@article{SaremAryaHeizmannetal.2018, author = {Sarem, Melika and Arya, Neha and Heizmann, Miriam and Neffe, Axel T. and Barbero, Andrea and Gebauer, Tim P. and Martin, Ivan and Lendlein, Andreas and Shastri, V. Prasad}, title = {Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo}, series = {Acta biomaterialia}, volume = {69}, journal = {Acta biomaterialia}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2018.01.025}, pages = {83 -- 94}, year = {2018}, abstract = {The limited capacity of cartilage to heal large lesions through endogenous mechanisms has led to extensive effort to develop materials to facilitate chondrogenesis. Although physical-chemical properties of biomaterials have been shown to impact in vitro chondrogenesis, whether these findings are translatable in vivo is subject of debate. Herein, architectured 3D hydrogel scaffolds (ArcGel) (produced by crosslinking gelatin with ethyl lysine diisocyanate (LDI)) were used as a model system to investigate the interplay between scaffold mechanical properties and degradation on matrix deposition by human articular chondrocytes (HAC) from healthy donors in vitro and in vivo. Using ArcGel scaffolds of different tensile and shear modulus, and degradation behavior; in this study, we compared the fate of ex vivo engineeredArcGels-chondrocytes constructs, i.e. the traditional tissue engineering approach, with the de novo formation of cartilaginous tissue in HAC laden ArcGels in an ectopic nude mouse model. While the softer and fast degrading ArcGel (LNCO3) was more efficient at promoting chondrogenic differentiation in vitro, upon ectopic implantation, the stiffer and slow degrading ArcGel (LNCO8) was superior in maintaining chondrogenic phenotype in HAC and retention of cartilaginous matrix. Furthermore, surprisingly the de novo formation of cartilage tissue was promoted only in LNCO8. Since HAC cultured for only three days in the LNCO8 environment showed upregulation of hypoxia-associated genes, this suggests a potential role for hypoxia in the observed in vivo outcomes. In summary, this study sheds light on how immediate environment (in vivo versus in vitro) can significantly impact the outcomes of cell-laden biomaterials. Statement of Significance In this study, 3D architectured hydrogels (ArcGels) with different mechanical and biodegradation properties were investigated for their potential to promote formation of cartilaginous matrix by human articular chondrocytes in vitro and in vivo. Two paradigms were explored (i) ex vivo engineering followed by in vivo implantation in ectopic site of nude mice and (ii) short in vitro culture (3 days) followed by implantation to induce de novo cartilage formation. Softer and fast degrading ArcGel were better at promoting chondrogenesis in vitro, while stiffer and slow degrading ArcGel were strikingly superior in both maintaining chondrogenesis in vivo and inducing de novo formation of cartilage. Our findings highlight the importance of the interplay between scaffold mechanics and degradation in chondrogenesis.}, language = {en} } @article{RackwitzBald2018, author = {Rackwitz, Jenny and Bald, Ilko}, title = {Low-energy electron-induced strand breaks in telomere-derived DNA sequences}, series = {Chemistry - a European journal}, volume = {24}, journal = {Chemistry - a European journal}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201705889}, pages = {4680 -- 4688}, year = {2018}, abstract = {During cancer radiation therapy high-energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low-energy (<20 eV) electrons, which are able to damage DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low-energy electron-induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G-rich sequences. Here, we use DNA origami platforms to expose G-rich telomere sequences to low-energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5′-(TTA GGG)2 is more sensitive to low-energy electrons than an intermixed sequence 5′-(TGT GTG A)2 confirming the unique electronic properties resulting from G-stacking. With increasing length of the oligonucleotide (i.e., going from 5′-(GGG ATT)2 to 5′-(GGG ATT)4), both the variety of topology and the electron-induced strand break cross sections increase. Addition of K+ ions decreases the strand break cross section for all sequences that are able to fold G-quadruplexes or G-intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low-energy electron-induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy.