@misc{MeyerKustererLisecetal.2009, author = {Meyer, Rhonda Christiane and Kusterer, Barbara and Lisec, Jan and Steinfath, Matthias and Becher, Martina and Scharr, Hanno and Melchinger, Albrecht E. and Selbig, Joachim and Schurr, Ulrich and Willmitzer, Lothar and Altmann, Thomas}, title = {QTL analysis of early stage heterosis for biomass in Arabidopsis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1330}, issn = {1866-8372}, doi = {10.25932/publishup-43127}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431272}, pages = {11}, year = {2009}, abstract = {The main objective of this study was to identify genomic regions involved in biomass heterosis using QTL, generation means, and mode-of-inheritance classification analyses. In a modified North Carolina Design III we backcrossed 429 recombinant inbred line and 140 introgression line populations to the two parental accessions, C24 and Col-0, whose F 1 hybrid exhibited 44\% heterosis for biomass. Mid-parent heterosis in the RILs ranged from -31 to 99\% for dry weight and from -58 to 143\% for leaf area. We detected ten genomic positions involved in biomass heterosis at an early developmental stage, individually explaining between 2.4 and 15.7\% of the phenotypic variation. While overdominant gene action was prevalent in heterotic QTL, our results suggest that a combination of dominance, overdominance and epistasis is involved in biomass heterosis in this Arabidopsis cross.}, language = {en} } @misc{SteinfathGaertnerLisecetal.2009, author = {Steinfath, Matthias and G{\"a}rtner, Tanja and Lisec, Jan and Meyer, Rhonda C. and Altmann, Thomas and Willmitzer, Lothar and Selbig, Joachim}, title = {Prediction of hybrid biomass in Arabidopsis thaliana by selected parental SNP and metabolic markers}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1324}, issn = {1866-8372}, doi = {10.25932/publishup-43111}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431115}, pages = {9}, year = {2009}, abstract = {A recombinant inbred line (RIL) population, derived from two Arabidopsis thaliana accessions, and the corresponding testcrosses with these two original accessions were used for the development and validation of machine learning models to predict the biomass of hybrids. Genetic and metabolic information of the RILs served as predictors. Feature selection reduced the number of variables (genetic and metabolic markers) in the models by more than 80\% without impairing the predictive power. Thus, potential biomarkers have been revealed. Metabolites were shown to bear information on inherited macroscopic phenotypes. This proof of concept could be interesting for breeders. The example population exhibits substantial mid-parent biomass heterosis. The results of feature selection could therefore be used to shed light on the origin of heterosis. In this respect, mainly dominance effects were detected.}, language = {en} } @misc{MooijTrolleJeppesenetal.2010, author = {Mooij, Wolf M. and Trolle, Dennis and Jeppesen, Erik and Arhonditsis, George B. and Belolipetsky, Pavel V. and Chitamwebwa, Deonatus B. R. and Degermendzhy, Andrey G. and DeAngelis, Donald L. and Domis, Lisette Nicole de Senerpont and Downing, Andrea S. and Elliott, J. Alex and Fragoso Jr., Carlos Ruberto and Gaedke, Ursula and Genova, Svetlana N. and Gulati, Ramesh D. and H{\aa}kanson, Lars and Hamilton, David P. and Hipsey, Matthew R. and 't Hoen, Jochem and H{\"u}lsmann, Stephan and Los, F. Hans and Makler-Pick, Vardit and Petzoldt, Thomas and Prokopkin, Igor G. and Rinke, Karsten and Schep, Sebastiaan A. and Tominaga, Koji and Van Dam, Anne A. and Van Nes, Egbert H. and Wells, Scott A. and Janse, Jan H.}, title = {Challenges and opportunities for integrating lake ecosystem modelling approaches}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1326}, issn = {1866-8372}, doi = {10.25932/publishup-42983}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429839}, pages = {35}, year = {2010}, abstract = {A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models.}, language = {en} } @misc{MummSchefflerHermanussen2022, author = {Mumm, Rebekka and Scheffler, Christiane and Hermanussen, Michael}, title = {Locally structured correlation (LSC) plots describe inhomogeneity in normally distributed correlated bivariate variables}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1319}, issn = {1866-8372}, doi = {10.25932/publishup-58877}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588777}, pages = {6}, year = {2022}, abstract = {Background The association between bivariate variables may not necessarily be homogeneous throughout the whole range of the variables. We present a new technique to describe inhomogeneity in the association of bivariate variables. Methods We consider the correlation of two normally distributed random variables. The 45° diagonal through the origin of coordinates represents the line on which all points would lie if the two variables completely agreed. If the two variables do not completely agree, the points will scatter on both sides of the diagonal and form a cloud. In case of a high association between the variables, the band width of this cloud will be narrow, in case of a low association, the band width will be wide. The band width directly relates to the magnitude of the correlation coefficient. We then determine the Euclidean distances between the diagonal and each point of the bivariate correlation, and rotate the coordinate system clockwise by 45°. The standard deviation of all Euclidean distances, named "global standard deviation", reflects the band width of all points along the former diagonal. Calculating moving averages of the standard deviation along the former diagonal results in "locally structured standard deviations" and reflect patterns of "locally structured correlations (LSC)". LSC highlight inhomogeneity of bivariate correlations. We exemplify this technique by analyzing the association between body mass index (BMI) and hip circumference (HC) in 6313 healthy East German adults aged 18 to 70 years. Results The correlation between BMI and HC in healthy adults is not homogeneous. LSC is able to identify regions where the predictive power of the bivariate correlation between BMI and HC increases or decreases, and highlights in our example that slim people have a higher association between BMI and HC than obese people. Conclusion Locally structured correlations (LSC) identify regions of higher or lower than average correlation between two normally distributed variables.}, language = {en} } @misc{OmranianNikoloski2022, author = {Omranian, Sara and Nikoloski, Zoran}, title = {CUBCO+: prediction of protein complexes based on min-cut network partitioning into biclique spanned subgraphs}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1315}, issn = {1866-8372}, doi = {10.25932/publishup-58686}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-586863}, pages = {12}, year = {2022}, abstract = {High-throughput proteomics approaches have resulted in large-scale protein-protein interaction (PPI) networks that have been employed for the prediction of protein complexes. However, PPI networks contain false-positive as well as false-negative PPIs that affect the protein complex prediction algorithms. To address this issue, here we propose an algorithm called CUBCO+ that: (1) employs GO semantic similarity to retain only biologically relevant interactions with a high similarity score, (2) based on link prediction approaches, scores the false-negative edges, and (3) incorporates the resulting scores to predict protein complexes. Through comprehensive analyses with PPIs from Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens, we show that CUBCO+ performs as well as the approaches that predict protein complexes based on recently introduced graph partitions into biclique spanned subgraphs and outperforms the other state-of-the-art approaches. Moreover, we illustrate that in combination with GO semantic similarity, CUBCO+ enables us to predict more accurate protein complexes in 36\% of the cases in comparison to CUBCO as its predecessor.}, language = {en} } @misc{MendesFerreiraDammhahnEccard2022, author = {Mendes Ferreira, Clara and Dammhahn, Melanie and Eccard, Jana}, title = {Forager-mediated cascading effects on food resource species diversity}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1312}, issn = {1866-8372}, doi = {10.25932/publishup-58509}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585092}, pages = {13}, year = {2022}, abstract = {Perceived predation risk varies in space and time. Foraging in this landscape of fear alters forager-resource interactions via cascading nonconsumptive effects. Estimating these indirect effects is difficult in natural systems. Here, we applied a novel measure to quantify the diversity at giving-up density that allows to test how spatial variation in perceived predation risk modifies the diversity of multispecies resources at local and regional spatial levels. Furthermore, we evaluated whether the nonconsumptive effects on resource species diversity can be explained by the preferences of foragers for specific functional traits and by the forager species richness. We exposed rodents of a natural community to artificial food patches, each containing an initial multispecies resource community of eight species (10 items each) mixed in sand. We sampled 35 landscapes, each containing seven patches in a spatial array, to disentangle effects at local (patch) and landscape levels. We used vegetation height as a proxy for perceived predation risk. After a period of three nights, we counted how many and which resource species were left in each patch to measure giving-up density and resource diversity at the local level (alpha diversity) and the regional level (gamma diversity and beta diversity). Furthermore, we used wildlife cameras to identify foragers and assess their species richness. With increasing vegetation height, i.e., decreasing perceived predation risk, giving-up density, and local alpha and regional gamma diversity decreased, and patches became less similar within a landscape (beta diversity increased). Foragers consumed more of the bigger and most caloric resources. The higher the forager species richness, the lower the giving-up density, and alpha and gamma diversity. Overall, spatial variation of perceived predation risk of foragers had measurable cascading effects on local and regional resource species biodiversity, independent of the forager species. Thus, nonconsumptive predation effects modify forager-resource interactions and might act as an equalizing mechanism for species coexistence.