@article{SchweizerSchusterJungingeretal.2010, author = {Schweizer, S. and Schuster, T. and Junginger, Matthias and Siekmeyer, Gerd and Taubert, Andreas}, title = {Surface modification of ickel/Titanium Alloy and Titanium Surfaces via a Polyelectrolyte Multilayer/Calcium Phosphate Hybrid Coating}, issn = {1438-7492}, doi = {10.1002/mame.200900347}, year = {2010}, abstract = {The report shows that simple LbL deposition of positively charged chitosan and negatively charged heparin can be used to efficiently modify the native surface of both NiTi and Ti without any previous treatments. Moreover, mineralization of the polymer multilayers with calcium phosphate leads to surfaces with low contact angles around 70 and 20 degrees for NiTi and Ti, respectively. This suggests that a polymer multilayer/calcium phosphate hybrid coating could be useful for making NiTi or Ti implants that are at the same time antibacterial (via the chitosan), suppress blood clot formation (via the heparin), and favor fast endothelialization (via the improved surface hydrophilicity compared to the respective neat material).}, language = {en} } @article{KleinpeterBoelkeKoch2010, author = {Kleinpeter, Erich and Boelke, Ute and Koch, Andreas}, title = {Subtle Trade-off Existing between (Anti)Aromaticity, Push-Pull Interaction, Keto-Enol Tautomerism, and Steric Hindrance When Defining the Electronic Properties of Conjugated Structures}, issn = {1089-5639}, year = {2010}, language = {en} } @article{FokouMeier2010, author = {Fokou, Patrice A. and Meier, Michael A. R.}, title = {Studying and suppressing olefin isomerization side reactions during ADMET polymerizations}, issn = {1022-1336}, doi = {10.1002/marc.200900678}, year = {2010}, abstract = {Olefin isomerization side reactions that occur during ADMET polymerizations were studied by preparing polyesters via ADMET and subsequently degrading these polyesters via transesterification with methanol. The resulting diesters, representing the repeating units of the previously prepared polyesters, were then analyzed by GC-MS. This strategy allowed quantification of the amount of olefin isomerization that took place during ADMET polymerization with second generation ruthenium metathesis catalysts. In a second step, it was shown that the addition of benzoquinone to the polymerization mixture prevented the olefin isomerization. Therefore, second generation ruthenium metathesis catalysts may now be used for the preparation of well-defined polymers via ADMET with very little isomerization, which was not possible before.}, language = {en} } @article{BaranacStojanovicKlaumuenzerMarkovicetal.2010, author = {Baranac-Stojanovic, Marija and Klaumuenzer, Ute and Markovic, Rade and Kleinpeter, Erich}, title = {Structure, configuration, conformation and quantification of the push pull-effect of 2-alkylidene-4- thiazolidinones and 2-alkylidene-4,5-fused bicyclic thiazolidine derivatives}, issn = {0040-4020}, doi = {10.1016/j.tet.2010.09.040}, year = {2010}, abstract = {Structures of a series of push-pull 2-alkylidene-4-thiazolidinones and 2-alkylidene-4,5-fused bicyclic thiazolidine derivatives were optimized at the B3LYP/6-31G(d) level of theory in the gas phase and discussed with respect to configurational and conformational stability. Employing the GIAO method, C-13 NMR chemical shifts of the C-2, C-2', C-4 and C-5 atoms were calculated at the same level of theory in the gas phase and with inclusion of solvent, and compared with experimental data. Push-pull effect of all compounds was quantified by means of the quotient pi*/pi, length of the partial double bond, C-13 NMR chemical shift difference (Delta delta(C=C)) and H-1 NMR chemical shifts of olefinic protons. The effect of bromine on donating and accepting ability of other substituents of the push- pull C=C double bond is discussed, too.}, language = {en} } @article{SchwarzBodenthinGeueetal.2010, author = {Schwarz, Guntram and Bodenthin, Yves and Geue, Thomas and Koetz, Joachim and Kurth, Dirk G.