@phdthesis{Xie2023, author = {Xie, Dongjiu}, title = {Nanostructured Iron-based compounds as sulfur host material for lithium-sulfur batteries}, doi = {10.25932/publishup-61036}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610369}, school = {Universit{\"a}t Potsdam}, pages = {viii, 142}, year = {2023}, abstract = {The present thesis focuses on the synthesis of nanostructured iron-based compounds by using β-FeOOH nanospindles and poly(ionic liquid)s (PILs) vesicles as hard and soft templates, respectively, to suppress the shuttle effect of lithium polysulfides (LiPSs) in Li-S batteries. Three types of composites with different nanostructures (mesoporous nanospindle, yolk-shell nanospindle, and nanocapsule) have been synthesized and applied as sulfur host material for Li-S batteries. Their interactions with LiPSs and effects on the electrochemical performance of Li-S batteries have been systematically studied. In the first part of the thesis, carbon-coated mesoporous Fe3O4 (C@M-Fe3O4) nanospindles have been synthesized to suppress the shuttle effect of LiPSs. First, β-FeOOH nanospindles have been synthesized via the hydrolysis of iron (III) chloride in aqueous solution and after silica coating and subsequent calcination, mesoporous Fe2O3 (M-Fe2O3) have been obtained inside the confined silica layer through pyrolysis of β-FeOOH. After the removal of the silica layer, electron tomography (ET) has been applied to rebuild the 3D structure of the M-Fe2O3 nanospindles. After coating a thin layer of polydopamine (PDA) as carbon source, the PDA-coated M-Fe2O3 particles have been calcinated to synthesize C@M-Fe3O4 nanospindles. With the chemisorption of Fe3O4 and confinement of mesoporous structure to anchor LiPSs, the composite C@M-Fe3O4/S electrode delivers a remaining capacity of 507.7 mAh g-1 at 1 C after 600 cycles. In the second part of the thesis, a series of iron-based compounds (Fe3O4, FeS2, and FeS) with the same yolk-shell nanospindle morphology have been synthesized, which allows for the direct comparison of the effects of compositions on the electrochemical performance of Li-S batteries. The Fe3O4-carbon yolk-shell nanospindles have been synthesized by using the β-FeOOH nanospindles as hard template. Afterwards, Fe3O4-carbon yolk-shell nanospindles have been used as precursors to obtain iron sulfides (FeS and FeS2)-carbon yolk-shell nanospindles through sulfidation at different temperatures. Using the three types of yolk-shell nanospindles as sulfur host, the effects of compositions on interactions with LiPSs and electrochemical performance in Li-S batteries have been systematically investigated and compared. Benefiting from the chemisorption and catalytic effect of FeS2 particles and the physical confinement of the carbon shell, the FeS2-C/S electrode exhibits the best electrochemical performance with an initial specific discharge capacity of 877.6 mAh g-1 at 0.5 C and a retention ratio of 86.7\% after 350 cycles. In the third part, PILs vesicles have been used as soft template to synthesize carbon nanocapsules embedded with iron nitride particles to immobilize and catalyze LiPSs in Li-S batteries. First, 3-n-decyl-1-vinylimidazolium bromide has been used as monomer to synthesize PILs nanovesicles by free radical polymerization. Assisted by PDA coating route and ion exchange, PIL nanovesicles have been successfully applied as soft template in morphology-maintaining carbonization to prepare carbon nanocapsules embedded with iron nitride nanoparticles (FexN@C). The well-dispersed iron nitride nanoparticles effectively catalyze the conversion of LiPSs to Li2S, owing to their high electrical conductivity and strong chemical binding to LiPSs. The constructed FexN@C/S cathode demonstrates a high initial discharge capacity of 1085.0 mAh g-1 at 0.5 C with a remaining value of 930.0 mAh g-1 after 200 cycles. The results in the present thesis demonstrate the facile synthetic routes of nanostructured iron-based compounds with controllable morphologies and compositions using soft and hard colloidal templates, which can be applied as sulfur host to suppress the shuttle behavior of LiPSs. The synthesis approaches developed in this thesis are also applicable to fabricating other transition metal-based compounds with porous nanostructures for other applications.