}, language = {en} } @misc{HeringHauptfleischKramerSchadtetal.2022, author = {Hering, Robert and Hauptfleisch, Morgan and Kramer-Schadt, Stephanie and Stiegler, Jonas and Blaum, Niels}, title = {Effects of fences and fence gaps on the movement behavior of three southern African antelope species}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1308}, issn = {1866-8372}, doi = {10.25932/publishup-58267}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582672}, pages = {19}, year = {2022}, abstract = {Globally, migratory ungulates are affected by fences. While field observational studies reveal the amount of animal-fence interactions across taxa, GPS tracking-based studies uncover fence effects on movement patterns and habitat selection. However, studies on the direct effects of fences and fence gaps on movement behavior, especially based on high-frequency tracking data, are scarce. We used GPS tracking on three common African antelopes (Tragelaphus strepsiceros, Antidorcas marsupialis, and T. oryx) with movement strategies ranging from range residency to nomadism in a semi-arid, Namibian savanna traversed by wildlife-proof fences that elephants have regularly breached. We classified major forms of ungulate-fence interaction types on a seasonal and a daily scale. Furthermore, we recorded the distances and times spent at fences regarding the total individual space use. Based on this, we analyzed the direct effects of fences and fence gaps on the animals' movement behavior for the previously defined types of animal-fence interactions. Antelope-fence interactions peaked during the early hours of the day and during seasonal transitions when the limiting resource changed between water and forage. Major types of ungulate-fence interactions were quick, trace-like, or marked by halts. We found that the amount of time spent at fences was highest for nomadic eland. Migratory springbok adjusted their space use concerning fence gap positions. If the small home ranges of sedentary kudu included a fence, they frequently interacted with this fence. For springbok and eland, distance traveled along a fence declined with increasing utilization of a fence gap. All species reduced their speed in the proximity of a fence but often increased their speed when encountering the fence. Crossing a fence led to increased speeds for all species. We demonstrate that fence effects mainly occur during crucial foraging times (seasonal scale) and during times of directed movements (daily scale). Importantly, we provide evidence that fences directly alter antelope movement behaviors with negative implications for energy budgets and that persistent fence gaps can reduce the intensity of such alterations. Our findings help to guide future animal-fence studies and provide insights for wildlife fencing and fence gap planning.}, language = {en} } @misc{OgunkolaGuiraudieCaprazFeronetal.2023, author = {Ogunkola, Moses Olalekan and Guiraudie-Capraz, Gaelle and F{\´e}ron, Fran{\c{c}}ois and Leimk{\"u}hler, Silke}, title = {The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1307}, issn = {1866-8372}, doi = {10.25932/publishup-57958}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-579580}, pages = {23}, year = {2023}, abstract = {Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.}, language = {en} } @misc{MarggrafLindeckeVoigtetal.2023, author = {Marggraf, Lara Christin and Lindecke, Oliver and Voigt, Christian C. and Pētersons, Gunārs and Voigt-Heucke, Silke Luise}, title = {Nathusius' bats, Pipistrellus nathusii, bypass mating opportunities of their own species, but respond to foraging heterospecifics on migratory transit flights}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1306}, issn = {1866-8372}, doi = {10.25932/publishup-57957}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-579574}, pages = {10}, year = {2023}, abstract = {In late summer, migratory bats of the temperate zone face the challenge of accomplishing two energy-demanding tasks almost at the same time: migration and mating. Both require information and involve search efforts, such as localizing prey or finding potential mates. In non-migrating bat species, playback studies showed that listening to vocalizations of other bats, both con-and heterospecifics, may help a recipient bat to find foraging patches and mating sites. However, we are still unaware of the degree to which migrating bats depend on con-or heterospecific vocalizations for identifying potential feeding or mating opportunities during nightly transit flights. Here, we investigated the vocal responses of Nathusius' pipistrelle bats, Pipistrellus nathusii, to simulated feeding and courtship aggregations at a coastal migration corridor. We presented migrating bats either feeding buzzes or courtship calls of their own or a heterospecific migratory species, the common noctule, Nyctalus noctula. We expected that during migratory transit flights, simulated feeding opportunities would be particularly attractive to bats, as well as simulated mating opportunities which may indicate suitable roosts for a stopover. However, we found that when compared to the natural silence of both pre-and post-playback phases, bats called indifferently during the playback of conspecific feeding sounds, whereas P. nathusii echolocation call activity increased during simulated feeding of N. noctula. In contrast, the call activity of P. nathusii decreased during the playback of conspecific courtship calls, while no response could be detected when heterospecific call types were broadcasted. Our results suggest that while on migratory transits, P. nathusii circumnavigate conspecific mating aggregations, possibly to save time or to reduce the risks associated with social interactions where aggression due to territoriality might be expected. This avoidance behavior could be a result of optimization strategies by P. nathusii when performing long-distance migratory flights, and it could also explain the lack of a response to simulated conspecific feeding. However, the observed increase of activity in response to simulated feeding of N. noctula, suggests that P. nathusii individuals may be eavesdropping on other aerial hawking insectivorous species during migration, especially if these occupy a slightly different foraging niche.}, language = {en} } @misc{KiemelGurkeParaskevopoulouetal.2022, author = {Kiemel, Katrin and Gurke, Marie and Paraskevopoulou, Sofia and Havenstein, Katja and Weithoff, Guntram and Tiedemann, Ralph}, title = {Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1305}, issn = {1866-8372}, doi = {10.25932/publishup-57863}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-578635}, pages = {14}, year = {2022}, abstract = {Genetic divergence and the frequency of hybridization are central for defining species delimitations, especially among cryptic species where morphological differences are merely absent. Rotifers are known for their high cryptic diversity and therefore are ideal model organisms to investigate such patterns. Here, we used the recently resolved Brachionus calyciflorus species complex to investigate whether previously observed between species differences in thermotolerance and gene expression are also reflected in their genomic footprint. We identified a Heat Shock Protein gene (HSP 40 kDa) which exhibits cross species pronounced sequence variation. This gene exhibits species-specific fixed sites, alleles, and sites putatively under positive selection. These sites are located in protein binding regions involved in chaperoning and may therefore reflect adaptive diversification. By comparing three genetic markers (ITS, COI, HSP 40 kDa), we revealed hybridization events between the cryptic species. The low frequency of introgressive haplotypes/alleles suggest a tight, but not fully impermeable boundary between the cryptic species.}, language = {en} } @misc{BergholzSittelRistowetal.2022, author = {Bergholz, Kolja and Sittel, Lara-Pauline and Ristow, Michael and Jeltsch, Florian and Weiß, Lina}, title = {Pollinator guilds respond contrastingly at different scales to landscape parameters of land-use intensity}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1298}, issn = {1866-8372}, doi = {10.25932/publishup-57730}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577307}, pages = {11}, year = {2022}, abstract = {Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60-3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140-400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500-3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific.}, language = {en} } @misc{ParrySchlaegelTiedemannetal.2022, author = {Parry, Victor and Schl{\"a}gel, Ulrike E. and Tiedemann, Ralph and Weithoff, Guntram}, title = {Behavioural Responses of Defended and Undefended Prey to Their Predator}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1302}, issn = {1866-8372}, doi = {10.25932/publishup-57759}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577594}, pages = {14}, year = {2022}, abstract = {Predation is a strong species interaction causing severe harm or death to prey. Thus, prey species have evolved various defence strategies to minimize predation risk, which may be immediate (e.g., a change in behaviour) or transgenerational (morphological defence structures). We studied the behaviour of two strains of a rotiferan prey (Brachionus calyciflorus) that differ in their ability to develop morphological defences in response to their predator Asplanchna brightwellii. Using video analysis, we tested: (a) if two strains differ in their response to predator presence and predator cues when both are undefended; (b) whether defended individuals respond to live predators or their cues; and (c) if the morphological defence (large spines) per se has an effect on the swimming behaviour. We found a clear increase in swimming speed for both undefended strains in predator presence. However, the defended specimens responded neither to the predator presence nor to their cues, showing that they behave indifferently to their predator when they are defended. We did not detect an effect of the spines on the swimming behaviour. Our study demonstrates a complex plastic behaviour of the prey, not only in the presence of their predator, but also with respect to their defence status.}, language = {en} } @misc{StieglerLinsDammhahnetal.2022, author = {Stiegler, Jonas and Lins, Alisa and Dammhahn, Melanie and Kramer-Schadt, Stephanie and Ortmann, Sylvia and Blaum, Niels}, title = {Personality drives activity and space use in a mammalian herbivore}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-57732}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577327}, pages = {1 -- 12}, year = {2022}, abstract = {Background Animal personality has emerged as a key concept in behavioral ecology. While many studies have demonstrated the influence of personality traits on behavioral patterns, its quantification, especially in wild animal populations, remains a challenge. Only a few studies have established a link between personality and recurring movements within home ranges, although these small-scale movements are of key importance for identifying ecological interactions and forming individual niches. In this regard, differences in space use among individuals might reflect different exploration styles between behavioral types along the shy-bold continuum. Methods We assessed among-individual differences in behavior in the European hare (Lepus europaeus), a characteristic mammalian herbivore in agricultural landscapes using a standardized box emergence test for captive and wild hares. We determined an individuals' degree of boldness by measuring the latencies of behavioral responses in repeated emergence tests in captivity. During capture events of wild hares, we conducted a single emergence test and recorded behavioral responses proven to be stable over time in captive hares. Applying repeated novel environment tests in a near-natural enclosure, we further quantified aspects of exploration and activity in captive hares. Finally, we investigated whether and how this among-individual behavioral variation is related to general activity and space use in a wild hare population. Wild and captive hares were treated similarly and GPS-collared with internal accelerometers prior