}, title = {Structure and properties of dynamic rigid rod-like metallo-supramolecular polyelectrolytes in solution}, issn = {0024-9297}, doi = {10.1021/Ma902057f}, year = {2010}, abstract = {Metal-ion-induced self-assembly in aqueous solution of the rigid ligand 1,4-bis(2,2':6',2 ''-terpyridine-4'-yl)benzene (1) with Fe(OAc)(2) and Ni(OAc)(2) is investigated with viscosimetry, SANS, and AFM. Ligand 1 forms extended, rigid-rod like metallo-supramolecular coordination polyeectrolytes (MEPEs) with a molar mass of up to 200 000 g mol(-1) under the Current experimental conditions. The molar mass depends oil concentration, stoichiometry, and time. By spin-coating MEPEs oil a solid surface, we call image the MEPEs in real space by AFM. Both AFM and SANS confirm the extended rigid-rod-type structure of the MEPEs. As a control experiment, we also studied the flexible ligand 1,3-bis[4'-oxa(2,2':6',2 ''-terpyridinyl)]propane (2). Ligand 2 does not form extended macro-assemblies but likely ringlike structures with three 10 four repeat units. Finally, we present it protocol to control the stoichiometry during self-assembly using conductometry, which is of paramount importance to obtain meaningful and reproducible results.}, language = {en} } @article{TiseanuParvulescuParvulescuetal.2010, author = {Tiseanu, Carmen and Parvulescu, Vasile and Parvulescu, Victoria and Cotoi, Elena and Gessner, Andre and Kumke, Michael Uwe and Simon, Simion and Vasiliu, Florin}, title = {Structural and photoluminescence characterization of mesoporous silicon-phosphates}, issn = {1010-6030}, doi = {10.1016/j.jphotochem.2010.07.015}, year = {2010}, abstract = {Two different types of mesoporous silicon-phosphate supports using different surfactants (a mixture of (CH3)(3)C13H27NBr with an organophosphorus coupling molecule (HO-PO(i-C3H7)(2)) and with a co-surfactant ((C2H5)(3)(C6H5)PCl), respectively) were synthesized. Trivalent europium (Eu) ions were immobilized via ion-exchange on these supports. The resulting materials were characterized using nitrogen adsorption isotherms at -196 degrees C, thermogravimetric analysis, SEM, TEM, FT-IR, PXRD, CP/MAS. (HSi)-H-1-Si-29 and P-31 NMR, DR-UV-vis as well as steady- state and time-resolved photoluminescence spectroscopy. The results evidenced that the co-polymerization of silicon and phosphorous yielded a unique morphology in these materials. Following calcination at 450 and 900 degrees C europium- exchanged silicon-phosphates with great surface area (BET=600-705 m(2) g(-1)) and 3.4 nm sized mesopores were obtained. The differences among the optical properties of the non-calcined europium materials such as the emission lifetimes, local environment at the europium sites or the relative contribution of the upper excited levels to the total photoluminescence were assigned to the surfactants used in the synthesis. Calcination of the silicon-phosphates at higher temperatures than 450 degrees C did not induce major changes in the structural properties: in contrast, photoluminescence properties of europium were markedly improved in terms of intensity and average lifetime.}, language = {en} } @article{BouaklineAlthorpeLarregarayetal.2010, author = {Bouakline, Foudhil and Althorpe, Stuart C. and Larregaray, Pascal and Bonnet, Laurent}, title = {Strong geometric-phase effects in the hydrogen-exchange reaction at high collision energies : II. quasiclassical trajectory analysis}, issn = {0026-8976}, doi = {10.1080/00268971003610218}, year = {2010}, abstract = {Recent calculations on the hydrogen-exchange reaction [Bouakline et al., J. Chem. Phys. 128, 124322 (2008)], have found strong geometric phase (GP) effects in the state-to-state differential cross-sections (DCS), at energies above the energetic minimum of the conical intersection (CI) seam, which cancel out in the integral cross-sections (ICS). In this article, we explain the origin of this cancellation and make other predictions about the nature of the reaction mechanisms at these high energies by carrying out quasiclassical trajectory (QCT) calculations. Detailed comparisons are made with the quantum results by splitting the quantum and the QCT cross-sections into contributions from reaction paths that wind in different senses around the CI and that scatter the products in the nearside and farside directions. Reaction paths that traverse one transition state (1-TS) scatter their products in just the nearside direction, whereas paths that traverse two transition states (2-TS) scatter in both the nearside and farside directions. However, the nearside 2-TS products scatter into a different region of angular phase-space than the 1-TS products, which explains why the GP effects cancel out in the ICS. Analysis of the QCT results also suggests that two separate reaction mechanisms may be responsible for the 2-TS scattering at high energies.