}, language = {en} } @phdthesis{Mientus2023, author = {Mientus, Lukas}, title = {Reflexion und Reflexivit{\"a}t}, doi = {10.25932/publishup-61000}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610003}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2023}, abstract = {Reflexion gilt in der Lehrkr{\"a}ftebildung als eine Schl{\"u}sselkategorie der professionellen Entwicklung. Entsprechend wird auf vielf{\"a}ltige Weise die Qualit{\"a}t reflexionsbezogener Kompetenzen untersucht. Eine Herausforderung hierbei kann in der Annahme bestehen, von der Analyse schriftlicher Reflexionen unmittelbar auf die Reflexivit{\"a}t einer Person zu schließen, da Reflexion stets kontextspezifisch als Abbild reflexionsbezogener Argumentationsprozesse angesehen werden sollte und reflexionsbezogenen Dispositionen unterliegt. Auch kann die Qualit{\"a}t einer Reflexion auf mehreren Dimensionen bewertet werden, ohne quantifizierbare, absolute Aussagen treffen zu k{\"o}nnen. Daher wurden im Rahmen einer Physik-Videovignette N = 134 schriftliche Fremdreflexionen verfasst und kontextspezifische reflexionsbezogene Dispositionen erhoben. Expert*innen erstellten theoriegeleitet Qualit{\"a}tsbewertungen zur Breite, Tiefe, Koh{\"a}renz und Spezifit{\"a}t eines jeden Reflexionstextes. Unter Verwendung computerbasierter Klassifikations- und Analyseverfahren wurden weitere Textmerkmale erhoben. Mittels explorativer Faktorenanalyse konnten die Faktoren Qualit{\"a}t, Quantit{\"a}t und Deskriptivit{\"a}t gefunden werden. Da alle konventionell eingesch{\"a}tzten Qualit{\"a}tsbewertungen durch einen Faktor repr{\"a}sentiert wurden, konnte ein maximales Qualit{\"a}tskorrelat kalkuliert werden, zu welchem jede schriftliche Fremdreflexion im Rahmen der vorliegenden Vignette eine computerbasiert bestimmbare Distanz aufweist. Diese Distanz zum maximalen Qualit{\"a}tskorrelat konnte validiert werden und kann die Qualit{\"a}t der schriftlichen Reflexionen unabh{\"a}ngig von menschlichen Ressourcen quantifiziert repr{\"a}sentieren. Abschließend konnte identifiziert werden, dass ausgew{\"a}hlte Dispositionen in unterschiedlichem Maße mit der Reflexionsqualit{\"a}t zusammenh{\"a}ngen. So konnten beispielsweise bezogen auf das Physik-Fachwissen minimale Zusammenh{\"a}nge identifiziert werden, wohingegen Werthaltung sowie wahrgenommene Unterrichtsqualit{\"a}t eng mit der Qualit{\"a}t einer schriftlichen Reflexion in Verbindung stehen k{\"o}nnen. Es wird geschlussfolgert, dass reflexionsbezogene Dispositionen moderierenden Einfluss auf Reflexionen nehmen k{\"o}nnen. Es wird empfohlen bei der Erhebung von Reflexion mit dem Ziel der Kompetenzmessung ausgew{\"a}hlte Dispositionen mit zu erheben. Weiter verdeutlicht diese Arbeit die M{\"o}glichkeit, aussagekr{\"a}ftige Quantifizierungen auch in der Analyse komplexer Konstrukte vorzunehmen. Durch computerbasierte Qualit{\"a}tsabsch{\"a}tzungen k{\"o}nnen objektive und individuelle Analysen und differenzierteres automatisiertes Feedback erm{\"o}glicht werden.}, language = {de} } @phdthesis{Vassilevski2023, author = {Vassilevski, Ekaterina}, title = {Hegels Phantasie}, series = {Edition Medienwissenschaft}, volume = {107}, journal = {Edition Medienwissenschaft}, publisher = {Transcript}, address = {Bielefeld}, isbn = {978-3-8394-6959-0}, school = {Universit{\"a}t Potsdam}, pages = {175}, year = {2023}, abstract = {Als »Zwischenreich«, »Drittes« oder »Mitte« bezeichnet, kommt der Imagination seit ihren Anf{\"a}ngen in der Antike die Rolle eines Mediums zu. Gleichzeitig bleibt ihr medialer Aspekt durchgehend ambivalent und prek{\"a}r. Es ist Georg Wilhelm Friedrich Hegel, der die Imagination nicht mehr als subjektives Verm{\"o}gen versteht, sondern als Kraft der »Ent{\"a}ußerung« und sie somit medial denkt. In einer bislang wenig beachteten Passage aus Hegels dritter Enzyklop{\"a}die von 1830 legt Ekaterina Vassilevski nicht nur die implizite Medialit{\"a}t der Imagination frei, sondern auch den in Hegels Denken verborgenen Begriff des Medialen.