to release to the wild or the outdoor enclosure, respectively. General activity was quantified as overall dynamic body acceleration (ODBA) obtained from accelerometers. Finally, we tested whether boldness explained variation in (i) ODBA in both settings and (ii) variation in home ranges and core areas across different time scales of GPS-collared hares in a wild population. Results We found three behavioral responses to be consistent over time in captive hares. ODBA was positively related to boldness (i.e., short latencies to make first contact with the new environment) in both captive and wild hares. Space use in wild hares also varied with boldness, with shy individuals having smaller core areas and larger home ranges than bold conspecifics (yet in some of the parameter space, this association was just marginally significant). Conclusions Against our prediction, shy individuals occupied relatively large home ranges but with small core areas. We suggest that this space use pattern is due to them avoiding risky, and energy-demanding competition for valuable resources. Carefully validated, activity measurements (ODBA) from accelerometers provide a valuable tool to quantify aspects of animal personality along the shy-bold continuum remotely. Without directly observing—and possibly disturbing—focal individuals, this approach allows measuring variability in animal personality, especially in species that are difficult to assess with experiments. Considering that accelerometers are often already built into GPS units, we recommend activating them at least during the initial days of tracking to estimate individual variation in general activity and, if possible, match them with a simple novelty experiment. Furthermore, information on individual behavioral types will help to facilitate mechanistic understanding of processes that drive spatial and ecological dynamics in heterogeneous landscapes.}, language = {en} } @misc{AgnePreickStraubeetal.2022, author = {Agne, Stefanie and Preick, Michaela and Straube, Nicolas and Hofreiter, Michael}, title = {Simultaneous Barcode Sequencing of Diverse Museum Collection Specimens Using a Mixed RNA Bait Set}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1293}, issn = {1866-8372}, doi = {10.25932/publishup-57460}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574600}, pages = {5}, year = {2022}, abstract = {A growing number of publications presenting results from sequencing natural history collection specimens reflect the importance of DNA sequence information from such samples. Ancient DNA extraction and library preparation methods in combination with target gene capture are a way of unlocking archival DNA, including from formalin-fixed wet-collection material. Here we report on an experiment, in which we used an RNA bait set containing baits from a wide taxonomic range of species for DNA hybridisation capture of nuclear and mitochondrial targets for analysing natural history collection specimens. The bait set used consists of 2,492 mitochondrial and 530 nuclear RNA baits and comprises specific barcode loci of diverse animal groups including both invertebrates and vertebrates. The baits allowed to capture DNA sequence information of target barcode loci from 84\% of the 37 samples tested, with nuclear markers being captured more frequently and consensus sequences of these being more complete compared to mitochondrial markers. Samples from dry material had a higher rate of success than wet-collection specimens, although target sequence information could be captured from 50\% of formalin-fixed samples. Our study illustrates how efforts to obtain barcode sequence information from natural history collection specimens may be combined and are a way of implementing barcoding inventories of scientific collection material.}, language = {en} } @misc{IlicicWoodhouseKarstenetal.2023, author = {Ilicic, Doris and Woodhouse, Jason Nicholas and Karsten, Ulf and Zimmermann, Jonas and Wichard, Thomas and Quartino, Maria Liliana and Campana, Gabriela Laura and Livenets, Alexandra and Van den Wyngaert, Silke and Grossart, Hans-Peter}, title = {Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1290}, issn = {1866-8372}, doi = {10.25932/publishup-57289}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572895}, pages = {14}, year = {2023}, abstract = {Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.}, language = {en} } @misc{LiApriyantoFloresCastellanosetal.2022, author = {Li, Xiaoping and Apriyanto, Ardha and Flores Castellanos, Junio and Compart, Julia and Muntaha, Sidratul Nur and Fettke, J{\"o}rg}, title = {Dpe2/phs1 revealed unique starch metabolism with three distinct phases characterized by different starch granule numbers per chloroplast, allowing insights into the control mechanism of granule number regulation by gene co-regulation and metabolic profiling}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1286}, issn = {1866-8372}, doi = {10.25932/publishup-57125}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571250}, pages = {16}, year = {2022}, abstract = {An Arabidopsis mutant lacking both the cytosolic Disproportionating enzyme 2 (DPE2) and the plastidial glucan Phosphorylase 1 (PHS1) revealed a unique starch metabolism. Dpe2/phs1 has been reported to have only one starch granule number per chloroplast when grown under diurnal rhythm. For this study, we analyzed dpe2/phs1 in details following the mutant development, and found that it showed three distinct periods of granule numbers per chloroplast, while there was no obvious change observed in Col-0. In young plants, the starch granule number was similar to that in Col-0 at first, and then decreased significantly, down to one or no granule per chloroplast, followed by an increase in the granule number. Thus, in dpe2/phs1, control over the starch granule number is impaired, but it is not defective in starch granule initiation. The data also indicate that the granule number is not fixed, and is regulated throughout plant growth. Furthermore, the chloroplasts revealed alterations during these three periods, with a partially strong aberrant morphology in the middle phase. Interestingly, the unique metabolism was perpetuated when starch degradation was further impaired through an additional lack of Isoamylase 3 (ISA3) or Starch excess 4 (SEX4). Transcriptomic studies and metabolic profiling revealed the co-regulation of starch metabolism-related genes and a clear metabolic separation between the periods. Most senescence-induced genes were found to be up-regulated more than twice in the starch-less mature leaves. Thus, dpe2/phs1 is a unique plant material source, with which we may study starch granule number regulation to obtain a more detailed understanding.}, language = {en} } @misc{ReegStriglJeltsch2022, author = {Reeg, Jette and Strigl, Lea and Jeltsch, Florian}, title = {Agricultural buffer zone thresholds to safeguard functional bee diversity: Insights from a community modeling approach}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1281}, issn = {1866-8372}, doi = {10.25932/publishup-57080}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570800}, pages = {17}, year = {2022}, abstract = {Wild bee species are important pollinators in agricultural landscapes. However, population decline was reported over the last decades and is still ongoing. While agricultural intensification is a major driver of the rapid loss of pollinating species, transition zones between arable fields and forest or grassland patches, i.e., agricultural buffer zones, are frequently mentioned as suitable mitigation measures to support wild bee populations and other pollinator species. Despite the reported general positive effect, it remains unclear which amount of buffer zones is needed to ensure a sustainable and permanent impact for enhancing bee diversity and abundance. To address this question at a pollinator community level, we implemented a process-based, spatially explicit simulation model of functional bee diversity dynamics in an agricultural landscape. More specifically, we introduced a variable amount of agricultural buffer zones (ABZs) at the transition of arable to grassland, or arable to forest patches to analyze the impact on bee functional diversity and functional richness. We focused our study on solitary bees in a typical agricultural area in the Northeast of Germany. Our results showed positive effects with at least 25\% of virtually implemented agricultural buffer zones. However, higher amounts of ABZs of at least 75\% should be considered to ensure a sufficient increase in Shannon diversity and decrease in quasi-extinction risks. These high amounts of ABZs represent effective conservation measures to safeguard the stability of pollination services provided by solitary bee species. As the model structure can be easily adapted to other mobile species in agricultural landscapes, our community approach offers the chance to compare the effectiveness of conservation measures also for other pollinator communities in future.}, language = {en} } @misc{SchloerHirschbergBenAmoretal.2022, author = {Schl{\"o}r, Anja and Hirschberg, Stefan and Ben Amor, Ghada and Meister, Toni Luise and Arora, Prerna and P{\"o}hlmann, Stefan and Hoffmann, Markus and Pf{\"a}nder, Stephanie and Eddin, Omar Kamal and Kamhieh-Milz, Julian and Hanack, Katja}, title = {SARS-CoV-2 neutralizing camelid heavy-chain-only antibodies as powerful tools for diagnostic and therapeutic applications}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1280}, issn = {1866-8372}, doi = {10.25932/publishup-57012}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570124}, pages = {14}, year = {2022}, abstract = {Introduction: The ongoing COVID-19 pandemic situation caused by SARS-CoV-2 and variants of concern such as B.1.617.2 (Delta) and recently, B.1.1.529 (Omicron) is posing multiple challenges to humanity. The rapid evolution of the virus requires adaptation of diagnostic and therapeutic applications. Objectives: In this study, we describe camelid heavy-chain-only antibodies (hcAb) as useful tools for novel in vitro diagnostic assays and for therapeutic applications due to their neutralizing capacity. Methods: Five antibody candidates were selected out of a na{\"i}ve camelid library by phage display and expressed as full length IgG2 antibodies. The antibodies were characterized by Western blot, enzyme-linked immunosorbent assays, surface plasmon resonance with regard to their specificity to the recombinant SARS-CoV-2 Spike protein and to SARS-CoV-2 virus-like particles. Neutralization assays were performed with authentic SARS-CoV-2 and pseudotyped viruses (wildtype and Omicron). Results: All antibodies efficiently detect recombinant SARS-CoV-2 Spike protein and SARS-CoV-2 virus-like particles in different ELISA setups. The best combination was shown with hcAb B10 as catcher antibody and HRP-conjugated hcAb A7.2 as the detection antibody. Further, four out of five antibodies potently neutralized authentic wildtype SARS-CoV-2 and particles pseudotyped with the SARS-CoV-2 Spike proteins of the wildtype and Omicron variant, sublineage BA.1 at concentrations between 0.1 and 0.35 ng/mL (ND50). Conclusion: Collectively, we report novel camelid hcAbs suitable for diagnostics and potential therapy.