}, language = {en} } @article{FuechselKlamrothTremblayetal.2010, author = {F{\"u}chsel, Gernot and Klamroth, Tillmann and Tremblay, Jean Christophe and Saalfrank, Peter}, title = {Stochastic approach to laser-induced ultrafast dynamics : the desorption of H-2/D-2 from Ru(0001)}, issn = {1463-9076}, doi = {10.1039/C0cp00895h}, year = {2010}, abstract = {The desorption of molecular hydrogen and deuterium induced by femtosecond-laser pulses is studied theoretically for the so-called DIMET (Desorption Induced by Multiple Electronic Transitions) process. These investigations are based on nonadiabatic classical Monte Carlo trajectory (CMCT) simulations on a ground and an excited state potential energy surface, including up to all six adsorbate degrees of freedom. The focus is on the hot-electron mediated energy transfer from the surface to the molecule and back, and the energy partitioning between the different degrees of freedom of the desorbing molecules. We first validate for a two-mode model comprising the desorption mode and the internal vibrational coordinate, the classical Monte Carlo trajectory method by comparing with Monte Carlo wavepacket (MCWP) calculations arising from a fully quantum mechanical open-system density matrix treatment. We then proceed by extending the CMCT calculations to include all six nuclear degrees of freedom of the desorbing molecule. This allows for a detailed comparison between theory and experiment concerning isotope effects, energy partitioning (translational, vibrational, and rotational energies and their distributions), and the dependence of these properties on the laser fluence. The most important findings are as follows. (i) CMCT agrees qualitative with the MCWP scheme. (ii) The basic experimental features such as the large isotope effect, the non-linear increase of yield with laser fluence, translationally hot products (in the order of several 1000 K) and non-equipartitioning of translational and internal energies (E-trans > E- vib > E-rot) are well reproduced. (iii) Predictions concerning a strong angular dependence of translational energies at large observation angles are also made.}, language = {en} } @article{KramerKleinpeter2010, author = {Kramer, Markus and Kleinpeter, Erich}, title = {STD-DOSY : a new NMR method to analyze multi-component enzyme/substrate systems}, issn = {1090-7807}, doi = {10.1016/j.jmr.2009.11.007}, year = {2010}, abstract = {A new approach to analyze multi-component Saturation Transfer Difference (STD) NMR spectra by combining the STD and the DOSY experiment is proposed. The resulting pulse sequence was successfully used to simplify an exemplary multi- component protein/substrate system by means of standard DOSY processing methods. Furthermore, the same experiment could be applied to calculate the ratio of saturated substrate molecules and its saturation rate in the case of competitive interactions. This ratio depends on the strength of this interaction between the substrates and the protein, so that this kind of information could be extracted from the results of our experiment.