}, language = {de} } @phdthesis{Ewert2023, author = {Ewert, Christina}, title = {The role of self-compassion in effective stress processing}, doi = {10.25932/publishup-60748}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-607486}, school = {Universit{\"a}t Potsdam}, pages = {193}, year = {2023}, abstract = {Background: The concept self-compassion (SC), a special way of being compassionate with oneself while dealing with stressful life circumstances, has attracted increasing attention in research over the past two decades. Research has already shown that SC has beneficial effects on affective well-being and other mental health outcomes. However, little is known in which ways SC might facilitate our affective well-being in stressful situations. Hence, a central concern of this dissertation was to focus on the question which underlying processes might influence the link between SC and affective well-being. Two established components in stress processing, which might also play an important role in this context, could be the amount of experienced stress and the way of coping with a stressor. Thus, using a multi-method approach, this dissertation aimed at finding to which extent SC might help to alleviate the experienced stress and promotes the use of more salutary coping, while dealing with stressful circumstances. These processes might ultimately help improve one's affective well-being. Derived from that, it was hypothesized that more SC is linked to less perceived stress and intensified use of salutary coping responses. Additionally, it was suggested that perceived stress and coping mediate the relation between SC and affective well-being. Method: The research questions were targeted in three single studies and one meta-study. To test my assumptions about the relations of SC and coping in particular, a systematic literature search was conducted resulting in k = 136 samples with an overall sample size of N = 38,913. To integrate the z-transformed Pearson correlation coefficients, random-effects models were calculated. All hypotheses were tested with a three-wave cross-lagged design in two short-term longitudinal online studies assessing SC, perceived stress and coping responses in all waves. The first study explored the assumptions in a student sample (N = 684) with a mean age of 27.91 years over a six-week period, whereas the measurements were implemented in the GESIS Panel (N = 2934) with a mean age of 52.76 years analyzing the hypotheses in a populationbased sample across eight weeks. Finally, an ambulatory assessment study was designed to expand the findings of the longitudinal studies to the intraindividual level. Thus, a sample of 213 participants completed questionnaires of momentary SC, perceived stress, engagement and disengagement coping, and affective well-being on their smartphones three times per day over seven consecutive days. The data was processed using 1-1-1 multilevel mediation analyses. Results: Results of the meta-analysis indicated that higher SC is significantly associated with more use of engagement coping and less use of disengagement coping. Considering the relations between SC and stress processing variables in all three single studies, cross-lagged paths from the longitudinal data, as well as multilevel modeling paths from the ambulatory assessment data indicated a notable relation between all relevant stress variables. As expected, results showed a significant negative relation between SC and perceived stress and disengagement coping, as well as a positive connection with engagement coping responses at the dispositional and intra-individual level. However, considering the mediational hypothesis, the most promising pathway in the link between SC and affective well-being turned out to be perceived stress in all three studies, while effects of the mediational pathways through coping responses were less robust. Conclusion: Thus, a more self-compassionate attitude and higher momentary SC, when needed in specific situations, can help to engage in effective stress processing. Considering the underlying mechanisms in the link between SC and affective well-being, stress perception in particular seemed to be the most promising candidate for enhancing affective well-being at the dispositional and at the intraindividual level. Future research should explore the pathways between SC and affective well-being in specific contexts and samples, and also take into account additional influential factors.