}, language = {en} } @misc{HeringHauptfleischJagoetal.2022, author = {Hering, Robert and Hauptfleisch, Morgan and Jago, Mark and Smith, Taylor and Kramer-Schadt, Stephanie and Stiegler, Jonas and Blaum, Niels}, title = {Don't stop me now: Managed fence gaps could allow migratory ungulates to track dynamic resources and reduce fence related energy loss}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1278}, issn = {1866-8372}, doi = {10.25932/publishup-57008}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570087}, pages = {18}, year = {2022}, abstract = {In semi-arid environments characterized by erratic rainfall and scattered primary production, migratory movements are a key survival strategy of large herbivores to track resources over vast areas. Veterinary Cordon Fences (VCFs), intended to reduce wildlife-livestock disease transmission, fragment large parts of southern Africa and have limited the movements of large wild mammals for over 60 years. Consequently, wildlife-fence interactions are frequent and often result in perforations of the fence, mainly caused by elephants. Yet, we lack knowledge about at which times fences act as barriers, how fences directly alter the energy expenditure of native herbivores, and what the consequences of impermeability are. We studied 2-year ungulate movements in three common antelopes (springbok, kudu, eland) across a perforated part of Namibia's VCF separating a wildlife reserve and Etosha National Park using GPS telemetry, accelerometer measurements, and satellite imagery. We identified 2905 fence interaction events which we used to evaluate critical times of encounters and direct fence effects on energy expenditure. Using vegetation type-specific greenness dynamics, we quantified what animals gained in terms of high quality food resources from crossing the VCF. Our results show that the perforation of the VCF sustains herbivore-vegetation interactions in the savanna with its scattered resources. Fence permeability led to peaks in crossing numbers during the first flush of woody plants before the rain started. Kudu and eland often showed increased energy expenditure when crossing the fence. Energy expenditure was lowered during the frequent interactions of ungulates standing at the fence. We found no alteration of energy expenditure when springbok immediately found and crossed fence breaches. Our results indicate that constantly open gaps did not affect energy expenditure, while gaps with obstacles increased motion. Closing gaps may have confused ungulates and modified their intended movements. While browsing, sedentary kudu's use of space was less affected by the VCF; migratory, mixed-feeding springbok, and eland benefited from gaps by gaining forage quality and quantity after crossing. This highlights the importance of access to vast areas to allow ungulates to track vital vegetation patches.}, language = {en} } @misc{PawlakNoetzelDragoetal.2022, author = {Pawlak, Julia and Noetzel, Dominique Christian and Drago, Claudia and Weithoff, Guntram}, title = {Assessing the toxicity of polystyrene beads and silica particles on the microconsumer Brachionus calyciflorus at different timescales}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1277}, issn = {1866-8372}, doi = {10.25932/publishup-56996}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569967}, pages = {1 -- 11}, year = {2022}, abstract = {Environmental pollution by microplastics has become a severe problem in terrestrial and aquatic ecosystems and, according to actual prognoses, problems will further increase in the future. Therefore, assessing and quantifying the risk for the biota is crucial. Standardized short-term toxicological procedures as well as methods quantifying potential toxic effects over the whole life span of an animal are required. We studied the effect of the microplastic polystyrene on the survival and reproduction of a common freshwater invertebrate, the rotifer Brachionus calyciflorus, at different timescales. We used pristine polystyrene spheres of 1, 3, and 6 µm diameter and fed them to the animals together with food algae in different ratios ranging from 0 to 50\% nonfood particles. As a particle control, we used silica to distinguish between a pure particle effect and a plastic effect. After 24 h, no toxic effect was found, neither with polystyrene nor with silica. After 96 h, a toxic effect was detectable for both particle types. The size of the particles played a negligible role. Studying the long-term effect by using life table experiments, we found a reduced reproduction when the animals were fed with 3 µm spheres together with similar-sized food algae. We conclude that the fitness reduction is mainly driven by the dilution of food by the nonfood particles rather than by a direct toxic effect.}, language = {en} } @misc{WeithoffBell2022, author = {Weithoff, Guntram and Bell, Elanor Margaret}, title = {Complex Trophic Interactions in an Acidophilic Microbial Community}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-56994}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569945}, pages = {1 -- 10}, year = {2022}, abstract = {Extreme habitats often harbor specific communities that differ substantially from non-extreme habitats. In many cases, these communities are characterized by archaea, bacteria and protists, whereas the number of species of metazoa and higher plants is relatively low. In extremely acidic habitats, mostly prokaryotes and protists thrive, and only very few metazoa thrive, for example, rotifers. Since many studies have investigated the physiology and ecology of individual species, there is still a gap in research on direct, trophic interactions among extremophiles. To fill this gap, we experimentally studied the trophic interactions between a predatory protist (Actinophrys sol, Heliozoa) and its prey, the rotifers Elosa woralli and Cephalodella sp., the ciliate Urosomoida sp. and the mixotrophic protist Chlamydomonas acidophila (a green phytoflagellate, Chlorophyta). We found substantial predation pressure on all animal prey. High densities of Chlamydomonas acidophila reduced the predation impact on the rotifers by interfering with the feeding behaviour of A. sol. These trophic relations represent a natural case of intraguild predation, with Chlamydomonas acidophila being the common prey and the rotifers/ciliate and A. sol being the intraguild prey and predator, respectively. We further studied this intraguild predation along a resource gradient using Cephalodella sp. as the intraguild prey. The interactions among the three species led to an increase in relative rotifer abundance with increasing resource (Chlamydomonas) densities. By applying a series of laboratory experiments, we revealed the complexity of trophic interactions within a natural extremophilic community.}, language = {en} } @misc{CzarneckaWeicheltRoedigeretal.2022, author = {Czarnecka, Malgorzata and Weichelt, Ulrike and R{\"o}diger, Stefan and Hanack, Katja}, title = {Novel Anti Double-Stranded Nucleic Acids Full-Length Recombinant Camelid Heavy-Chain Antibody for the Detection of miRNA}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-56914}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569142}, pages = {1 -- 18}, year = {2022}, abstract = {The discovery that certain diseases have specific miRNA signatures which correspond to disease progression opens a new biomarker category. The detection of these small non-coding RNAs is performed routinely using body fluids or tissues with real-time PCR, next-generation sequencing, or amplification-based miRNA assays. Antibody-based detection systems allow an easy onset handling compared to PCR or sequencing and can be considered as alternative methods to support miRNA diagnostic in the future. In this study, we describe the generation of a camelid heavy-chain-only antibody specifically recognizing miRNAs to establish an antibody-based detection method. The generation of nucleic acid-specific binders is a challenge. We selected camelid binders via phage display, expressed them as VHH as well as full-length antibodies, and characterized the binding to several miRNAs from a signature specific for dilated cardiomyopathy. The described workflow can be used to create miRNA-specific binders and establish antibody-based detection methods to provide an additional way to analyze disease-specific miRNA signatures.}, language = {en} } @misc{KindermannDoblerNiedeggenetal.2022, author = {Kindermann, Liana and Dobler, Magnus and Niedeggen, Daniela and Chimbioputo Fabiano, Ezequiel and Linst{\"a}dter, Anja}, title = {Dataset on woody aboveground biomass, disturbance losses, and wood density from an African savanna ecosystem}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561607}, pages = {1 -- 16}, year = {2022}, abstract = {This dataset comprises tree inventories and damage assessments performed in Namibia's semi-arid Zambezi Region. Data were sampled in savannas and savanna woodlands along steep gradients of elephant population densities to capture the effects of those (and other) disturbances on individual-level and stand-level aboveground woody biomass (AGB). The dataset contains raw data on dendrometric measures and processed data on specific wood density (SWD), woody aboveground biomass, and biomass losses through disturbance impacts. Allometric proxies (height, canopy diameters, and in adult trees also stem circumferences) were recorded for n = 6,179 tree and shrub individuals. Wood samples were taken for each encountered species to measure specific wood density. These measurements have been used to estimate woody aboveground biomass via established allometric models, advanced through our improved methodologies and workflows that accounted for tree and shrub architecture shaped by disturbance impacts. To this end, we performed a detailed damage assessment on each woody individual in the field. In addition to estimations of standing biomass, our new method also delivered data on biomass losses to different disturbance agents (elephants, fire, and others) on the level of plant individuals and stands. The data presented here have been used within a study published with Ecological Indicators (Kindermann et al., 2022) to evaluate the benefits of our improved methodology in comparison to a standard reference method of aboveground biomass estimations. Additionally, it has been employed in a study on carbon storage and sequestration in vegetation and soils (Sandhage-Hofmann et al., 2021). The raw data of dendrometric measurements can be subjected to other available allometric models for biomass estimation. The processed data can be used to analyze disturbance impacts on woody aboveground biomass, or for regional carbon storage estimates. The data on species-specific wood density can be used for application to other dendrometric datasets to (re-) estimate biomass through allometric models requiring wood density. It can further be used for plant functional trait analyses.}, language = {en} } @misc{TiedemannIobbiNivolLeimkuehler2022, author = {Tiedemann, Kim and Iobbi-Nivol, Chantal and Leimk{\"u}hler, Silke}, title = {The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56172}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561728}, pages = {1 -- 15}, year = {2022}, abstract = {The role of the GMP nucleotides of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor of the DMSO reductase family has long been a subject of discussion. The recent characterization of the bis-molybdopterin (bis-Mo-MPT) cofactor present in the E. coli YdhV protein, which differs from bis-MGD solely by the absence of the nucleotides, now enables studying the role of the nucleotides of bis-MGD and bis-MPT cofactors in Moco insertion and the activity of molybdoenzymes in direct comparison. Using the well-known E. coli TMAO reductase TorA as a model enzyme for cofactor insertion, we were able to show that the GMP nucleotides of bis-MGD are crucial for the insertion of the bis-MGD cofactor into apo-TorA.