}, language = {en} } @article{ZimmermannJohnGrigorievetal.2018, author = {Zimmermann, Marc and John, Daniela and Grigoriev, Dmitry and Puretskiy, Nikolay and B{\"o}ker, Alexander}, title = {From 2D to 3D patches on multifunctional particles}, series = {Soft matter}, volume = {14}, journal = {Soft matter}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c8sm00163d}, pages = {2301 -- 2309}, year = {2018}, abstract = {A straightforward approach for the precise multifunctional surface modification of particles with three-dimensional patches using microcontact printing is presented. By comparison to previous works it was possible to not only control the diameter, but also to finely tune the thickness of the deposited layer, opening up the way for three-dimensional structures and orthogonal multifunctionality. The use of PEI as polymeric ink, PDMS stamps for microcontact printing on silica particles and the influence of different solvents during particle release on the creation of functional particles with three-dimensional patches are described. Finally, by introducing fluorescent properties by incorporation of quantum dots into patches and by particle self-assembly via avidin-biotin coupling, the versatility of this novel modification method is demonstrated.}, language = {en} } @article{HeidenYueKirschetal.2018, author = {Heiden, Sophia and Yue, Yanhua and Kirsch, Harald and Wirth, Jonas A. and Saalfrank, Peter and Campen, Richard Kramer}, title = {Water dissociative adsorption on α-Al2O3(112̅0) is controlled by surface site undercoordination, density, and topology}, series = {The journal of physical chemistry / publ. weekly by the American Chemical Society : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry / publ. weekly by the American Chemical Society : C, Nanomaterials and interfaces}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.7b10410}, pages = {6573 -- 6584}, year = {2018}, abstract = {α-Al2O3 surfaces are common in a wide variety of applications and useful models of more complicated, environmentally abundant, alumino-silicate surfaces. While decades of work have clarified that all properties of these surfaces depend sensitively on the crystal face and the presence of even small amounts of water, quantitative insight into this dependence has proven challenging. Overcoming this challenge requires systematic study of the mechanism by which water interacts with various α-Al2O3 surfaces. Such insight is most easily gained for the interaction of small amounts of water with surfaces in ultra high vacuum. In this study, we continue our combined theoretical and experimental approach to this problem, previously applied to water interaction with the α-Al2O3 (0001) and (11̅02) surfaces, now to water interaction with the third most stable surface, that is, the (112̅0). Because we characterize all three surfaces using similar tools, it is straightforward to conclude that the (112̅0) is most reactive with water. The most important factor explaining its increased reactivity is that the high density of undercoordinated surface Al atoms on the (112̅0) surface allows the bidentate adsorption of OH fragments originating from dissociatively adsorbed water, while only monodentate adsorption is possible on the (0001) and (11̅02) surfaces: the reactivity of α-Al2O3 surfaces with water depends strongly, and nonlinearly, on the density of undercoordinated surface Al atoms.}, language = {en} } @misc{KochovskiJiaLu2018, author = {Kochovski, Zdravko and Jia, He and Lu, Yan}, title = {Morphological study of microgel-based colloidal systems by cryogenic transmission electron microscopy (cryo-TEM)}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {256}, journal = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {2}, year = {2018}, language = {en} } @article{AriasFeuerbachSchmidtetal.2018, author = {Arias, Hugo R. and Feuerbach, Dominik and Schmidt, Bernd and Heydenreich, Matthias and Paz, Cristian and Ortells, Marcelo O.}, title = {Drimane Sesquiterpenoids Noncompetitively Inhibit Human alpha 4 beta 2 Nicotinic Acetylcholine Receptors with Higher Potency Compared to Human alpha 3 beta 4 and alpha 7 Subtypes}, series = {Journal of natural products}, volume = {81}, journal = {Journal of natural products}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0163-3864}, doi = {10.1021/acs.jnatprod.7b00893}, pages = {811 -- 817}, year = {2018}, abstract = {The drimane sesquiterpenoids drimenin, cinnamolide, dendocarbin A, and polygodial were purified from the Canelo tree (Drimys winteri) and chemically characterized by spectroscopic methods. The pharmacological activity of these natural compounds were determined on hα4β2, hα3β4, and hα7 nicotinic acetylcholine receptors (AChRs) by Ca2+ influx measurements. The results established that drimane sesquiterpenoids inhibit AChRs with the following selectivity: hα4β2 > hα3β4 > hα7. In the case of hα4β2 AChRs, the following potency rank order was determined (IC50's in μM): drimenin (0.97 ± 0.35) > cinnamolide (1.57 ± 0.36) > polygodial (62.5 ± 19.9) ≫ dendocarbin A (no activity). To determine putative