}, language = {en} } @phdthesis{Kwarikunda2023, author = {Kwarikunda, Diana}, title = {Interest, motivation, and learning strategies use during physics learning}, doi = {10.25932/publishup-60931}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-609311}, school = {Universit{\"a}t Potsdam}, pages = {viii, 221}, year = {2023}, abstract = {The purpose of this thesis was to investigate the developmental dynamics between interest, motivation, and learning strategy use during physics learning. The target population was lower secondary school students from a developing country, given that there is hardly in research that studies the above domain-specific concepts in the context of developing countries. The aim was addressed in four parts. The first part of the study was guided by three objectives: (a) to adapt and validate the Science Motivation Questionnaire (SMQ-II) for the Ugandan context; (b) to examine whether there are significant differences in motivation for learning Physics with respect to students' gender; and (c) to establish the extent to which students' interest predicts their motivation to learn Physics. Being a pilot study, the sample comprised 374 randomly selected students from five schools in central Uganda who responded to anonymous questionnaires that included scales from the SMQ-II and the Individual Interest Questionnaire. Data were analysed using confirmatory factor analyses, t-tests and structural equation modelling in SPSS-25 and Mplus-8. The five-factor model solution of the SMQ-II fitted adequately with the study data, with deletion of one item. The modified SMQ-II exhibited invariant factor loadings and intercepts (i.e., strong measurement invariance) when administered to boys and girls. Furthermore, on assessing whether motivation for learning Physics varied with gender, no significant differences were noted. On assessing the predictive effects of individual interest on students' motivation, individual interest significantly predicted all motivational constructs, with stronger predictive strength on students' self-efficacy and self-determination in learning Physics. In the second part whilst using comprised 934 Grade 9 students from eight secondary schools in Uganda, Latent profile analysis (LPA) - a person-centred approach was used to investigate motivation patterns that exist in lower secondary school students during physics learning. A three-step approach to LPA was used to answer three research questions: RQ1, which profiles of secondary school students exist with regards to their motivation for Physics learning; RQ2, are there differences in students' cognitive learning strategies in the identified profiles; and RQ3, does students' gender, attitudes, and individual interest predict membership in these profiles? Six motivational profiles were identified: (i) low-quantity motivation profile (101 students; 10.8\%); (ii) moderate-quantity motivation profile (246 students; 26.3\%); (iii) high-quantity motivation profile (365 students; 39.1\%); (iv) primarily intrinsically motivated profile (60 students,6.4\%); (v) mostly extrinsically motivated profile (88 students, 9.4\%); and (vi) grade-introjected profile (74 students, 7.9\%). Low-quantity and grade introjected motivated students mostly used surface learning strategies whilst the high-quantity and primarily intrinsically motivated students used deep learning strategies. On examining the predictive effect of gender, individual interest, and students' attitudes on the profile membership, unlike gender, individual interest and students' attitudes towards Physics learning strongly predicted profile membership. In the third part of the study, the occurrence of different secondary school learner profiles depending on their various combinations of cognitive and metacognitive learning strategy use, as well as their differences in perceived autonomy support, intrinsic motivation, and gender was examined. Data were collected from 576 9th grade student. Four learner profiles were identified: competent strategy user, struggling user, surface-level learner, and deep-level learner profiles. Gender differences were noted in students' use of elaboration and organization strategies to learn Physics, in favour of girls. In terms of profile memberships, significant differences in gender, intrinsic motivation and perceived autonomy support were also noted. Girls were 2.4 - 2.7 times more likely than boys to be members of the competent strategy user and surface-level learner profiles. Additionally, higher levels of intrinsic motivation predicted an increased likelihood membership into the deep-level learner profile, whilst higher levels of perceived teacher autonomy predicted an increased likelihood membership into the competent strategy user profile as compared to other profiles. Lastly, in the fourth part, changes in secondary school students' physics