}, language = {en} } @misc{MuellerNedielkovArndt2022, author = {M{\"u}ller, Marik and Nedielkov, Ruslan and Arndt, Katja M.}, title = {Strategies for Enzymatic Inactivation of the Veterinary Antibiotic Florfenicol}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56162}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561621}, pages = {1 -- 18}, year = {2022}, abstract = {Large quantities of the antibiotic florfenicol are used in animal farming and aquaculture, contaminating the ecosystem with antibiotic residues and promoting antimicrobial resistance, ultimately leading to untreatable multidrug-resistant pathogens. Florfenicol-resistant bacteria often activate export mechanisms that result in resistance to various structurally unrelated antibiotics. We devised novel strategies for the enzymatic inactivation of florfenicol in different media, such as saltwater or milk. Using a combinatorial approach and selection, we optimized a hydrolase (EstDL136) for florfenicol cleavage. Reaction kinetics were followed by time-resolved NMR spectroscopy. Importantly, the hydrolase remained active in different media, such as saltwater or cow milk. Various environmentally-friendly application strategies for florfenicol inactivation were developed using the optimized hydrolase. As a potential filter device for cost-effective treatment of waste milk or aquacultural wastewater, the hydrolase was immobilized on Ni-NTA agarose or silica as carrier materials. In two further application examples, the hydrolase was used as cell extract or encapsulated with a semi-permeable membrane. This facilitated, for example, florfenicol inactivation in whole milk, which can help to treat waste milk from medicated cows, to be fed to calves without the risk of inducing antibiotic resistance. Enzymatic inactivation of antibiotics, in general, enables therapeutic intervention without promoting antibiotic resistance.}, language = {en} } @misc{KaunathEccard2022, author = {Kaunath, Vera and Eccard, Jana}, title = {Light Attraction in Carabid Beetles}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-55910}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559104}, pages = {10}, year = {2022}, abstract = {Artificial light at night (ALAN) is altering the behaviour of nocturnal animals in a manifold of ways. Nocturnal invertebrates are particularly affected, due to their fatal attraction to ALAN. This selective pressure has the potential to reduce the strength of the flight-to-light response in insects, as shown recently in a moth species. Here we investigated light attraction of ground beetles (Coleoptera: Carabidae).We compared among animals (three genera) from a highly light polluted (HLP) grassland in the centre of Berlin and animals collected at a low-polluted area in a Dark Sky Reserve (DSR), captured using odour bait. In an arena setting tested at night time, HLP beetles (n = 75 across all genera) showed a reduced attraction towards ALAN. Tested during daytime, HLP beetles were less active in an open field test (measured as latency to start moving), compared to DSR (n = 143). However, we did not observe a reduced attraction towards ALAN within the species most common at both sides, Calathus fuscipes (HLP = 37, DSR = 118 individuals) indicating that not all species may be equally affected by ALAN. Reduced attraction to ALAN in urban beetles may either be a result of phenotypic selection in each generation removing HLP individuals that are attracted to light, or an indication for ongoing evolutionary differentiation among city and rural populations in their light response. Reduced attraction to light sources may directly enhance survival and reproductive success of urban individuals. However, decrease in mobility may negatively influence dispersal, reproduction and foraging success, highlighting the selective pressure that light pollution may have on fitness, by shaping and modifying the behaviour of insects.}, language = {en} } @misc{EccardHerdeSchusteretal.2022, author = {Eccard, Jana and Herde, Antje and Schuster, Andrea C. and Liesenjohann, Thilo and Knopp, Tatjana and Heckel, Gerald and Dammhahn, Melanie}, title = {Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55886}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558866}, pages = {1 -- 15}, year = {2022}, abstract = {Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive "fast" types at one end of the spectrum to less fecund, long-lived, shy, plastic "slow" types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95\% and 50\% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life.}, language = {en} } @misc{WojcikCeulemansGaedke2021, author = {Wojcik, Laurie Anne and Ceulemans, Ruben and Gaedke, Ursula}, title = {Functional diversity buffers the effects of a pulse perturbation on the dynamics of tritrophic food webs}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1251}, issn = {1866-8372}, doi = {10.25932/publishup-55373}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553730}, pages = {25}, year = {2021}, abstract = {Biodiversity decline causes a loss of functional diversity, which threatens ecosystems through a dangerous feedback loop: This loss may hamper ecosystems' ability to buffer environmental changes, leading to further biodiversity losses. In this context, the increasing frequency of human-induced excessive loading of nutrients causes major problems in aquatic systems. Previous studies investigating how functional diversity influences the response of food webs to disturbances have mainly considered systems with at most two functionally diverse trophic levels. We investigated the effects of functional diversity on the robustness, that is, resistance, resilience, and elasticity, using a tritrophic—and thus more realistic—plankton food web model. We compared a non-adaptive food chain with no diversity within the individual trophic levels to a more diverse food web with three adaptive trophic levels. The species fitness differences were balanced through trade-offs between defense/growth rate for prey and selectivity/half-saturation constant for predators. We showed that the resistance, resilience, and elasticity of tritrophic food webs decreased with larger perturbation sizes and depended on the state of the system when the perturbation occurred. Importantly, we found that a more diverse food web was generally more resistant and resilient but its elasticity was context-dependent. Particularly, functional diversity reduced the probability of a regime shift toward a non-desirable alternative state. The basal-intermediate interaction consistently determined the robustness against a nutrient pulse despite the complex influence of the shape and type of the dynamical attractors. This relationship was strongly influenced by the diversity present and the third trophic level. Overall, using a food web model of realistic complexity, this study confirms the destructive potential of the positive feedback loop between biodiversity loss and robustness, by uncovering mechanisms leading to a decrease in resistance, resilience, and potentially elasticity as functional diversity declines.}, language = {en} } @misc{DragoWeithoff2021, author = {Drago, Claudia and Weithoff, Guntram}, title = {Variable Fitness Response of Two Rotifer Species Exposed to Microplastics Particles}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1248}, issn = {1866-8372}, doi = {10.25932/publishup-55261}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-552615}, pages = {13}, year = {2021}, abstract = {Plastic pollution is an increasing environmental problem, but a comprehensive understanding of its effect in the environment is still missing. The wide variety of size, shape, and polymer composition of plastics impedes an adequate risk assessment. We investigated the effect of differently sized polystyrene beads (1-, 3-, 6-µm; PS) and polyamide fragments (5-25 µm, PA) and non-plastics items such as silica beads (3-µm, SiO2) on the population growth, reproduction (egg ratio), and survival of two common aquatic micro invertebrates: the rotifer species Brachionus calyciflorus and Brachionus fernandoi. The MPs were combined with food quantity, limiting and saturating food concentration, and with food of different quality. We found variable fitness responses with a significant effect of 3-µm PS on the population growth rate in both rotifer species with respect to food quantity. An interaction between the food quality and the MPs treatments was found in the reproduction of B. calyciflorus. PA and SiO2 beads had no effect on fitness response. This study provides further evidence of the indirect effect of MPs in planktonic rotifers and the importance of testing different environmental conditions that could influence the effect of MPs.}, language = {en} } @misc{PerkinsRoseGrossartetal.2021, author = {Perkins, Anita and Rose, Andrew and Grossart, Hans-Peter and Rojas-Jimenez, Keilor Osvaldo and Barroso Prescott, Selva Kiri and Oakes, Joanne M.}, title = {Oxic and Anoxic Organic Polymer Degradation Potential of Endophytic Fungi From the Marine Macroalga, Ecklonia radiata}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {12}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55052}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550520}, pages = {1 -- 13}, year = {2021}, abstract = {Cellulose and chitin are the most abundant polymeric, organic carbon source globally. Thus, microbes degrading these polymers significantly influence global carbon cycling and greenhouse gas production. Fungi are recognized as important for cellulose decomposition in terrestrial environments, but are far less studied in marine environments, where bacterial organic matter degradation pathways tend to receive more attention. In this study, we investigated the potential of fungi to degrade kelp detritus, which is a major source of cellulose in marine systems. Given that kelp detritus can be transported considerable distances in the marine environment, we were specifically interested in the capability of endophytic fungi, which are transported with detritus, to ultimately contribute to kelp detritus degradation. We isolated 10 species and two strains of endophytic fungi from the kelp Ecklonia radiata. We then used a dye decolorization assay to assess their ability to degrade organic polymers (lignin, cellulose, and hemicellulose) under both oxic and anoxic conditions and compared their degradation ability with common terrestrial fungi. Under oxic conditions, there was evidence that Ascomycota isolates produced cellulose-degrading extracellular enzymes (associated with manganese peroxidase and sulfur-containing lignin peroxidase), while Mucoromycota isolates appeared to produce both lignin and cellulose-degrading extracellular enzymes, and all Basidiomycota isolates produced lignin-degrading enzymes (associated with laccase and lignin peroxidase). Under anoxic conditions, only three kelp endophytes degraded cellulose. We concluded that kelp fungal endophytes can contribute to cellulose degradation in both oxic and anoxic environments. Thus, endophytic kelp fungi may play a significant role in marine carbon cycling via polymeric organic matter degradation.