}, language = {en} } @article{StarkeKammerHoldtetal.2010, author = {Starke, Ines and Kammer, Stefan and Holdt, Hans-J{\"u}rgen and Kleinpeter, Erich}, title = {Stability of disubstituted copper complexes in the gas phase analyzed by electrospray ionization mass spectrometry}, issn = {0951-4198}, doi = {10.1002/Rcm.4519}, year = {2010}, abstract = {A series of nitrogen ligand (L)/copper complexes of the type [(CuL)-L-I](+), [(CuL)-L-II(X)](+) and [(CuL2)-L- I](+) (X = Cl-, BF4-, acac(-), CH3COO- and SO3CF3-) was studied in the gas phase by electrospray ionization mass spectrometry. The following ligands (L) were employed: 1,12-diazaperylene (dap), 1,1'-bisiso-quinoline (bis), 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 2,11-disubstituted 1,12-diazaperylenes (dap), 3,3'- disubstituted 1,1'-bisisoquinoline (bis), 5,8-dimethoxy-substituted diazaperylene (meodap), 6,6'-dimethoxy- substituted bisisoquinoline (meobis) and 2,9-dimethyl-1,10-phenanthroline (dmphen). Collision-induced decomposition measurements were applied to evaluate the relative stabilities of the different copper complexes. The influence of the spatial arrangement of the ligands, of the type of substituents and of the counter ion of the copper salts employed for the complexation was examined. Correlations were found between the binding constants of the [ML2](+) complexes in solution and the relative stabilities of the analogous complexes in the gas phase. Furthermore, complexation with the ligands 2,11-dialkylated 1,12-diazaperylenes [alkyl = ethyl (dedap) and isopropyl (dipdap)] was studied in the solvents CH3OH and CH3CN.}, language = {en} } @article{WischerhoffBadiLutzetal.2010, author = {Wischerhoff, Erik and Badi, Nezha and Lutz, Jean-Francois and Laschewsky, Andr{\´e}}, title = {Smart bioactive surfaces}, issn = {1744-683X}, doi = {10.1039/B913594d}, year = {2010}, abstract = {The purpose of this highlight is to define the emerging field of bioactive surfaces. In recent years, various types of synthetic materials capable of "communicating'' with biological objects such as nucleic acids, proteins, polysaccharides, viruses, bacteria or living cells have been described in the literature. This novel area of research certainly goes beyond the traditional field of smart materials and includes different types of sophisticated interactions with biological entities, such as reversible adhesion, conformational control, biologically-triggered release and selective permeation. These novel materials may be 2D planar surfaces as well as colloidal objects or 3D scaffolds. Overall, they show great promise for numerous applications in biosciences and biotechnology. For instance, practical applications of bioactive surfaces in the fields of bioseparation, cell engineering, biochips and stem-cell differentiation are briefly discussed herein.}, language = {en} } @article{WitzelGoetzeEbenhoeh2010, author = {Witzel, Franziska and Goetze, Jan and Ebenhoeh, Oliver}, title = {Slow deactivation of ribulose 1,5-bisphosphate carboxylase/oxygenase elucidated by mathematical models}, issn = {1742-464X}, doi = {10.1111/j.1742-4658.2009.07541.x}, year = {2010}, abstract = {Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the key enzyme of the Calvin cycle, catalyzing the fixation of inorganic carbon dioxide to organic sugars. Unlike most enzymes, RuBisCO is extremely slow, substrate unspecific, and catalyzes undesired side-reactions, which are considered to be responsible for the slow deactivation observed in vitro, a phenomenon known as fallover. Despite the fact that amino acid sequences and the 3D structures of RuBisCO from a variety of species are known, the precise molecular mechanisms for the various side reactions are still unclear. In the present study, we investigate the kinetic properties of RuBisCO using mathematical models. Initially, we formulate a minimal model that quantitatively reflects the kinetic behavior of RuBisCOs from different organisms. By relating rate parameters for single molecular steps to experimentally determined K-m and V-max values, we can examine mechanistic differences among species. The minimal model further demonstrates that two inhibitor producing side reactions are sufficient to describe experimentally determined fallover kinetics. To explain the observed kinetics of the limited capacity of RuBisCO to accept xylulose 1,5-bisphosphate as substrate, the inclusion of other side reactions is necessary. Our model results suggest a yet undescribed alternative enolization mechanism that is supported by the molecular structure. Taken together, the presented models serve as a theoretical framework to explain a wide range of observed kinetic properties of RuBisCOs derived from a variety of species. Thus, we can support hypotheses about molecular mechanisms and can systematically compare enzymes from different origins.