motivation and cognitive learning strategies use during physics learning across time were examined. Two waves of data were collected from initially 954 9th students through to their 10th grade. A three-step approach to Latent transition analysis was used. Generally, students' motivation decreased from 9th to 10th grade. Qualitative students' motivation profiles indicated strong with-in person stability whilst the quantitative profiles were relatively less stable. Mostly, students moved from the high quantity motivation profile to the extrinsically motivated profiles. On the other hand, the cognitive learning strategies use profiles were moderately stable; with higher with-in person stability in the deep-level learner profile. None of the struggling users and surface-level learners transitioned into the deep-level learners' profile. Additionally, students who perceived increased support for autonomy from their teachers had higher membership likelihood into the competent users' profiles whilst those with an increase in individual interest score had higher membership likelihood into the deep-level learner profile.}, language = {en} } @phdthesis{Lian2023, author = {Lian, Tingting}, title = {Efficient activation of peroxymonosulfate by carbon-based catalysts for water purification}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2023}, abstract = {The increasing global population has led to a growing demand for cost-effective and eco-friendly methods of water purification. This demand has reached a peak due to the increasing presence of impurities and pollutants in water and a growing awareness of waterborne diseases. Advanced oxidation processes (AOPs) are effective methods to address these challenges, due to the generation of highly reactive radicals, such as sulfate radical (SO4•-), hydroxyl radical (•OH), and/or superoxide radical (•O2-) in oxidation reactions. Relative to conventional hydrogen peroxide (H2O2)-based AOPs for wastewater treatment, the persulfate-related AOPs are receiving increasing attention over the past decades, due to their stronger oxidizing capability and a wider pH working window. Further deployment of the seemingly plausible technology as an alternative for the well-established one in industry, however, necessitates a careful evaluation of compounding factors, such as water matrix effects, toxicological consequences, costs, and engineering challenges, etc. To this end, rational design of efficient and environmentally friendly catalysts constitutes an indispensable pathway to advance persulfate activation efficacy and to elucidate the mechanisms in AOPs, the combined endeavors are expected to provide insightful understanding and guidelines for future studies in wastewater treatment. A dozens of transition metal-based catalysts have been developed for persulfate-related AOPs, while the undesirable metal leaching and poor stability in acidic conditions have been identified as major obstacles. Comparatively, the carbonaceous materials are emerging as alternative candidates, which are characterized by metal-free nature, wide availability, and exceptional resistance to acid and alkali, as well as tunable physicochemical and electronic properties, the combined merits make them an attractive option to overcome the aforementioned limitations in metal-based catalytic systems. This dissertation aims at developing novel carbonaceous materials to boost the activity in peroxymonosulfate (PMS) activation processes. Functionalized carbon materials with metal particles or heteroatoms were constructed and further evaluated in terms of their ability to activate PMS for AOPs. The main contents of this thesis are summarized as follows: (1) Iron oxide-loaded biochar: improving stability and alleviating metal leakage Metal leaching constitutes one of the main drawbacks in using transition metals as PMS activators, which is accompanied by the generation of metal-containing sludge, potentially leading to secondary pollution. Meanwhile, the metal nanoparticles are prone to aggregate, causing rapid decay of catalytic performance. The use of carbons as supports for transition metals could mitigate these deficiencies, because the interaction between metals and carbons could in turn disperse and stabilize metal nanoparticles, thus suppressing the metal leaching. In this work, the environmentally benign lignin with its abundant phenolic groups, which is well