@article{ShainyanKirpichenkoChipaninaetal.2015, author = {Shainyan, Bagrat A. and Kirpichenko, Svetlana V. and Chipanina, Nina N. and Oznobikhina, Larisa P. and Kleinpeter, Erich and Shlykov, Sergey A. and Osadchiy, Dmitriy Yu.}, title = {Synthesis and Conformational Analysis of 3-Methyl-3-silatetrahydropyran by GED, FTIR, NMR, and Theoretical Calculations: Comparative Analysis of 1-Hetero-3-methyl-3-silacyclohexanes}, series = {The journal of organic chemistry}, volume = {80}, journal = {The journal of organic chemistry}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.5b02355}, pages = {12492 -- 12500}, year = {2015}, abstract = {3-Methyl-3-silatetrahydropyran 1 was synthesized and its molecular structure and conformational behavior was studied by gas-phase electron diffraction (GED), FTIR, low temperature H-1 and C-13 NMR spectroscopy, and by theoretical calculations (DFT, MP2). Two conformers; 1-ax and 1-eq; were located on the potential energy Surface. In the gas phase; a slight predominance of the axial conformer was determined, with the ratio 1-ax:1-eq = 54(9):46(9) (from GED) or 53:47 or 61;39 (from IR). In solution, LT NMR spectroscopy at 103 K gives the ratio 1-ax:1-eq = 35:65 (-Delta G(103)degrees = 0.13 kcal/mol). Simulation of solvent effects using the PCM continuum model or by calculation of the corresponding solvent-solute complexes allowed us to rationalize the experimentally observed opposite conformational predominance of the conformers of 3-methyl-3-silatettahydropyran in the gas phase and in solution. Comparative analysis of the effect of heteroatom in 1-hetero-3-methyl-3-silacyclohexanes on the structure, stereoelectronic interactions, and relative energies of the conformers is done.}, language = {en} } @article{KolocourisKochKleinpeteretal.2015, author = {Kolocouris, Antonios and Koch, Andreas and Kleinpeter, Erich and Stylianakis, Ioannis}, title = {2-Substituted and 2,2-disubstituted adamantane derivatives as models for studying substituent chemical shifts and C-H-ax center dot center dot center dot Y-ax cyclohexane contacts-results from experimental and theoretical NMR spectroscopic chemical shifts and DFT structures}, series = {Tetrahedron}, volume = {71}, journal = {Tetrahedron}, number = {16}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2015.01.044}, pages = {2463 -- 2481}, year = {2015}, abstract = {The complete H-1 and C-13 NMR chemical shifts assignment for various 2-substituted and 2,2-disubstituted adamantane derivatives 1-38 in CDCl3 solution was realized on the basis of NMR experiments combined with chemical structure information and DFT-GIAO (B3LYP/6-31+G(d,p)-GIAO) calculations of chemical shifts in solution. Substituent-induced C-13 NMR chemical shifts (SCS) are discussed. C-H-ax center dot center dot center dot Y-ax contacts are a textbook prototype of steric hindrance in organic chemistry. The nature of these contacts will be further investigated in this work on basis of new adamantane derivatives, which are substituted at C-2 to provide models for 1,4-C-H-ax center dot center dot center dot Y-ax and 1,5-C-H-ax center dot center dot center dot Y-ax contacts. The B3LYP/6-31+G(d,p) calculations predicted the presence of NBO hyperconjugative attractive interactions between C-H-ax and Y-ax groups along C-H-ax center dot center dot center dot Y-ax contacts. The H-1 NMR signal separation, Delta delta(gamma-CH2), reflects the strength of the H-bonded C-H-ax center dot center dot center dot Y-ax contact. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BauerHartmannKleinpeteretal.2015, author = {Bauer, Monika and Hartmann, Lutz and Kleinpeter, Erich and Kuschel, Frank and Pithart, Cornelia and Weissflog, Wolfgang}, title = {Chiral Dopants Derived from Ephedrine/Pseudoephedrine: Structure and Medium Effects on the Helical Twisting Power}, series = {Molecular crystals and liquid crystals}, volume = {608}, journal = {Molecular crystals and liquid crystals}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1542-1406}, doi = {10.1080/15421406.2014.949592}, pages = {14 -- 24}, year = {2015}, abstract = {Chiral dopants were obtained by acylation of enantiomerically pure ephedrine and pseudoephedrine with promesogenic carbonyl reagents. The products have been investigated with respect to their chiral transfer ability on nematic host matrices characterized by extreme differences of the dielectric anisotropy. It has been