}, language = {en} } @misc{LiuZhouFettke2021, author = {Liu, Qingting and Zhou, Yuan and Fettke, J{\"o}rg}, title = {Starch granule size and morphology of Arabidopsis thaliana starch-related mutants analyzed during diurnal rhythm and development}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {26}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, edition = {19}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55029}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550291}, pages = {1 -- 9}, year = {2021}, abstract = {Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis.}, language = {en} } @misc{KruegerFoersterTrauthetal.2021, author = {Kr{\"u}ger, Johanna and Foerster, Verena Elisabeth and Trauth, Martin H. and Hofreiter, Michael and Tiedemann, Ralph}, title = {Exploring the Past Biosphere of Chew Bahir/Southern Ethiopia: Cross-Species Hybridization Capture of Ancient Sedimentary DNA from a Deep Drill Core}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55007}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550071}, pages = {1 -- 20}, year = {2021}, abstract = {Eastern Africa has been a prime target for scientific drilling because it is rich in key paleoanthropological sites as well as in paleolakes, containing valuable paleoclimatic information on evolutionary time scales. The Hominin Sites and Paleolakes Drilling Project (HSPDP) explores these paleolakes with the aim of reconstructing environmental conditions around critical episodes of hominin evolution. Identification of biological taxa based on their sedimentary ancient DNA (sedaDNA) traces can contribute to understand past ecological and climatological conditions of the living environment of our ancestors. However, sedaDNA recovery from tropical environments is challenging because high temperatures, UV irradiation, and desiccation result in highly degraded DNA. Consequently, most of the DNA fragments in tropical sediments are too short for PCR amplification. We analyzed sedaDNA in the upper 70 m of the composite sediment core of the HSPDP drill site at Chew Bahir for eukaryotic remnants. We first tested shotgun high throughput sequencing which leads to metagenomes dominated by bacterial DNA of the deep biosphere, while only a small fraction was derived from eukaryotic, and thus probably ancient, DNA. Subsequently, we performed cross-species hybridization capture of sedaDNA to enrich ancient DNA (aDNA) from eukaryotic remnants for paleoenvironmental analysis, using established barcoding genes (cox1 and rbcL for animals and plants, respectively) from 199 species that may have had relatives in the past biosphere at Chew Bahir. Metagenomes yielded after hybridization capture are richer in reads with similarity to cox1 and rbcL in comparison to metagenomes without prior hybridization capture. Taxonomic assignments of the reads from these hybridization capture metagenomes also yielded larger fractions of the eukaryotic domain. For reads assigned to cox1, inferred wet periods were associated with high inferred relative abundances of putative limnic organisms (gastropods, green algae), while inferred dry periods showed increased relative abundances for insects. These findings indicate that cross-species hybridization capture can be an effective approach to enhance the information content of sedaDNA in order to explore biosphere changes associated with past environmental conditions, enabling such analyses even under tropical conditions.}, language = {en} } @misc{ZurellKoenigMalchowetal.2021, author = {Zurell, Damaris and K{\"o}nig, Christian and Malchow, Anne-Kathleen and Kapitza, Simon and Bocedi, Greta and Travis, Justin M. J. and Fandos, Guillermo}, title = {Spatially explicit models for decision-making in animal conservation and restoration}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {2022}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, edition = {4}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54991}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549915}, pages = {1 -- 16}, year = {2021}, abstract = {Models are useful tools for understanding and predicting ecological patterns and processes. Under ongoing climate and biodiversity change, they can greatly facilitate decision-making in conservation and restoration and help designing adequate management strategies for an uncertain future. Here, we review the use of spatially explicit models for decision support and to identify key gaps in current modelling in conservation and restoration. Of 650 reviewed publications, 217 publications had a clear management application and were included in our quantitative analyses. Overall, modelling studies were biased towards static models (79\%), towards the species and population level (80\%) and towards conservation (rather than restoration) applications (71\%). Correlative niche models were the most widely used model type. Dynamic models as well as the gene-to-individual level and the community-to-ecosystem level were underrepresented, and explicit cost optimisation approaches were only used in 10\% of the studies. We present a new model typology for selecting models for animal conservation and restoration, characterising model types according to organisational levels, biological processes of interest and desired management applications. This typology will help to more closely link models to management goals. Additionally, future efforts need to overcome important challenges related to data integration, model integration and decision-making. We conclude with five key recommendations, suggesting that wider usage of spatially explicit models for decision support can be achieved by 1) developing a toolbox with multiple, easier-to-use methods, 2) improving calibration and validation of dynamic modelling approaches and 3) developing best-practise guidelines for applying these models. Further, more robust decision-making can be achieved by 4) combining multiple modelling approaches to assess uncertainty, and 5) placing models at the core of adaptive management. These efforts must be accompanied by long-term funding for modelling and monitoring, and improved communication between research and practise to ensure optimal conservation and restoration outcomes.}, language = {en} } @misc{SpikesRodriguezSilvaBennettetal.2021, author = {Spikes, Montrai and Rodr{\´i}guez-Silva, Rodet and Bennett, Kerri-Ann and Br{\"a}ger, Stefan and Josaphat, James and Torres-Pineda, Patricia and Ernst, Anja and Havenstein, Katja and Schlupp, Ingo and Tiedemann, Ralph}, title = {A phylogeny of the genus Limia (Teleostei: Poeciliidae) suggests a single-lake radiation nested in a Caribbean-wide allopatric speciation scenario}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54888}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548882}, pages = {1 -- 8}, year = {2021}, abstract = {Objective The Caribbean is an important global biodiversity hotspot. Adaptive radiations there lead to many speciation events within a limited period and hence are particularly prominent biodiversity generators. A prime example are freshwater fish of the genus Limia, endemic to the Greater Antilles. Within Hispaniola, nine species have been described from a single isolated site, Lake Mirago{\^a}ne, pointing towards extraordinary sympatric speciation. This study examines the evolutionary history of the Limia species in Lake Mirago{\^a}ne, relative to their congeners throughout the Caribbean. Results For 12 Limia species, we obtained almost complete sequences of the mitochondrial cytochrome b gene, a well-established marker for lower-level taxonomic relationships. We included sequences of six further Limia species from GenBank (total N  = 18 species). Our phylogenies are in concordance with other published phylogenies of Limia. There is strong support that the species found in Lake Mirago{\^a}ne in Haiti are monophyletic, confirming a recent local radiation. Within Lake Mirago{\^a}ne, speciation is likely extremely recent, leading to incomplete lineage sorting in the mtDNA. Future studies using multiple unlinked genetic markers are needed to disentangle the relationships within the Lake Mirago{\^a}ne clade.}, language = {en} } @misc{BornhorstAbdelilahSeyfried2021, author = {Bornhorst, Dorothee and Abdelilah-Seyfried, Salim}, title = {Strong as a Hippo's Heart: Biomechanical Hippo Signaling During Zebrafish Cardiac Development}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54873}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548731}, pages = {1 -- 10}, year = {2021}, abstract = {The heart is comprised of multiple tissues that contribute to its physiological functions. During development, the growth of myocardium and endocardium is coupled and morphogenetic processes within these separate tissue layers are integrated. Here, we discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac progenitor cells derived from the secondary heart field, in restricting the growth of the epicardium, and in guiding trabeculation and outflow tract formation. Recent work also shows that myocardial chamber dimensions serve as a blueprint for Hippo signaling-dependent growth of the endocardium. Evidently, Hippo pathway components act at the crossroads of various signaling pathways involved in embryonic zebrafish heart development. Elucidating how biomechanical Hippo signaling guides heart morphogenesis has direct implications for our understanding of cardiac physiology and pathophysiology.}, language = {en} } @misc{MuenchAbdelilahSeyfried2021, author = {M{\"u}nch, Juliane and Abdelilah-Seyfried, Salim}, title = {Sensing and Responding of Cardiomyocytes to Changes of Tissue Stiffness in the Diseased Heart}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-54580}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-545805}, pages = {15}, year = {2021}, abstract = {Cardiomyocytes are permanently exposed to mechanical stimulation due to cardiac contractility. Passive myocardial stiffness is a crucial factor, which defines the physiological ventricular compliance and volume of diastolic filling with blood. Heart diseases often present with increased myocardial stiffness, for instance when fibrotic changes modify the composition of the cardiac extracellular matrix (ECM). Consequently, the ventricle loses its compliance, and the diastolic blood volume is reduced. Recent advances in the field of cardiac mechanobiology revealed that disease-related environmental stiffness changes cause severe alterations in cardiomyocyte cellular behavior and function. Here, we review the molecular mechanotransduction pathways that enable cardiomyocytes to sense stiffness changes and translate those into an altered gene expression. We will also summarize current knowledge about when myocardial stiffness increases in the diseased heart. Sophisticated in vitro studies revealed functional changes, when cardiomyocytes faced a stiffer matrix. Finally, we will highlight recent studies that described modulations of cardiac stiffness and thus myocardial performance in vivo. Mechanobiology research is just at the cusp of systematic investigations related to mechanical changes in the diseased heart but what is known already makes way for new therapeutic approaches in regenerative biology.