known to serve as carbon source with high yields and flexibility, was utilized to load Fe ions. The facile low-temperature pre-treatment pyrolytic strategy was employed to construct a green catalyst with iron oxides embedded in Kraft-lignin-derived biochar (termed as γ-Fe2O3@KC). The γ-Fe2O3@KC was capable of activating PMS to generate stable non-radical species (1O2 and Fe (V)=O) and to enhance electron transfer efficiency. A surface-bound reactive complex (catalyst-PMS*) was identified by electrochemical characterizations and discussed with primary surface-bound radical pairs to explain the contradictions between quenching and EPR detection results. The system also showed encouraging reusability for at least 5 times and high stability at pH 3-9. The low concentration of iron in γ-Fe2O3@KC/PMS system implied that the carbon scaffold of biochar substantially alleviated metal leakage. (2) MOF-derived nanocarbon: new carbon crystals Traditional carbon materials are of rather moderate performance in activation PMS, due to the poor electron transfer capacity within the amorphous structure and limited active sites for PMS adsorption. Herein, we established crystalline nanocarbon materials via a simple NaCl-templated strategy using the monoclinic zeolitic imidazolate framework-8 (ZIF-8) sealed with NaCl crystals as the precursors. Specifically, NaCl captured dual advantages in serving as structure-directing agent during hydrolysis and protective salt reactor to facilitate phase transformation during carbonization. The structure-directing agent NaCl provided a protective and confined space for the evolution of MOF upon carbonization, which led to high doping amounts of nitrogen (N) and oxygen elements (O) in carbon framework (N: 14.16 wt\%, O: 9.6 wt\%) after calcination at a high temperature of 950 oC. We found that N-O co-doping can activate the chemically inert carbon network and the nearby sp2-hybridized carbon atoms served as active sites for adsorption and activation. Besides, the highly crystallized structure with well-established carbon channels around activated carbon atoms could significantly accelerate electron transfer process after initial adsorption of PMS. As such, this crystalline nanocarbon exhibited excellent catalytic kinetics for various pollutants. (3) MOF-derived 2D carbon layers: enhanced mass/electron transfer The two-dimensional (2D) configuration of carbon-based nanosheets with inherent nanochannels and abundant active sites residing on the layer edges or in between the layers, allowed the accessible interaction and close contact between the substrates and reactants, as well as the dramatically improved electron- and mass-transfer kinetics. In this regard, we developed dual-templating strategy to afford 2D assembly of the crystalline carbons, which found efficiency in reinforcing the interactions between the catalyst surface and foreign pollutants. Specifically, we found that the ice crystals and NaCl promoted the evolution of MOF in a 2D fashion during the freezing casting stage, while the later further allowed the formation of a graphitic surface at high calcination temperature, by virtue of the templating effect of molten salt. Due to the highly retained co-doping amounts, N and O heteroatoms created abundant active sites for PMS activation, the 2D configuration of carbon-based nanosheets enable efficient interaction of PMS and pollutants on the surface, which further boosted the kinetics of degradation.}, language = {en} } @phdthesis{Riedel2023, author = {Riedel, Soraya Lisanne}, title = {Development of electrochemical antibody-based and enzymatic assays for mycotoxin analysis in food}, doi = {10.25932/publishup-60747}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-607477}, school = {Universit{\"a}t Potsdam}, pages = {XV, 95}, year = {2023}, abstract = {Electrochemical methods are promising to meet the demand for easy-to-use devices monitoring key parameters in the food industry. Many companies run own lab procedures for mycotoxin analysis, but it is a major goal to simplify the analysis. The enzyme-linked immunosorbent assay using horseradish peroxidase as enzymatic label, together with 3,3',5,5' tetramethylbenzidine (TMB)/H2O2 as substrates allows sensitive mycotoxin detection with optical detection methods. For the miniaturization of the detection step, an electrochemical system for mycotoxin analysis was developed. To