit, a medium (33.9 kDa) FAD-containing YagS subunit, and a small (21.0 kDa) 2 x [2Fe2S]-containing YagT subunit. YagQ is not a subunit of the mature enzyme, and the protein is expected to be involved in Moco modification and insertion into YagTSR. Analysis of the form of Moco present in YagTSR revealed the presence of the molybdopterin cytosine dinucleotide cofactor. Two different [2Fe2S] clusters, typical for this class of enzyme, were identified by EPR. YagTSR represents the first example of a molybdopterin cytosine dinucleotide-containing protein in E. coli. Kinetic characterization of the enzyme revealed that YagTSR converts a broad spectrum of aldehydes, with a preference for aromatic aldehydes. Ferredoxin instead of NAD(+) or molecular oxygen was used as terminal electron acceptor. Complete growth inhibition of E. coli cells devoid of genes from the yagTSRQ operon was observed by the addition of cinnamaldehyde to a low-pH medium. This finding shows that YagTSR might have a role in the detoxification of aromatic aldehydes for E. coli under certain growth conditions.}, language = {en} } @article{NasoDreyerPedemonteetal.2009, author = {Naso, Alessia and Dreyer, Ingo and Pedemonte, Laura and Testa, Ilaria and Gomez-Porras, Judith Lucia and Usai, Cesare and M{\"u}ller-R{\"o}ber, Bernd and Diaspro, Alberto and Gambale, Franco and Picco, Cristiana}, title = {The role of the C-terminus for functional heteromerization of the plant channel KDC1}, issn = {0006-3495}, doi = {10.1016/j.bpj.2009.02.055}, year = {2009}, abstract = {Voltage-gated potassium channels are formed by the assembly of four identical (homotetramer) or different (heterotetramer) subunits. Tetramerization of plant potassium channels involves the C-terminus of the protein. We investigated the role of the C-terminus of KDC1, a Shaker-like inward-rectifying K+ channel that does not form functional homomeric channels, but participates in the formation of heteromeric complexes with other potassium alpha- subunits when expressed in Xenopus oocytes. The interaction of KDC1 with KAT1 was investigated using the yeast two- hybrid system, fluorescence and electrophysiological studies. We found that the KDC1-EGFP fusion protein is not targeted to the plasma membrane of Xenopus oocytes unless it is coexpressed with KAT1. Deletion mutants revealed that the KDC1 C- terminus is involved in heteromerization. Two domains of the C-terminus, the region downstream the putative cyclic nucleotide binding domain and the distal part of the C-terminus called K-HA domain, contributed to a different extent to channel assembly. Whereas the first interacting region of the C-terminus was necessary for channel heteromerization, the removal of the distal KHA domain decreased but did not abolish the formation of heteromeric complexes. Similar results were obtained when coexpressing KDC1 with the KAT1-homolog KDC2 from carrots, thus indicating the physiological significance of the KAT1/KDC1 characterization. Electrophysiological experiments showed furthermore that the heteromerization capacity of KDC1 was negatively influenced by the presence of the enhanced green fluorescence protein fusion.}, language = {en} }