found that the medium dependence of the helicity induction nearly disappears at reduced temperatures. Based on variable temperature H-1 NMR studies on monoacylated homologues, the estimated coalescence temperatures and free activation enthalpies for the hindered rotation around C-N bonds could be correlated with the helical twisting power. Measurements by dielectric spectroscopy reveal the correlation between the molar mass of substituents linked to the chiral building block and the dynamic glass transition of corresponding chiral dopants. Furthermore, the effect of intramolecular and intermolecular hydrogen bonds has been studied by ATR-FTIR spectroscopy.}, language = {en} } @article{KleinpeterKriigerKoch2015, author = {Kleinpeter, Erich and Kriiger, Stefanie and Koch, Andreas}, title = {Anisotropy Effect of Three-Membered Rings in H-1 NMR Spectra: Quantification by TSNMRS and Assignment of the Stereochemistry}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {119}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {18}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.5b03078}, pages = {4268 -- 4276}, year = {2015}, abstract = {The spatial magnetic properties (through Space NAIR shieldings, TSNMRSs) of cyclopropane; of the heteroanalogous oxirane, thiirane, and aziridine; and of various substituted dis-, and tris-cyclic analogues have been computed by the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSSs) of various size and direction. The TSNMRS values, thus obtained, can be employed to visualize the anisotropy (ring current) effect of I the cyclopropane ring moiety. This approach has been employed to qualify and quantify substituent influences and contributions of appropriate ring heteroatoms O, NH, and S on the anisotropy (ring current) effect of three-mernbered ring moieties, and to assign the stereochemistry of mono-, bis-, and tris cyclic structures containing cyclopropane as a structural element. Characteristic examples are included.}, language = {en} } @article{KleinpeterMichaelisKoch2015, author = {Kleinpeter, Erich and Michaelis, Marcus and Koch, Andreas}, title = {Are para-nitro-pyridine N-oxides quinonoid or benzenoid? An answer given by spatial NICS (TSNMRS)}, series = {Tetrahedron}, volume = {71}, journal = {Tetrahedron}, number = {15}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2015.02.043}, pages = {2273 -- 2279}, year = {2015}, abstract = {The spatial magnetic properties (Through-Space NMR Shieldings-TSNMRS) of a number of substituted para-nitro-pyridine N-oxides have been computed, visualized as Iso-Chemical-Shielding-Surfaces (ICSS) of various size and direction, and were examined subject to the present quinonoid or benzenoid pi-relectron distribution of the six-membered ring. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{RasovicBlagojevicBaranacStojanovicetal.2016, author = {Rasovic, Aleksandar and Blagojevic, Vladimir and Baranac-Stojanovic, Marija and Kleinpeter, Erich and Markovic, Rade and Minic, Dragica M.}, title = {Quantification of the push-pull effect in 2-alkylidene-4-oxothiazolidines by using NMR spectral data and barriers to rotation around the C=C bond}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394523}, pages = {6364 -- 6373}, year = {2016}, abstract = {Information about the strength of donor-acceptor interactions in push-pull alkenes is valuable, as this so-called "push-pull effect" influences their chemical reactivity and dynamic behaviour. In this paper, we discuss the applicability of NMR spectral data and barriers to rotation around the C[double bond, length as m-dash]C double bond to quantify the push-pull effect in biologically important 2-alkylidene-4-oxothiazolidines. While olefinic proton chemical shifts and differences in 13C NMR chemical shifts of the two carbons constituting the C[double bond, length as m-dash]C double bond fail to give the correct trend in the electron withdrawing ability of the substituents attached to the exocyclic carbon of the double bond, barriers to rotation prove to be a reliable quantity in providing information about the extent of donor-acceptor interactions in the push-pull systems studied. In particular all relevant kinetic data, that is the Arrhenius parameters (apparent activation energy Ea and frequency factor A) and activation parameters (ΔS‡, ΔH‡ and ΔG‡), were determined from the data of the experimentally studied configurational isomerization of (E)-9a. These results were compared to previously published related data for other two compounds, (Z)-1b and (2E,5Z)-7, showing that experimentally determined ΔG‡ values are a good indicator of the strength of push-pull character. Theoretical calculations of the rotational barriers of eight selected derivatives excellently correlate with the calculated C[double bond, length as m-dash]C bond lengths and corroborate the applicability of ΔG‡ for estimation of the strength of the push-pull effect in these and related systems.