}, language = {en} } @article{BramborgLinker2010, author = {Bramborg, Andrea and Linker, Torsten}, title = {Selective synthesis of 1,4-dialkylbenzenes from terephthalic acid}, issn = {1615-4150}, doi = {10.1002/adsc.201000322}, year = {2010}, abstract = {Terephthalic acid reacts with alkyl halides under Birch conditions to substituted 1,4-cyclohexadienes in high yields and good stereoselectivities. Electrophiles containing ester or nitrile groups undergo a surprising fragmentation under the reaction conditions. Subsequent treatment with chlorosulfonic acid proceeds by an interesting tandem decarbonylation/decarboxylation, affording 1,4-dialkylbenzenes in excellent regioselectivity. Thus our new method is superior to classical Friedel-Crafts alkylations.}, language = {en} } @article{StrehmelLungwitzRexhausenetal.2010, author = {Strehmel, Veronika and Lungwitz, Ralf and Rexhausen, Hans and Spange, Stefan}, title = {Relationship between hyperfine coupling constants of spin probes and empirical polarity parameters of some ionic liquids}, issn = {1144-0546}, doi = {10.1039/C0nj00253d}, year = {2010}, abstract = {The polarity of 1-alkyl-3-methylimidazolium-based ionic liquids containing hexafluorophosphate, tetrafluoroborate, dicyanoimide, or bis(trifluoromethanesulfonyl) imide as anions and a variation of the alkyl-chain length of the cation are investigated by both solvatochromic dyes and spin probes. Two different polarity scales are used for discussion of the polarity of these ionic liquids. These polarity scales are the empirical Kamlet-Taft parameters alpha, beta, and pi* and the hyperfine coupling constants A(iso)(N-14) obtained for spin probes substituted either with an ammonio or a sulfate group at 4-position. The results show that both polarity scales are valid for description of the ionic liquid polarity although differences are found between the two polarity scales. The most clear trend is found in all ionic liquids investigated for the hydrogen-bond accepting ability (beta) and the hyperfine- coupling constant of the anionic spin probe, where both parameters increase for all ionic liquids investigated until an alkyl chain length of eight carbon atoms and keep constant at longer alkyl chains.}, language = {en} } @article{BorchertWilkeSchmidtetal.2010, author = {Borchert, Manuela and Wilke, Max and Schmidt, Christian and Rickers, Karen}, title = {Rb and Sr partitioning between haplogranitic melts and aqueous solutions}, issn = {0016-7037}, doi = {10.1016/j.gca.2009.10.033}, year = {2010}, abstract = {Rubidium and strontium partitioning experiments between haplogranitic melts and aqueous fluids (water or 1.16- 3.56 m (NaCl + KCl) +/- HCl) were conducted at 750-950 degrees C and 0.2-1.4 GPa to investigate the effects of melt and fluid composition, pressure, and temperature. In addition, we studied if the applied technique (rapid and slow quench, and in-situ determination of trace element concentration in the fluid) has a bearing on the obtained data. There is good agreement of the data from different techniques for chloridic solutions, whereas back reactions between fluid and Melt upon cooling have a significant effect on results from the experiments with water. The Rb fluid-melt partition coefficient shows no recognizable dependence on melt composition and temperature. For chloridic Solutions, it is similar to 0.4, independent of pressure. In experiments with water, it is one to two orders of magnitude lower and increases with pressure. The strontium fluid-melt partition coefficient does not depend on temperature. It increases slightly with pressure in Cl free experiments. In chloridic fluids, there is a sharp increase in the Sr partition coefficient with the alumina saturation index (ASI) from 0.003 at an ASI of 0.8 to a maximum of 0.3 at an ASI of 1.05. At higher ASI, it decreases slightly to 0.2 at an ASI of 1.6. It is one to two orders of magnitude higher in chloridic fluids compared to those found in H2O experiments. The Rb/Sr ratio in