this end, the electrochemical detection of TMB was studied by cyclic voltammetry on different screen-printed electrodes (carbon and gold) and at different pH values (pH 1 and pH 4). A stable electrode reaction, which is the basis for the further construction of the electrochemical detection system, could be achieved at pH 1 on gold electrodes. An amperometric detection method for oxidized TMB, using a custom-made flow cell for screen-printed electrodes, was established and applied for a competitive magnetic bead-based immunoassay for the mycotoxin ochratoxin A. A limit of detection of 150 pM (60 ng/L) could be obtained and the results were verified with optical detection. The applicability of the magnetic bead-based immunoassay was tested in spiked beer using a handheld potentiostat connected via Bluetooth to a smartphone for amperometric detection allowing to quantify ochratoxin A down to 1.2 nM (0.5 µg/L). Based on the developed electrochemical detection system for TMB, the applicability of the approach was demonstrated with a magnetic bead-based immunoassay for the ergot alkaloid, ergometrine. Under optimized assay conditions a limit of detection of 3 nM (1 µg/L) was achieved and in spiked rye flour samples ergometrine levels in a range from 25 to 250 µg/kg could be quantified. All results were verified with optical detection. The developed electrochemical detection method for TMB gives great promise for the detection of TMB in many other HRP-based assays. A new sensing approach, based on an enzymatic electrochemical detection system for the mycotoxin fumonisin B1 was established using an Aspergillus niger fumonisin amine oxidase (AnFAO). AnFAO was produced recombinantly in E. coli as maltose-binding protein fusion protein and catalyzes the oxidative deamination of fumonisins, producing hydrogen peroxide. It was found that AnFAO has a high storage and temperature stability. The enzyme was coupled covalently to magnetic particles, and the enzymatically produced H2O2 in the reaction with fumonisin B1 was detected amperometrically in a flow injection system using Prussian blue/carbon electrodes and the custom-made wall-jet flow cell. Fumonisin B1 could be quantified down to 1.5 µM (≈ 1 mg/L). The developed system represents a new approach to detect mycotoxins using enzymes and electrochemical methods.}, language = {en} } @phdthesis{Gulsen2023, author = {Gulsen, Ali}, title = {Empowering leadership, follower reflection, and leader well-being}, doi = {10.25932/publishup-58256}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582562}, school = {Universit{\"a}t Potsdam}, pages = {196}, year = {2023}, abstract = {This research focuses on empowering leadership, a leadership style that shares autonomy and responsibilities with the followers. Empowering leadership enhances the meaningfulness of work by fostering participation in decision-making, expressing confidence in high performance, and providing autonomy in target setting (Cheong, 2016). I examine how empowering leadership affects followers' reflection. I used data from 528 individuals across 172 teams and found a positive relationship between empowering leadership and followers' reflection. Followers' reflection, in turn, is negatively associated with followers' withdrawal, which mediates the beneficial effect of empowering leadership on leaders' emotional exhaustion. As for the leaders, I propose that empowering leadership is negatively related also to leaders' emotional exhaustion. This research broadens our understanding of empowering leadership's effects on both followers and leaders. Moreover, it integrates empowering leadership, leader emotional exhaustion, and burnout literature. Overall, empowering leadership strengthens members' reflective attitudes and behaviors, which result in reduced withdrawal (and increased presence and contribution) in teams. Because the members contribute to team effort more, the leaders experience less emotional exhaustion. Hence, my work not only identifies new ways through which empowering leadership positively affects followers but also shows how these positive effects on followers benefit the leaders' well-being.