@misc{KochLaschewskyRingsdorfetal.1986, author = {Koch, Horst and Laschewsky, Andr{\´e} and Ringsdorf, Helmut and Teng, Kang}, title = {Photodimerization and photopolymerization of amphiphilic cinnamic acid derivatives in oriented monolayers, vesicles and solution}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17111}, year = {1986}, abstract = {Cinnamic acid moieties were incorporated into amphiphilic compounds containing one and two alkyl chains. These lipid-like compounds with photoreactive units undergo self-organization to form monolayers at the gas-water interface and bilayer structures (vesicles) in aqueous solutions. The photoreaction of the cinnamic acid moiety induced by 254 nm UV light was investigated in the crystalline state, in monolayers, in vesicles and in solution in organic solvents. The single-chain amphiphiles undergo dimerization to yield photoproducts with twice the molecular weight of the corresponding monomers in organized systems. The photoreaction of amphiphiles containing two cinnamic acid groups occurs via two mechanisms: The intramolecular dimerization produces bicycles, with retention of the molecular weight of the corresponding monomer. The intermolecular reaction leads to oligomeric and polymeric photoproducts. In contrast to the single-chain amphiphiles, photodimerization processes of lipoids containing two cinnamic acid moieties also occur in solution in organic solvents.}, language = {en} } @misc{Laschewsky1989, author = {Laschewsky, Andr{\´e}}, title = {Monolayers and Langmuir-Blodgett multilayers of discotic liquid crystals?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17396}, year = {1989}, abstract = {Contents: 1. Discotic Liquid Crystals 2. Monolayers and Langmuir-Blodgett Multilayers 3. Theoretical Considerations on the Molecular Packing of Discotic LCs in Monolayers and Multilayers 4. Spreading Experiments with Discotic LCs 5. LB-Multilayers of Discotic LCs 6. Polymeric Discotic LCs 7. Summary}, language = {en} } @misc{LaschewskyPaulusRingsdorfetal.1992, author = {Laschewsky, Andr{\´e} and Paulus, Wolfgang and Ringsdorf, Helmut and Schuster, A. and Frick, G. and Mathy, A.}, title = {Mixed polymeric monolayers and Langmuir-Blodgett multilayers with functional low molecular weight guest compounds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17233}, year = {1992}, abstract = {Mixed monolayers and Langmuir-Blodgett multilayers of functional low molecular weight guest compounds, especially nonlinear optical (NLO) dyes, within the matrix of an amphotropic spacer polymer have been prepared. The polymer matrix enabled the transfer of guest compounds not capable of self-organizing at the air-water interface by themselves. The structure of the LB multilayers and the transfer process were studied by small angle X-ray scattering and UV-visible spectroscopy. Good NLO coefficients were found in the mixed films.}, language = {en} } @misc{Laschewsky1991, author = {Laschewsky, Andr{\´e}}, title = {Oligoethyleneoxide spacer groups in polymerizable surfactants}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17221}, year = {1991}, abstract = {Cationic and zwitterionic polymerizable surfactants bearing tri- and tetraethyleneglycol spacer groups between the polymerizable moiety and the surfactant structure were prepared and polymerized. Monomers and polymers were investigated with respect to their aggregation behavior in aqueous systems and compared to analogous monomers and polymers lacking spacer groups. In the case of the monomeric surfactants, the spacer groups depress both the Kraffttemperature and the critical micelle concentration. the area occupied per molecule at the air-water interface is substantially enlarged by the spacers, whereas the depression of surface tension is nearly constant. Although the monomers with and without spacers are true surfactants, all the polymers are water-insoluble, but form monomolecular layers at the air-water interface. In analogy to the monomer behavior, the incorporation of the spacer groups increases the area occupied per repeat unit at the air-water interface substantially, but hardly affects the surface activity.}, language = {en} } @misc{LaschewskyRingsdorf1988, author = {Laschewsky, Andr{\´e} and Ringsdorf, H.