non-chloridic solutions in equilibrium with metaluminous melts increases with pressure, whereas the Rb/Sr ratio in chloridic fluids is independent of pressure and decreases with fluid salinity. The obtained fluid-melt partition coefficients are in good agreement with data from natural cogenetic fluid and melt inclusions. Numerical modeling shows that although the Rb/Sr ratio in the residual melt is particularly sensitive to the degree of fractional crystallization, exsolution of a fluid phase, and associated fluid-melt partitioning is not a significant factor controlling Rb and Sr concentrations in the residual melt during crystallization of most granitoids.}, language = {en} } @article{KleinpeterBoelkeKreicberga2010, author = {Kleinpeter, Erich and Boelke, Ute and Kreicberga, Jana}, title = {Quantification of the push-pull character of azo dyes and a basis for their evaluation as potential nonlinear optical materials}, issn = {0040-4020}, year = {2010}, abstract = {The push-pull characters of a large series of donor-acceptor substituted azo dyes{\`u}71 structures in all{\`u}have been quantified by the NN double bond lengths, dNN, the 15N NMR chemical shift differences, ;;15N, of the two nitrogen atoms and the quotient, ;*/;, of the occupations of the antibonding ;*, and bonding ; orbitals of this partial NN double bond. The excellent correlation of the occupation quotients with the bond lengths strongly infers that both ;*/; and dNN are excellent parameters for quantifying charge alternation in the push-pull chromophore and the molecular hyperpolarizability, ;0, of these compounds. By this approach, selected compounds can be appropriately considered as viable candidates for nonlinear optical (NLO) applications.}, language = {en} } @phdthesis{Verch2010, author = {Verch, Andreas}, title = {Pr{\"a}nukleationscluster und ihre Wechselwirkungen mit Additiven}, address = {Potsdam}, pages = {119 Bl. : Ill., graph. Darst.}, year = {2010}, language = {de} } @article{SiegmannJelicic2010, author = {Siegmann, Rebekka and Jelicic, Aleksandra}, title = {Propagation and termination kinetics of PEGylated methacrylate radical polymerizations}, issn = {1022-1352}, doi = {10.1002/macp.200900527}, year = {2010}, abstract = {Propagation and chain-length averaged termination rate coefficients, k(p) and , for radical polymerizations of methacrylates carrying poly(ethylene glycol) (PEG) units are reported. kp derived from pulsed laser initiated polymerizations in bulk, in organic solvents, and in ionic liquids follows the methacrylate-type family behavior. Contrary, diffusion controlled k(t) values obtained from chemically initiated polymerizations with in-line FT- NIR monitoring of monomer conversion are strongly affected by the PEG units in the ester group. Compared to alkyl methacrylates is unexpectedly high. Moreover, of poly(ethylene glycol) ethyl ether methacrylate shows a significant reduction in k(t) already at 15\% conversion, whereas dodecyl methacrylate is constant up to at least 70\% conversion.}, language = {en} } @article{KleinpeterKoch2010, author = {Kleinpeter, Erich and Koch, Andreas}, title = {Probing the exohedral magnetic properties of C20 derivatives by through space NMR shieldings (TSNMRS)}, issn = {0166-1280}, doi = {10.1016/j.theochem.2009.09.018}, year = {2010}, abstract = {The through space NMR shieldings (TSNMRS) of dodecahedrane C20H20, of the isomeric hydrocarbons C20H12, of the ions C20H122+ and C20H122- of the fluxional fullerene C20 and of its dication C202+ have been ab initio calculated employing the NICS concept on basis of MP2/6-31G* geometries and visualized as iso-chemical-shielding/deshielding surfaces (ICSSs). TSNMRS values were employed to study the exohedral magnetic properties of the compounds studied. Hereby, the curved It-conjugation in the compounds studied could be quantified.}, language = {en} } @phdthesis{Cui2010, author = {Cui, Jing}, title = {Preparation of medical grade, amorphous polymer systems with adjustable stiffness and development of self- surfficiently moving model scaffolds based on shape-memory polymer composites}, address = {Potsdam}, year = {2010}, language = {en} }