}, language = {en} } @misc{MiticGrafeBatsiosetal.2022, author = {Mitic, Kristina and Grafe, Marianne and Batsios, Petros and Meyer, Irene}, title = {Partial Disassembly of the Nuclear Pore Complex Proteins during Semi-Closed Mitosis in Dictyostelium discoideum}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-54534}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-545341}, pages = {16}, year = {2022}, abstract = {Dictyostelium cells undergo a semi-closed mitosis, during which the nuclear envelope (NE) persists; however, free diffusion between the cytoplasm and the nucleus takes place. To permit the formation of the mitotic spindle, the nuclear envelope must be permeabilized in order to allow diffusion of tubulin dimers and spindle assembly factors into the nucleus. In Aspergillus, free diffusion of proteins between the cytoplasm and the nucleus is achieved by a partial disassembly of the nuclear pore complexes (NPCs) prior to spindle assembly. In order to determine whether this is also the case in Dictyostelium, we analysed components of the NPC by immunofluorescence microscopy and live cell imaging and studied their behaviour during interphase and mitosis. We observed that the NPCs are absent from the contact area of the nucleoli and that some nucleoporins also localize to the centrosome and the spindle poles. In addition, we could show that, during mitosis, the central FG protein NUP62, two inner ring components and Gle1 depart from the NPCs, while all other tested NUPs remained at the NE. This leads to the conclusion that indeed a partial disassembly of the NPCs takes place, which contributes to permeabilisation of the NE during semi-closed mitosis.}, language = {en} } @misc{HoffmannHoelkerEccard2022, author = {Hoffmann, Julia and H{\"o}lker, Franz and Eccard, Jana}, title = {Welcome to the Dark Side}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-54470}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544702}, pages = {13}, year = {2022}, abstract = {Differences in natural light conditions caused by changes in moonlight are known to affect perceived predation risk in many nocturnal prey species. As artificial light at night (ALAN) is steadily increasing in space and intensity, it has the potential to change movement and foraging behavior of many species as it might increase perceived predation risk and mask natural light cycles. We investigated if partial nighttime illumination leads to changes in foraging behavior during the night and the subsequent day in a small mammal and whether these changes are related to animal personalities. We subjected bank voles to partial nighttime illumination in a foraging landscape under laboratory conditions and in large grassland enclosures under near natural conditions. We measured giving-up density of food in illuminated and dark artificial seed patches and video recorded the movement of animals. While animals reduced number of visits to illuminated seed patches at night, they increased visits to these patches at the following day compared to dark seed patches. Overall, bold individuals had lower giving-up densities than shy individuals but this difference increased at day in formerly illuminated seed patches. Small mammals thus showed carry-over effects on daytime foraging behavior due to ALAN, i.e., nocturnal illumination has the potential to affect intra- and interspecific interactions during both night and day with possible changes in personality structure within populations and altered predator-prey dynamics.}, language = {en} } @misc{StieglerKiemelEccardetal.2021, author = {Stiegler, Jonas and Kiemel, Katrin and Eccard, Jana and Fischer, Christina and Hering, Robert and Ortmann, Sylvia and Strigl, Lea and Tiedemann, Ralph}, title = {Seed traits matter}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-54426}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544265}, pages = {18477 -- 18491}, year = {2021}, abstract = {Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51\%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.}, language = {en} } @misc{MazzaCzyperreckEccardetal.2021, author = {Mazza, Valeria and Czyperreck, Inken and Eccard, Jana and Dammhahn, Melanie}, title = {Cross-Context Responses to Novelty in Rural and Urban Small Mammals}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-54386}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-543863}, pages = {18}, year = {2021}, abstract = {The Anthropocene is the era of urbanization. The accelerating expansion of cities occurs at the expense of natural reservoirs of biodiversity and presents animals with challenges for which their evolutionary past might not have prepared them. Cognitive and behavioral adjustments to novelty could promote animals' persistence under these altered conditions. We investigated the structure of, and covariance between, different aspects of responses to novelty in rural and urban small mammals of two non-commensal rodent species. We ran replicated experiments testing responses to three novelty types (object, food, or space) of 47 individual common voles (Microtus arvalis) and 41 individual striped field mice (Apodemus agrarius). We found partial support for the hypothesis that responses to novelty are structured, clustering (i) speed of responses, (ii) intensity of responses, and (iii) responses to food into separate dimensions. Rural and urban small mammals did not differ in most responses to novelty, suggesting that urban habitats do not reduce neophobia in these species. Further studies investigating whether comparable response patters are found throughout different stages of colonization, and along synurbanization processes of different duration, will help illuminate the dynamics of animals' cognitive adjustments to urban life.}, language = {en} } @misc{CleggWackerSpijkerman2021, author = {Clegg, Mark R. and Wacker, Alexander and Spijkerman, Elly}, title = {Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1219}, issn = {1866-8372}, doi = {10.25932/publishup-53617}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-536174}, year = {2021}, abstract = {Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics.}, language = {en} } @misc{KahlKappelJoshietal.2021, author = {Kahl, Sandra and Kappel, Christian and Joshi, Jasmin Radha and Lenhard, Michael}, title = {Phylogeography of a widely distributed plant species reveals cryptic genetic lineages with parallel phenotypic responses to warming and drought conditions}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-53003}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-530035}, pages = {13986 -- 14002}, year = {2021}, abstract = {To predict how widely distributed species will perform under future climate change, it is crucial to understand and reveal their underlying phylogenetics. However, detailed information about plant adaptation and its genetic basis and history remains scarce and especially widely distributed species receive little attention despite their putatively high adaptability. To examine the adaptation potential of a widely distributed species, we sampled the model plant Silene vulgaris across Europe. In a greenhouse experiment, we exposed the offspring of these populations to a climate change scenario for central Europe and revealed the population structure through whole-genome sequencing. Plants were grown under two temperatures (18°C and 21°C) and three precipitation regimes (65, 75, and 90 mm) to measure their response in biomass and fecundity-related traits. To reveal the population genetic structure, ddRAD sequencing was employed for a whole-genome approach. We found three major genetic clusters in S. vulgaris from Europe: one cluster comprising Southern European populations, one cluster of Western European populations, and another cluster containing central European populations. Population genetic diversity decreased with increasing latitude, and a Mantel test revealed significant correlations between FST and geographic distances as well as between genetic and environmental distances. Our trait analysis showed that the genetic clusters significantly differed in biomass-related traits and in the days to flowering. However, half of the traits showed parallel response patterns to the experimental climate change scenario. Due to the differentiated but parallel response patterns, we assume that phenotypic plasticity plays an important role for the adaptation of the widely distributed species S. vulgaris and its intraspecific genetic lineages.}, language = {en} } @misc{BanerjeeLipowskySanter2020, author = {Banerjee, Pallavi and Lipowsky, Reinhard and Santer, Mark}, title = {Coarse-grained molecular model for the Glycosylphosphatidylinositol anchor with and without protein}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {6}, issn = {1866-8372}, doi = {10.25932/publishup-52374}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523742}, pages = {17}, year = {2020}, abstract = {Glycosylphosphatidylinositol (GPI) anchors are a unique class of complex glycolipids that anchor a great variety of proteins to the extracellular leaflet of plasma membranes of eukaryotic cells. These anchors can exist either with or without an attached protein called GPI-anchored protein (GPI-AP) both in vitro and in vivo. Although GPIs are known to participate in a broad range of cellular functions, it is to a large extent unknown how these are related to GPI structure and composition. Their conformational flexibility and microheterogeneity make it difficult to study them experimentally. Simplified atomistic models are amenable to all-atom computer simulations in small lipid bilayer patches but not suitable for studying their partitioning and trafficking in complex and heterogeneous membranes. Here, we present a coarse-grained model of the GPI anchor constructed with a modified version of the MARTINI force field that is suited for modeling carbohydrates, proteins, and lipids in an aqueous environment using MARTINI's polarizable water. The nonbonded interactions for sugars were reparametrized by calculating their partitioning free energies between polar and apolar phases. In addition, sugar-sugar interactions were optimized by adjusting the second virial coefficients of osmotic pressures for solutions of glucose, sucrose, and trehalose to match with experimental data. With respect to the conformational dynamics of GPI-anchored green fluorescent protein, the accessible time scales are now at least an order of magnitude larger than for the all-atom system. This is particularly important for fine-tuning the mutual interactions of lipids, carbohydrates, and amino acids when comparing to experimental results. We discuss the prospective use of the coarse-grained GPI model for studying protein-sorting and trafficking in membrane models.