structural features underlying the differences in inhibitory potency at hα4β2 AChRs, additional structure-activity relationship and molecular docking experiments were performed. The Ca2+ influx and structural results supported a noncompetitive mechanism of inhibition, where drimenin interacted with luminal and nonluminal (TMD-β2 intrasubunit) sites. The structure-activity relationship results, i.e., the lower the ligand polarity, the higher the inhibitory potency, supported the nonluminal interaction. Ligand binding to both sites might inhibit the hα4β2 AChR by a cooperative mechanism, as shown experimentally (nH > 1). Drimenin could be used as a molecular scaffold for the development of more potent inhibitors with higher selectivity for the hα4β2 AChR.}, language = {en} } @article{MuzdaloSaalfrankVreedeetal.2018, author = {Muzdalo, Anja and Saalfrank, Peter and Vreede, Jocelyne and Santer, Mark}, title = {Cis-to-Trans Isomerization of Azobenzene Derivatives Studied with Transition Path Sampling and Quantum Mechanical/Molecular Mechanical Molecular Dynamics}, series = {Journal of chemical theory and computation}, volume = {14}, journal = {Journal of chemical theory and computation}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/acs.jctc.7b01120}, pages = {2042 -- 2051}, year = {2018}, abstract = {Azobenzene-based molecular photoswitches are becoming increasingly important for the development of photoresponsive, functional soft-matter material systems. Upon illumination with light, fast interconversion between a more stable trans and a metastable cis configuration can be established resulting in pronounced changes in conformation, dipole moment or hydrophobicity. A rational design of functional photosensitive molecules with embedded azo moieties requires a thorough understanding of isomerization mechanisms and rates, especially the thermally activated relaxation. For small azo derivatives considered in the gas phase or simple solvents, Eyring's classical transition state theory (TST) approach yields useful predictions for trends in activation energies or corresponding half-life times of the cis isomer. However, TST or improved theories cannot easily be applied when the azo moiety is part of a larger molecular complex or embedded into a heterogeneous environment, where a multitude of possible reaction pathways may exist. In these cases, only the sampling of an ensemble of dynamic reactive trajectories (transition path sampling, TPS) with explicit models of the environment may reveal the nature of the processes involved. In the present work we show how a TPS approach can conveniently be implemented for the phenomenon of relaxation-isomerization of azobenzenes starting with the simple examples of pure azobenzene and a push-pull derivative immersed in a polar (DMSO) and apolar (toluene) solvent. The latter are represented explicitly at a molecular mechanical (MM) and the azo moiety at a quantum mechanical (QM) level. We demonstrate for the push-pull azobenzene that path sampling in combination with the chosen QM/MM scheme produces the expected change in isomerization pathway from inversion to rotation in going from a low to a high permittivity (explicit) solvent model. We discuss the potential of the simulation procedure presented for comparative calculation of reaction rates and an improved understanding of activated states.}, language = {en} } @article{LiebigSarhanPrietzeletal.2018, author = {Liebig, Ferenc and Sarhan, Radwan Mohamed and Prietzel, Claudia Christina and Schmitt, Clemens Nikolaus Zeno and Bargheer, Matias and Koetz, Joachim}, title = {Tuned Surface-Enhanced raman scattering performance of undulated Au@Ag triangles}, series = {ACS applied nano materials}, volume = {1}, journal = {ACS applied nano materials}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {2574-0970}, doi = {10.1021/acsanm.8b00570}, pages = {1995 -- 2003}, year = {2018}, abstract = {Negatively charged ultraflat gold nanotriangles (AuNTs) stabilized by the anionic surfactant dioctyl sodium sulfosuccinate (AOT) were reloaded with the cationic surfactant benzylhexadecyldimethylammonium chloride (BDAC). Because of the spontaneous formation of a catanionic AOT micelle/BDAC bilayer onto the surface of the reloaded AuNTs, a reduction of Ag+ ions leads to the formation of spherical silver nanoparticles (AgNPs). With increasing concentration of AgNPs on the AuNTs, the localized surface plasmon resonance (LSPR) is shifted stepwise from 1300 to 800 nm. The tunable LSPR enables to shift the extinction maximum to the wavelength of the excitation laser of the Raman microscope at 785 nm. Surface-enhanced Raman scattering (SERS) experiments performed under resonance conditions show an SERS enhancement factor of the analyte molecule rhodamine RG6 of 5.1 X 10(5), which can be related to the silver hot spots at the periphery of the undulated gold nanoplatelets.