}, language = {en} } @phdthesis{Ihlenburg2023, author = {Ihlenburg, Ramona}, title = {Sulfobetainhydrogele mit biomedizinischem Anwendungspotential und deren Netzwerkcharakterisierung im Gleichgewichtsquellzustand}, doi = {10.25932/publishup-60709}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-607093}, school = {Universit{\"a}t Potsdam}, pages = {xi, 228, xlviii}, year = {2023}, abstract = {In dieser Dissertation konnten erfolgreich mechanisch stabile Hydrogele {\"u}ber eine freie radikalische Polymerisation (FRP) in Wasser synthetisiert werden. Dabei diente vor allem das Sulfobetain SPE als Monomer. Dieses wurde mit dem {\"u}ber eine nukleophile Substitution erster bzw. zweiter Ordnung hergestellten Vernetzer TMBEMPA/Br umgesetzt. Die entstandenen Netzwerke wurden im Gleichgewichtsquellzustand im Wesentlichen mittels Niederfeld-Kernresonanzspektroskopie, R{\"o}ntgenkleinwinkelstreuung (SAXS), Rasterelektronenmikroskopie mit Tieftemperaturtechnik (Kryo-REM), dynamisch-mechanische Analyse (DMA), Rheologie, thermogravimetrische Analyse (TGA) und dynamische Differenzkalorimetrie (DSC) analysiert. Das hierarchisch aufgebaute Netzwerk wurde anschließend f{\"u}r die matrixgesteuerten Mineralisation von Calciumphosphat und -carbonat genutzt. {\"U}ber das alternierende Eintauchverfahren (engl. „alternate soaking method") und der Variation von Mineralisationsparametern, wie pH-Wert, Konzentration c und Temperatur T konnten dann verschiedene Modifikationen des Calciumphosphats generiert werden. Das entstandene Hybridmaterial wurde qualitativ mittels R{\"o}ntgenpulverdiffraktometrie (XRD), abgeschw{\"a}chte Totalreflexion-fouriertransformierte Infrarot Spektroskopie (ATR-FTIR), Raman-Spektroskopie, Rasterelektronenmikroskopie (REM) mit energiedispersiver R{\"o}ntgenspektroskopie (EDXS) und optischer Mikroskopie (OM) als auch quantitative mittels Gravimetrie und TGA analysiert. F{\"u}r die potentielle Verwendung in der Medizintechnik, z.B. als Implantatmaterial, ist die grundlegende Einsch{\"a}tzung der Wechselwirkung zwischen Hydrogel bzw. Hybridmaterial und verschiedener Zelltypen unerl{\"a}sslich. Dazu wurden verschiedene Zelltypen, wie Einzeller, Bakterien und adulte Stammzellen verwendet. Die Wechselwirkung mit Peptidsequenzen von Phagen komplettiert das biologische Unterkapitel. Hydrogele sind mannigfaltig einsetzbar. Diese Arbeit fasst daher weitere Projektperspektiven, auch außerhalb des biomedizinischem Anwendungsspektrums, auf. So konnten erste Ans{\"a}tze zur serienm{\"a}ßige bzw. maßgeschneiderte Produktion {\"u}ber das „Inkjet" Verfahren erreicht werden. Um dies erm{\"o}glichen zu k{\"o}nnen wurden erfolgreich weitere Synthesestrategien, wie die Photopolymerisation und die redoxinitiierte Polymerisation, ausgenutzt. Auch die Eignung als Filtermaterial oder Superabsorber wurde analysiert.}, language = {de} } @phdthesis{Soltani2023, author = {Soltani, Ouad}, title = {BLF1-Mode of Action in Barley Leaf Size Control}, doi = {10.25932/publishup-60705}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-607054}, school = {Universit{\"a}t Potsdam}, pages = {110}, year = {2023}, abstract = {Establishment of final leaf size in plants represents a complex mechanism that relies on the precise regulation of two interconnected cellular processes, cell division and cell expansion. In previous work, the barley protein BROAD LEAF1 (BLF1) was identified as a novel negative regulator of cell proliferation, that mainly limits leaf growth in the width direction. Here I identified a novel RING/U-box protein that interacts with BLF1 through a yeast two hybrid screen. Using BiFC, Co-IP and FRET I confirmed the interaction of the two proteins in planta. Enrichment of the BLF1-mEGFP fusion protein and the increase of the FRET signal upon MG132 treatment of tobacco plants, together with an in vivo ubiquitylation assay in bacteria, confirmed that the RING/U-box E3 interacts with BLF1 to mediate its ubiquitylation and degradation by the 26S proteasome system. Consistent with regulation of endogenous BLF1 in barley by proteasomal degradation, inhibition of the proteasome by bortezomib treatment on BLF1-vYFP transgenic barley plants also resulted in an enrichment of the BLF1 protein. I thus demonstrated that RING/U-box E3 is colocalized with BLF1 in nuclei and negatively regulates BLF1 protein levels. Analysis of ring-e3_1 knock-out mutants suggested the involvement of the RING/U-box E3 gene in leaf growth control, although the effect was mainly on leaf length. Together, my results suggest that proteasomal degradation, possibly mediated by RING/U-box E3, contributes to fine-tuning BLF1 protein-level in barley.}, language = {en} }