}, language = {en} } @article{KleinpeterKoch2016, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Y-aromaticity - existing: yes or no? An answer given on the magnetic criterion (TSNMRS)}, series = {Tetrahedron}, volume = {72}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2016.02.020}, pages = {1675 -- 1685}, year = {2016}, abstract = {The spatial magnetic properties (Through Space NMR Shieldings - TSNMRS) of a number of Y-shaped structures possessing 4n+2 pi-electrons (i.a. the trimethylenemethane ions TMM2+, TMM2-, the guanidinium cation, substituted and hetero analogues) have been computed, visualized as Isochemical Shielding Surfaces (ICSS) of various size and direction, were examined subject to present Y-aromaticity and the results compared with energetic and geometric criteria obtained already. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BalciAkkayaAkyuzetal.2016, author = {Balci, K. and Akkaya, Y. and Akyuz, S. and Collier, W. B. and Stricker, M. C. and Stover, D. D. and Ritzhaupt, G. and Koch, Andreas and Kleinpeter, Erich}, title = {The effects of conformation and zwitterionic tautomerism on the structural and vibrational spectral data of anserine}, series = {Vibrational spectroscopy : an international journal devoted to applications of infrared and raman spectroscopy}, volume = {86}, journal = {Vibrational spectroscopy : an international journal devoted to applications of infrared and raman spectroscopy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-2031}, doi = {10.1016/j.vibspec.2016.08.003}, pages = {277 -- 289}, year = {2016}, abstract = {In this study, the stable conformers of neutral anserine were searched by molecular dynamics simulations and energy minimization calculations using the MM2 force field. Thermochemical calculations at B3LYP/6-31G(d) level of theory followed these preliminary calculations. The results confirmed that neutral anserine has quite a flexible structure and many stable gauche and trans conformers at room temperature. Nevertheless, two are considerably more favourable in energy than the others and expected to dominate the gas-phase and matrix IR spectra of the molecule. The corresponding structural and vibrational spectral data for these two conformers of neutral anserine, whose relative stabilities were also examined by high-accuracy energy calculations carried out using G3MP2B3 method, and for the most stable conformer of anserine in zwitterion form were calculated at B3LYP/6-311++G(d,p) level of theory. The calculated harmonic force constants were refined using the Scaled Quantum Mechanical Force Field (SQM-FF) method and then used to produce the refined wavenumbers, potential energy distributions (PEDs) and IR and Raman intensities. These refined data together with the scaled harmonic wavenumbers obtained using another method, Dual Scale factors (DS), enabled us to correctly analyse the observed IR and Raman spectra of anserine and revealed the effects of conformation and zwitterionic tautomerism on its structural and vibrational spectral data. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{WentrupKochKleinpeter2016, author = {Wentrup, Curt and Koch, Rainer and Kleinpeter, Erich}, title = {Twisted C=C Double Bonds with Very Low Rotational Barriers in Dioxanediones and Isoxazolones Determined by Low-Temperature Dynamic NMR Spectroscopy and Computational Chemistry}, series = {European journal of organic chemistry}, journal = {European journal of organic chemistry}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.201600931}, pages = {4985 -- 4990}, year = {2016}, language = {en} } @article{BartaSzatmariFueloepetal.2016, author = {Barta, Petra and Szatmari, Istvan and Fueloep, Ferenc and Heydenreich, Matthias and Koch, Andreas and Kleinpeter, Erich}, title = {Synthesis and stereochemistry of new naphth[1,3]oxazino[3,2-a] benzazepine and naphth[1,3]oxazino[3,2-e]thienopyridine