}, language = {en} } @article{GuoTianYangetal.2018, author = {Guo, Ranran and Tian, Ye and Yang, Yueqi and Jiang, Qin and Wang, Yajun and Yang, Wuli}, title = {A Yolk-Shell nanoplatform for gene-silencing-enhanced photolytic ablation of cancer}, series = {Advanced functional materials}, volume = {28}, journal = {Advanced functional materials}, number = {14}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201706398}, pages = {11}, year = {2018}, abstract = {Noninvasive near-infrared (NIR) light responsive therapy is a promising cancer treatment modality; however, some inherent drawbacks of conventional phototherapy heavily restrict its application in clinic. Rather than producing heat or reactive oxygen species in conventional NIR treatment, here a multifunctional yolk-shell nanoplatform is proposed that is able to generate microbubbles to destruct cancer cells upon NIR laser irradiation. Besides, the therapeutic effect is highly improved through the coalition of small interfering RNA (siRNA), which is codelivered by the nanoplatform. In vitro experiments demonstrate that siRNA significantly inhibits expression of protective proteins and reduces the tolerance of cancer cells to bubble-induced environmental damage. In this way, higher cytotoxicity is achieved by utilizing the yolk-shell nanoparticles than treated with the same nanoparticles missing siRNA under NIR laser irradiation. After surface modification with polyethylene glycol and transferrin, the yolk-shell nanoparticles can target tumors selectively, as demonstrated from the photoacoustic and ultrasonic imaging in vivo. The yolk-shell nanoplatform shows outstanding tumor regression with minimal side effects under NIR laser irradiation. Therefore, the multifunctional nanoparticles that combining bubble-induced mechanical effect with RNA interference are expected to be an effective NIR light responsive oncotherapy.}, language = {en} } @article{VishnevetskayaHildebrandDyakonovaetal.2018, author = {Vishnevetskaya, Natalya S. and Hildebrand, Viet and Dyakonova, Margarita A. and Niebuur, Bart-Jan and Kyriakos, Konstantinos and Raftopoulos, Konstantinos N. and Di, Zhenyu and M{\"u}ller-Buschbaum, Peter and Laschewsky, Andre and Papadakis, Christine M.}, title = {Dual orthogonal switching of the "Schizophrenic" self-assembly of diblock copolymers}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {51}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.8b00096}, pages = {2604 -- 2614}, year = {2018}, abstract = {Based on diblock copolymers, a pair of "schizophrenic" micellar systems is designed by combining a nonionic and thermoresponsive block with a zwitterionic block, which is thermoresponsive and salt-sensitive. The nonionic block is poly(N-isopropylacrylamide) (PNIPAM) or poly(N-isopropylmethacrylamide) (PNIPMAM) and exhibits a lower critical solution temperature (LCST) behavior in aqueous solution. The zwitterionic block is a polysulfobetaine, i.e., poly(4((3-methacrylamidopropyl)dimethylammonio)butane-1-sulfonate) (PSBP), and has an upper critical solution temperature (UCST) behavior with the clearing point decreasing with increasing salt concentration. The PSBP-b-PNIPAM and PSBP-b-PNIPMAM diblock copolymers are prepared by successive reversible addition-fragmentation chain transfer (RAFT) polymerizations. The PSBP block is chosen such that the clearing point of the homopolymer is significantly higher in pure water than the cloud point of PNIPAM or PNIPMAM. Using turbidimetry, H-1 NMR, and small-angle neutron scattering, we investigate the overall phase behavior as well as the structure and interaction between the micelles and the intermediate phase, both in salt-free D2O and in 0.004 M NaBr in D2O in a wide temperature range. We find that PSBP-b-PNIPAM at 50 g L-1 in salt-free D2O is turbid in the entire temperature range. It forms spherical micelles below the cloud point of PNIPAM and cylindrical micelles above. Similar behavior is observed for PSBP-b-PNIPMAM at 50 g L-1 in salt-free D2O with a slight and smooth increase of the light transmission below the cloud point of PNIPMAM and an abrupt decrease above. Upon addition of 0.004 M NaBr, the UCST-type cloud point of the PSBP-block is notably decreased, and an intermediate regime is encountered below the cloud point of PNIPMAM, where the light transmission is slightly enhanced. In this regime, the polymer solution exhibits behavior typical for polyelectrolyte solutions. Thus, double thermosensitive and salt-sensitive behavior with "schizophrenic" micelle formation is found, and the width of the intermediate regime, where both blocks are hydrophilic, can be tuned by the addition of electrolyte.}, language = {en} }