}, title = {Polymerization of amphiphilic dienes in Langmuir-Blodgett multilayers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17176}, year = {1988}, abstract = {Amphiphilic derivatives of octadiene and docosadiene were investigated in monolayers and Langmuir-Blodgett multilayers, with respect to their self-organization and their polymerization behavior. All amphiphiles investigated form monolayers. However, only acid and alcohol derivatives were able to build up multilayers. Those multilayers are rapidly photopolymerized in the layers via a two-step process: Irradiation with long-wavelength UV light yields soluble polymers, whereas additional irradiation with sfiort-wavelength UV light produces insoluble and presumably cross-linked polymers. The reaction meclianism is discussed according to the polymer characterization by UV spectroscopy, small-angle X-ray scattering, NMR spectroscopy, and gel permeation chromatography. All multilayers undergo structural changes during the polymerization; substantial changes result in defects in the polymerized layers as observed by scanning electron microscopy. In contrast to the acids and alcohols, the deposition of monolayers of the aldehyde derivatives did not yield well-ordered multilayers, but rather amorphous films. In this different film structure, the photopolymerization process differs from the one observed in multilayers.}, language = {en} } @misc{LaschewskyRingsdorfSchmidtetal.1987, author = {Laschewsky, Andr{\´e} and Ringsdorf, H. and Schmidt, G. and Schneider, J.}, title = {Self-organization of polymeric lipids with hydrophilic spacers in side groups and main chain : investigation in monolayers and multilayers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17147}, year = {1987}, abstract = {Several polymerizable lipids were synthesized and polymerized to amphiphilic homopolymers and to copolymers with the help of hydrophilic comonomers. The self-organization of these polymeric lipids was investigated in monolayers and Langmuir-Blodgett multilayers. The self-organization of these polymers in model membranes is due to hydrophilic spacer groups in the amphiphilic side groups as well as to hydrophilic spacer groups in the polymer backbone. Thus, highly ordered monolayers and LB-multilayers are easily obtained.}, language = {en} } @misc{LaschewskyRingsdorfSchneider1986, author = {Laschewsky, Andr{\´e} and Ringsdorf, H. and Schneider, J.}, title = {Oriented supramolecular systems-polymeric monolayers and multilayers from prepolymerized amphiphiles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17131}, year = {1986}, abstract = {Oriented polymeric membranes were originally prepared by polymerization or polycondensation of preoriented monomers. The introduction of hydrophilic spacer groups into the polymeric amphiphiles allowed the formation of highly ordered systems (monolayers, liposomes, multilayers) from prepolymerized amphiphiles: due to the partial decoupling of the different mobilities and orientation tendencies of the polymer chain and the amphiphilic side groups, these polymers are able to self-organize. In monolayer experiments the high order of these membranes could be demonstrated by their surface pressure area-diagrams. In addition the combination of order and mobility of these spacer groups containing polymeric amphiphiles allowed the formation of Langmuir-Blodgett-multilyers with a high layer correlation. Thus, disturbancies in highly oriented layers can be avoided normally taking place during the polymerization reaction (e.g. contractions) or oriented monomeric layers.}, language = {en} } @misc{LaschewskyRingsdorfSchmidt1985, author = {Laschewsky, Andr{\´e} and Ringsdorf, H. and Schmidt, G.}, title = {Polymerization of hydrocarbon and fluorocarbon amphiphiles in Langmuir-Blodgett multilayers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17096}, year = {1985}, abstract = {Langmuir-Blodgett multilayers of polymerizable carboxylic acids with hydrocarbon or fluorocarbon chains were prepared. The multilayers were polymerized by UV light and the reactions were studied by UV/visible spectroscopy. The polyreactions strongly influence the multilayer structures which were investigated by X-ray small-angle scattering and scanning electron microscopy. The spreading behaviour of the monomers, the preparation of multilayers, their reactivities in multilayers and structural effects caused by the polyreactions are discussed with regard to the hydrophilic head groups, the polymerizable groups and the hydrophobic chains.}, language = {en} }