derivatives}, series = {Tetrahedron}, volume = {72}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2016.03.058}, pages = {2402 -- 2410}, year = {2016}, abstract = {Through the reactions of 1- or 2-naphthol and 4,5-dihydro-3H-benz[c]azepine or 6,7-dihydrothieno[3,2-c]pyridine, new aminonaphthol derivatives were prepared. The syntheses were extended by using N-containing naphthol analogues such as 5-hydroxyisoquinoline and 6-hydroxyquinoline. The ring closures of the novel bifunctional compounds were also achieved, resulting in new naphth[2,1-e][1,3]oxazines, naphth[1,2-e][1,3]oxazines, isoquinolino[5,6-e][1,3]oxazines and quinolino[5,6-e][1,3]oxazines. H-1 NMR spectra of the target heterocycles 16, 20 and 21 were sufficiently resolved to indentify the present stereochemistry; therefore, beside computed structures, spatial experimental (dipolar coupling-NOE) and computed (ring current effect of the naphthyl moiety-TSNMRS) NMR studies were employed. The studied heterocycles exist exclusively as S(14b),R(N), R(14b),S(N), and S(16b)S(N) isomers, respectively. The flexible moieties of the studied compounds prefer. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{RasovicBlagojevicBaranacStojanovicetal.2016, author = {Rasovic, Aleksandar and Blagojevic, Vladimir and Baranac-Stojanovic, Marija and Kleinpeter, Erich and Markovic, Rade and Minic, Dragica M.}, title = {Quantification of the push-pull effect in 2-alkylidene-4-oxothiazolidines by using NMR spectral data and barriers to rotation around the C=C bond}, series = {New journal of chemistry}, volume = {40}, journal = {New journal of chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1144-0546}, doi = {10.1039/c6nj00901h}, pages = {6364 -- 6373}, year = {2016}, abstract = {Information about the strength of donor-acceptor interactions in push-pull alkenes is valuable, as this so-called "push-pull effect' influences their chemical reactivity and dynamic behaviour. In this paper, we discuss the applicability of NMR spectral data and barriers to rotation around the CQC double bond to quantify the push-pull effect in biologically important 2-alkylidene-4-oxothiazolidines. While olefinic proton chemical shifts and differences in C-13 NMR chemical shifts of the two carbons constituting the CQC double bond fail to give the correct trend in the electron withdrawing ability of the substituents attached to the exocyclic carbon of the double bond, barriers to rotation prove to be a reliable quantity in providing information about the extent of donor-acceptor interactions in the push-pull systems studied. In particular all relevant kinetic data, that is the Arrhenius parameters ( apparent activation energy Ea and frequency factor A) and activation parameters ( Delta S-double dagger, Delta H-double dagger and Delta G(double dagger)), were determined from the data of the experimentally studied configurational isomerization of ( E)-9a. These results were compared to previously published related data for other two compounds, ( Z)-1b and ( 2E, 5Z)-7, showing that experimentally determined Delta G(double dagger) values are a good indicator of the strength of push-pull character. Theoretical calculations of the rotational barriers of eight selected derivatives excellently correlate with the calculated CQC bond lengths and corroborate the applicability of Delta G(double dagger) for estimation of the strength of the push-pull effect in these and related systems.}, language = {en} } @article{ShainyanBelyakovSigolaevetal.2017, author = {Shainyan, Bagrat A. and Belyakov, Alexander V. and Sigolaev, Yurii F. and Khramov, Alexander N. and Kleinpeter, Erich}, title = {Molecular Structure and Conformational Analysis of 1-Phenyl-1-X-1-Silacyclohexanes (X = F, Cl) by Electron Diffraction, Low-Temperature NMR, and Quantum Chemical Calculations}, series = {The journal of organic chemistry}, volume = {82}, journal = {The journal of organic chemistry}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.6b02538}, pages = {461 -- 470}, year = {2017}, abstract = {The molecular structure and conformational preferences of 1-phenyl-1-X-1-silacyclohexanes C5H10Si(Ph,X) (X = F (3), Cl (4)) were studied by gas-phase electron diffraction, low-temperature NMR spectroscopy, and high-level quantum chemical calculations. In the gas phase only three (3) and two (4) stable conformers differing in the axial or equatorial location