}, language = {en} } @misc{GrafeHofmannBatsiosetal.2020, author = {Grafe, Marianne and Hofmann, Phillip and Batsios, Petros and Meyer, Irene and Gr{\"a}f, Ralph}, title = {In vivo assembly of a Dictyostelium lamin mutant induced by light, mechanical stress, and pH}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-52507}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525075}, pages = {16}, year = {2020}, abstract = {We expressed Dictyostelium lamin (NE81) lacking both a functional nuclear localization signal and a CAAX-box for C-terminal lipid modification. This lamin mutant assembled into supramolecular, three-dimensional clusters in the cytosol that disassembled at the onset of mitosis and re-assembled in late telophase, thus mimicking the behavior of the endogenous protein. As disassembly is regulated by CDK1-mediated phosphorylation at serine 122, we generated a phosphomimetic S122E mutant called GFP-NE81-S122E-∆NLS∆CLIM. Surprisingly, during imaging, the fusion protein assembled into cytosolic clusters, similar to the protein lacking the phosphomimetic mutation. Clusters disassembled again in the darkness. Assembly could be induced with blue but not green or near ultraviolet light, and it was independent of the fusion tag. Assembly similarly occurred upon cell flattening. Earlier reports and own observations suggested that both blue light and cell flattening could result in a decrease of intracellular pH. Indeed, keeping the cells at low pH also reversibly induced cluster formation. Our results indicate that lamin assembly can be induced by various stress factors and that these are transduced via intracellular acidification. Although these effects have been shown in a phosphomimetic CDK1 mutant of the Dictyostelium lamin, they are likely relevant also for wild-type lamin.}, language = {en} } @misc{KoenigWeigeltTayloretal.2020, author = {K{\"o}nig, Christian and Weigelt, Patrick and Taylor, Amanda and Stein, Anke and Dawson, Wayne and Essl, Franz and Pergl, Jan and Pyšek, Petr and Kleunen, Mark van and Winter, Marten and Chatelain, Cyrille and Wieringa, Jan J. and Krestov, Pavel and Kreft, Holger}, title = {Source pools and disharmony of the world's island floras}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-52510}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525101}, pages = {14}, year = {2020}, abstract = {Island disharmony refers to the biased representation of higher taxa on islands compared to their mainland source regions and represents a central concept in island biology. Here, we develop a generalizable framework for approximating these source regions and conduct the first global assessment of island disharmony and its underlying drivers. We compiled vascular plant species lists for 178 oceanic islands and 735 mainland regions. Using mainland data only, we modelled species turnover as a function of environmental and geographic distance and predicted the proportion of shared species between each island and mainland region. We then quantified the over- or under-representation of families on individual islands (representational disharmony) by contrasting the observed number of species against a null model of random colonization from the mainland source pool, and analysed the effects of six family-level functional traits on the resulting measure. Furthermore, we aggregated the values of representational disharmony per island to characterize overall taxonomic bias of a given flora (compositional disharmony), and analysed this second measure as a function of four island biogeographical variables. Our results indicate considerable variation in representational disharmony both within and among plant families. Examples of generally over-represented families include Urticaceae, Convolvulaceae and almost all pteridophyte families. Other families such as Asteraceae and Orchidaceae were generally under-represented, with local peaks of over-representation in known radiation hotspots. Abiotic pollination and a lack of dispersal specialization were most strongly associated with an insular over-representation of families, whereas other family-level traits showed minor effects. With respect to compositional disharmony, large, high-elevation islands tended to have the most disharmonic floras. Our results provide important insights into the taxon- and island-specific drivers of disharmony. The proposed framework allows overcoming the limitations of previous approaches and provides a quantitative basis for incorporating functional and phylogenetic approaches into future studies of island disharmony.}, language = {en} } @misc{SchittkoBernardVerdierHegeretal.2020, author = {Schittko, Conrad and Bernard-Verdier, Maud and Heger, Tina and Buchholz, Sascha and Kowarik, Ingo and von der Lippe, Moritz and Seitz, Birgit and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {A multidimensional framework for measuring biotic novelty: How novel is a community?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-52565}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525657}, pages = {19}, year = {2020}, abstract = {Anthropogenic changes in climate, land use, and disturbance regimes, as well as introductions of non-native species can lead to the transformation of many ecosystems. The resulting novel ecosystems are usually characterized by species assemblages that have not occurred previously in a given area. Quantifying the ecological novelty of communities (i.e., biotic novelty) would enhance the understanding of environmental change. However, quantification remains challenging since current novelty metrics, such as the number and/or proportion of non-native species in a community, fall short of considering both functional and evolutionary aspects of biotic novelty. Here, we propose the Biotic Novelty Index (BNI), an intuitive and flexible multidimensional measure that combines (a) functional differences between native and non-native introduced species with (b) temporal dynamics of species introductions. We show that the BNI is an additive partition of Rao's quadratic entropy, capturing the novel interaction component of the community's functional diversity. Simulations show that the index varies predictably with the relative amount of functional novelty added by recently arrived species, and they illustrate the need to provide an additional standardized version of the index. We present a detailed R code and two applications of the BNI by (a) measuring changes of biotic novelty of dry grassland plant communities along an urbanization gradient in a metropolitan region and (b) determining the biotic novelty of plant species assemblages at a national scale. The results illustrate the applicability of the index across scales and its flexibility in the use of data of different quality. Both case studies revealed strong connections between biotic novelty and increasing urbanization, a measure of abiotic novelty. We conclude that the BNI framework may help building a basis for better understanding the ecological and evolutionary consequences of global change.}, language = {en} } @misc{NoonanFlemingTuckeretal.2020, author = {Noonan, Michael J. and Fleming, Christen H. and Tucker, Marlee A. and Kays, Roland and Harrison, Autumn-Lynn and Crofoot, Margaret C. and Abrahms, Briana and Alberts, Susan C. and Ali, Abdullahi H. and Blaum, Niels}, title = {Effects of body size on estimation of mammalian area requirements}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-52682}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526824}, pages = {14}, year = {2020}, abstract = {Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals <10 kg were underestimated by a mean approximately15\%, and species weighing approximately100 kg were underestimated by approximately50\% on average. Thus, we found area estimation was subject to autocorrelation-induced bias that was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the least accurate home-range estimates. As a correction, we tested whether data thinning or autocorrelation-informed home-range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required an approximately93\% data loss to achieve statistical independence with 95\% confidence and was, therefore, not a viable solution. In contrast, autocorrelation-informed home-range estimation resulted in consistently accurate estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum.}, language = {en} } @misc{ZhangChenSiemiatkowskaetal.2020, author = {Zhang, Youjun and Chen, Moxian and Siemiatkowska, Beata and Toleco, Mitchell Rey and Jing, Yue and Strotmann, Vivien and Zhang, Jianghua and Stahl, Yvonne and Fernie, Alisdair R.}, title = {A highly efficient agrobacterium-mediated method for transient gene expression and functional studies in multiple plant species}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-52425}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524254}, pages = {14}, year = {2020}, abstract = {Although the use of stable transformation technology has led to great insight into gene function, its application in high-throughput studies remains arduous. Agro-infiltration have been widely used in species such as Nicotiana benthamiana for the rapid detection of gene expression and protein interaction analysis, but this technique does not work efficiently in other plant species, including Arabidopsis thaliana. As an efficient high-throughput transient expression system is currently lacking in the model plant species A. thaliana, we developed a method that is characterized by high efficiency, reproducibility, and suitability for transient expression of a variety of functional proteins in A. thaliana and 7 other plant species, including Brassica oleracea, Capsella rubella, Thellungiella salsuginea, Thellungiella halophila, Solanum tuberosum, Capsicum annuum, and N. benthamiana. Efficiency of this method was independently verified in three independent research facilities, pointing to the robustness of this technique. Furthermore, in addition to demonstrating the utility of this technique in a range of species, we also present a case study employing this method to assess protein-protein interactions in the sucrose biosynthesis pathway in Arabidopsis.}, language = {en} } @misc{RazaghiMoghadamNikoloski2020, author = {Razaghi-Moghadam, Zahra and Nikoloski, Zoran}, title = {Supervised learning of gene regulatory networks}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51656}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516561}, pages = {9}, year = {2020}, abstract = {Identifying the entirety of gene regulatory interactions in a biological system offers the possibility to determine the key molecular factors that affect important traits on the level of cells, tissues, and whole organisms. Despite the development of experimental approaches and technologies for identification of direct binding of transcription factors (TFs) to promoter regions of downstream target genes, computational approaches that utilize large compendia of transcriptomics data are still the predominant methods used to predict direct downstream targets of TFs, and thus reconstruct genome-wide gene-regulatory networks (GRNs). These approaches can broadly be categorized into unsupervised and supervised, based on whether data about known, experimentally verified gene-regulatory interactions are used in the process of reconstructing the underlying GRN. Here, we first describe the generic steps of supervised approaches for GRN reconstruction, since they have been recently shown to result in improved accuracy of the resulting networks? We also illustrate how they can be used with data from model organisms to obtain more accurate prediction of gene regulatory interactions.}, language = {en} } @misc{OlmerEngelsUsmanetal.2018, author = {Olmer, Ruth and Engels, Lena and Usman, Abdulai and Menke, Sandra and Malik, Muhammad Nasir Hayat and Pessler, Frank and G{\"o}hring, Gudrun and Bornhorst, Dorothee and Bolten, Svenja and Abdelilah-Seyfried, Salim and Scheper, Thomas and Kempf, Henning and Zweigerdt, Robert and Martin, Ulrich}, title = {Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-42709}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427095}, pages = {18}, year = {2018}, abstract = {Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability.}, language = {en} }