of the phenyl group and the angle of rotation about the Si-C-ph bond (axi and axo denote the Ph group lying in or out of the X-Si-C-ph plane) contribute to the equilibrium. In 3 the ratio Ph-eq:Ph-axo:Ph-axi is 40(12):55(24):5 and 64:20:16 by experiment and theory, respectively. In 4 the ratio Ph-eq:Ph-axo is 79(15):21(15) and 71:29 by experiment and theory (M06-2X calculations), respectively. The gas-phase electron diffraction parameters are in good agreement with those obtained from theory at the M06-2X/aug-ccPVTZ and MP2/aug-cc-pVTZ levels. Unlike the case for M06-2X, MP2 calculations indicate that 3-Ph-eq conformer lies 0.5 kcal/mol higher than the 3-Ph-axo, conformer. As follows from QTAIM analysis, the phenyl group is more stable when it is located in the axial position but produces destabilization of the silacyclohexane ring: By low temperature NMR spectroscopy the six-membered ring interconversion could be frozen, at 103 K and the present conformational equilibria of 3 and 4 could be determined. The ratio of the conformers is 3-Ph-eq:3-Ph-ax = (75-77):(23-25) and 4-Ph-eq:4-Ph-ax = 82:18.}, language = {en} } @article{MovahedifarModarresiAlamKleinpeteretal.2017, author = {Movahedifar, Fahimeh and Modarresi-Alam, Ali Reza and Kleinpeter, Erich and Schilde, Uwe}, title = {Dynamic H-1-NMR study of unusually high barrier to rotation about the partial C-N double bond in N,N-dimethyl carbamoyl 5-aryloxytetrazoles}, series = {Journal of molecular structure}, volume = {1133}, journal = {Journal of molecular structure}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-2860}, doi = {10.1016/j.molstruc.2016.12.010}, pages = {244 -- 252}, year = {2017}, abstract = {The synthesis of new N,N-dimethyl carbamoyl 5-aryloxytetrazoles have been reported. Their dynamic H-1-NMR via rotation about C-N bonds in moiety of urea group [a; CO-NMe2 and b; (2-tetrazolyl)N-CO rotations] in the solvents CDCl3 (223-333 K) and DMSO (298-363 K) is studied. Accordingly, the free energies of activation, obtained 16.5 and 16.9 kcal mol(-1) respectively, attributed to the conformational isomerization about the Me2N-C=O bond (a rotation). Moreover, a and b barrier to rotations in 5-((4-methylphenoxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide (P) also were computed at level of B3LYP using 6-311++G** basis set. The optimized geometry parameters are in good agreement with X-ray structure data. The computation of energy barrier for a and b was determined 16.9 and 2.5 kcal mol(-1), respectively. The former is completely in agreement with the result obtained via dynamic NMR. X-ray structure analysis data demonstrate that just 2-acylated tetrazole was formed in the case of 5-(p-tolyloxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide. X-ray data also revealed a planar trigonal orientation of the Me2N group which is coplanar to carbonyl group with the partial double-bond C-N character. It also demonstrates the synperiplanar position of C=O group with tetrazolyl ring. On average, in solution the plane containing carbonyl bond is almost perpendicular to the plane of the tetrazolyl ring (because of steric effects as confirmed by B3LY12/6-311++G**) while the plane containing Me2N group is coplanar with carbonyl bond which is in contrast with similar urea derivatives and it demonstrates the unusually high rotational energy barrier of these compounds. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{KleinpeterKoch2017, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Identification of mesomeric substructures by through-space NMR shieldings (TSNMRS). Trimethine cyanine/merocyanine-like or aromatic pi-electron delocalization?}, series = {Tetrahedron}, volume = {73}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2017.05.062}, pages = {4265 -- 4274}, year = {2017}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of amino-substituted heteraromatic six-membered ring systems such as pyrylium/thiopyrylium analogues have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to quantify and visualize the existing aromaticity of the studied compounds. Due to strong conjugation of six-membered ring pi-electrons and lone pairs of the exo-cyclic amino substituents (restricted rotation about partial C,N double bonds) the interplay of still aromatic and already dominating trimethine cyanine/merocyanine-like substructures can be estimated. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ShainyanKirpichenkoKleinpeter2017, author = {Shainyan, Bagrat A. and Kirpichenko, Svetlana V. and Kleinpeter, Erich}, title = {Conformational Preferences of the Phenyl Group in 1-Phenyl-1-X-1-silacyclo-hexanes (X = MeO, HO) and 3-Phenyl-3-X-3-silatetrahydropyrans (X = HO, H) by Low Temperature C-13 NMR Spectroscopy and Theoretical Calculations}, series = {The journal of organic chemistry}, volume = {82}, journal = {The journal of organic chemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.7b02505}, pages = {13414 -- 13422}, year = {2017}, abstract = {New Si-phenyl-substituted silacyclohexanes and 3-silatetrahydropyrans have been synthesized and studied with respect to the conformational equilibria of the heterosix-membered ring by low temperature C-13 NMR spectroscopy and quantum chemical calculations. For 1-methoxy-1-phenylsilacyclohexane 1 and 3-phenyl-3-silatetrahydropyran 4 the conformational equilibria could be frozen and assigned. The Ph-ax reversible arrow Ph-eq equilibrium constants at 103 K are 2.21 for 1 and 4.59 for 4. In complete agreement with former studies of similar silicon compounds, molecules 1 and 4 prefer to adopt the Pheq conformation. The conformational equilibria of 1-hydroxy-1-phenylsilacydohexane 2 and 3-hydroxy-3-phenyl-3-silatetrahydropyran 3 could not be frozen at 100 K and proved to be heavily one-sided (if not anancomeric). Obviously, there is a general trend of predominance of Phax conformer in the gas phase and of Pheq in solution. For the isolated molecules of silanols 2 and 3, calculations allowed to explain the axial predominance of the phenyl group by a larger polarization of the Si-Ph than of the Si-O bond in the Phax conformer and additional destabilization of 3-Ph-eq conformer by repulsion of unidirectional dipoles of the endocyclic oxygen lone pair and of the highly polar axial Si-O bond.}, language = {en} } @article{KleinpeterWernerLinker2017, author = {Kleinpeter, Erich and Werner, Peter and Linker, Torsten}, title = {Synthesis and NMR spectroscopic conformational analysis of benzoic acid esters of mono- and 1,4-dihydroxycyclohexane, 4-hydroxycyclohexanone and the -ene analogue - The more polar the molecule the more stable the axial conformer}, series = {Tetrahedron}, volume = {73}, journal = {Tetrahedron}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2017.04.029}, pages = {3801 -- 3809}, year = {2017}, abstract = {para-Substituted benzoic acid esters of cyclohexanol, 1,4-dihydroxycyclohexane, 4-hydroxy-cyclohexanone and of the corresponding exo-methylene derivative were synthesized and the conformational equilibria of the cyclohexane skeleton studied by low temperature H-1 and C-13 NMR spectroscopy. The geometry optimized structures of the axial/equatorial chair conformers were computed at the DFT level of theory. Only one preferred conformation of the ester group was obtained for both the axial and the equatorial conformer, respectively. The content of the axial conformer increases with growing polarity of the 6-membered ring moiety; hereby, in addition, the effect of sp(2) hybridization/polarity of C(4)= O/C(4)= CH2 on the present conformational equilibria is critically evaluated. Another dynamic process could be studied, for the first time in this kind of compounds. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{KleinpeterHeydenreichKochetal.2017, author = {Kleinpeter, Erich and Heydenreich, Matthias and Koch, Andreas and Krtitschka, Angela and Kr{\"u}ger, Tobias and Linker, Torsten}, title = {NMR spectroscopic conformational analysis of 4-methylene-cyclohexyl pivalateThe effect of sp(2) hybridization}, series = {Magnetic resonance in chemistry}, volume = {55}, journal = {Magnetic resonance in chemistry}, publisher = {Wiley}, address = {Hoboken}, issn = {0749-1581}, doi = {10.1002/mrc.4630}, pages = {1073 -- 1078}, year = {2017}, abstract = {The conformational equilibrium of the axial/equatorial conformers of 4-methylene-cyclohexyl pivalate is studied by dynamic NMR spectroscopy in a methylene chloride/freon mixture. At 153K, the ring interconversion gets slow on the nuclear magnetic resonance timescale, the conformational equilibrium (-G degrees) can be examined, and the barrier to ring interconversion (G(\#)) can be determined. The structural influence of sp(2) hybridization on both G degrees and G(\#) of the cyclohexyl moiety can be quantified.}, language = {en} } @article{KleinpeterKoch2018, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Paramagnetic ring current effects in anti-aromatic structures subject to substitution/annelation quantified by spatial magnetic properties (TSNMRS)}, series = {Tetrahedron}, volume = {74}, journal = {Tetrahedron}, number = {7}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2017.12.020}, pages = {700 -- 710}, year = {2018}, abstract = {The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of the typically anti-aromatic cyclopentadienyl cation, cyclobutadiene, pentalene, s-indacene and of substituted/annelated analogues of the latter structures have been calculated using the CIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values were employed to visualize and quantify the dia(para) magnetic ring current effects in the studied compounds. The interplay of dia(para)magnetic ring current effects due to substitution/annelation caused by heavy exo-cyclic n,pi-electron delocalization can be qualified.}, language = {en} } @article{ShainyanSuslovaTranDinhPhienetal.2018, author = {Shainyan, Bagrat A. and Suslova, Elena N. and Tran Dinh Phien, and Shlykov, Sergey A. and Kleinpeter, Erich}, title = {Synthesis, conformational preferences in gas and solution, and molecular gear rotation in 1-(dimethylamino)-1-phenyl-1-silacyclohexane by gas phase electron diffraction (GED), LT NMR and theoretical calculations}, series = {Tetrahedron}, volume = {74}, journal = {Tetrahedron}, number = {32}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2018.06.023}, pages = {4299 -- 4307}, year = {2018}, abstract = {1-(Dimethylamino)-1-phenyl-1-silacyclohexane 1, was synthesized, and its molecular structure and conformational properties studied by gas-phase electron diffraction (GED), low temperature C-13 NMR spectroscopy and quantum-chemical calculations. The predominance of the 1-Ph-ax conformer (1-Ph-eq:1-Ph-ax ratio of 20:80\%, Delta G degrees (317 K) = -0.87 kcal/mol) in the gas phase is close to the theoretically estimated conformational equilibrium. In solution, low temperature NMR spectroscopy showed analyzable decoalescence of C-ipso and C(1,5) carbon signals in C-13 NMR spectra at 103 K. Opposite to the gas state in the freon solution employed (CD2Cl2/CHFCl2/CHFCl2 = 1:1:3), which is still liquid at 100 K, the 1-Ph-eq conformer was found to be the preferred one [(1-Ph-eq: 1-Ph-ax = 77\%: 23\%, K = 77/23 = 2.8; -Delta G degrees = -RT In K (at 103 K) = 0.44 +/- 0.1 kcal/mol]. When comparing 1 with 1-phenyl-1-(X)silacylohexanes (X = H, Me, OMe, F, Cl), studied so far, the trend of predominance of the Ph-ax conformer in the gas phase and of the Ph-eq conformer in solution is confirmed.}, language = {en} } @article{KirpichenkoShainyanKleinpeteretal.2018, author = {Kirpichenko, Svetlana and Shainyan, Bagrat A. and Kleinpeter, Erich and Shlykov, Sergey A. and Tran Dinh Phien, and Albanov, Alexander}, title = {Synthesis of 3-fluoro-3-methyl-3-silatetrahydropyran and its conformational preferences in gas and solution by GED, NMR and theoretical calculations}, series = {Tetrahedron}, volume = {74}, journal = {Tetrahedron}, number = {15}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2018.02.055}, pages = {1859 -- 1867}, year = {2018}, abstract = {The 3,3-disubstitued 3-silaheterocyclohexane with an electronegative substituent at silicon, 3-fluoro-3-methyl-3-silatetrahydropyran 1, was synthesized, and its molecular structure and conformational properties studied by gas-phase electron diffraction (GED) and low temperature C-13 and F-19 NMR spectroscopy. Quantum-chemical calculations were carried out both for the isolated species and Hcomplexes in gas and in polar medium. The predominance of the 1-FeqMeax conformer (1-F-eq:1-F-ax ratio of 65:35, Delta G degrees = 0.37 kcal/mol) determined from GED is close to the theoretically estimated conformational equilibrium, especially at the DFT level. In solution, low temperature NMR spectroscopy showed no decoalescence of the signals in C-13 (down to 95 K) and F-19 NMR spectra (down to 123 K). However, the calculated F-19 chemical shift of -173.6 ppm for the 1-FeqMeax conformer practically coincides with the experimentally observed value (-173 to -175 ppm) as distinct from that for the 1-FaxMeeq conformer (-188.8 ppm), suggesting compound 1 to be anancomeric in solution, in compliance with its theoretical and experimental preference in the gas phase.}, language = {en} }