@unpublished{CalvoSchulze2005, author = {Calvo, D. and Schulze, Bert-Wolfgang}, title = {Edge symbolic structures of second generation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29940}, year = {2005}, abstract = {Operators on a manifold with (geometric) singularities are degenerate in a natural way. They have a principal symbolic structure with contributions from the different strata of the configuration. We study the calculus of such operators on the level of edge symbols of second generation, based on specific quantizations of the corner-degenerate interior symbols, and show that this structure is preserved under compositions.}, language = {en} } @unpublished{HarutjunjanSchulze2005, author = {Harutjunjan, G. and Schulze, Bert-Wolfgang}, title = {Conormal symbols of mixed elliptic problems with singular interfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29885}, year = {2005}, abstract = {Mixed elliptic problems are characterised by conditions that have a discontinuity on an interface of the boundary of codimension 1. The case of a smooth interface is treated in [3]; the investigation there refers to additional interface conditions and parametrices in standard Sobolev spaces. The present paper studies a necessary structure for the case of interfaces with conical singularities, namely, corner conormal symbols of such operators. These may be interpreted as families of mixed elliptic problems on a manifold with smooth interface. We mainly focus on second order operators and additional interface conditions that are holomorphic in an extra parameter. In particular, for the case of the Zaremba problem we explicitly obtain the number of potential conditions in this context. The inverses of conormal symbols are meromorphic families of pseudo-differential mixed problems referring to a smooth interface. Pointwise they can be computed along the lines [3].}, language = {en} } @unpublished{XiaochunSchulze2004, author = {Xiaochun, Liu and Schulze, Bert-Wolfgang}, title = {Boundary value problems in edge representation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26746}, year = {2004}, abstract = {Edge representations of operators on closed manifolds are known to induce large classes of operators that are elliptic on specific manifolds with edges, cf. [9]. We apply this idea to the case of boundary value problems. We establish a correspondence between standard ellipticity and ellipticity with respect to the principal symbolic hierarchy of the edge algebra of boundary value problems, where an embedded submanifold on the boundary plays the role of an edge. We first consider the case that the weight is equal to the smoothness and calculate the dimensions of kernels and cokernels of the associated principal edge symbols. Then we pass to elliptic edge operators for arbitrary weights and construct the additional edge conditions by applying relative index results for conormal symbols.}, language = {en} } @unpublished{HarutjunjanSchulze2004, author = {Harutjunjan, Gohar and Schulze, Bert-Wolfgang}, title = {The Zaremba problem with singular interfaces as a corner boundary value problem}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26855}, year = {2004}, abstract = {We study mixed boundary value problems for an elliptic operator A on a manifold X with boundary Y , i.e., Au = f in int X, T±u = g± on int Y±, where Y is subdivided into subsets Y± with an interface Z and boundary conditions T± on Y± that are Shapiro-Lopatinskij elliptic up to Z from the respective sides. We assume that Z ⊂ Y is a manifold with conical singularity v. As an example we consider the Zaremba problem, where A is the Laplacian and T- Dirichlet, T+ Neumann conditions. The problem is treated as a corner boundary value problem near v which is the new point and the main difficulty in this paper. Outside v the problem belongs to the edge calculus as is shown in [3]. With a mixed problem we associate Fredholm operators in weighted corner Sobolev spaces with double weights, under suitable edge conditions along Z \ {v} of trace and potential type. We construct parametrices within the calculus and establish the regularity of solutions.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2004, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 6: Elliptic theory on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26757}, year = {2004}, abstract = {Contents: Chapter 6: Elliptic Theory on Manifolds with Edges Introduction 6.1. Motivation and Main Constructions 6.1.1. Manifolds with edges 6.1.2. Edge-degenerate differential operators 6.1.3. Symbols 6.1.4. Elliptic problems 6.2. Pseudodifferential Operators 6.2.1. Edge symbols 6.2.2. Pseudodifferential operators 6.2.3. Quantization 6.3. Elliptic Morphisms and the Finiteness Theorem 6.3.1. Matrix Green operators 6.3.2. General morphisms 6.3.3. Ellipticity, Fredholm property, and smoothness Appendix A. Fiber Bundles and Direct Integrals A.1. Local theory A.2. Globalization A.3. Versions of the Definition of the Norm}, language = {en} } @unpublished{SchulzeVolpato2004, author = {Schulze, Bert-Wolfgang and Volpato, A.}, title = {Green operators in the edge calculus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26846}, year = {2004}, abstract = {Green operators on manifolds with edges are known to be an ingredient of parametrices of elliptic (edge-degenerate) operators. They play a similar role as corresponding operators in boundary value problems. Close to edge singularities the Green operators have a very complex asymptotic behaviour. We give a new characterisation of Green edge symbols in terms of kernels with discrete and continuous asymptotics in the axial variable of local model cones.}, language = {en} } @unpublished{JaianiSchulze2004, author = {Jaiani, George and Schulze, Bert-Wolfgang}, title = {Some degenerate elliptic systems and applications to cusped plates}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26866}, year = {2004}, abstract = {The tension-compression vibration of an elastic cusped plate is studied under all the reasonable boundary conditions at the cusped edge, while at the noncusped edge displacements and at the upper and lower faces of the plate stresses are given.}, language = {en} } @unpublished{DinesLiuSchulze2004, author = {Dines, Nicoleta and Liu, X. and Schulze, Bert-Wolfgang}, title = {Edge quantisation of elliptic operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26838}, year = {2004}, abstract = {The ellipticity of operators on a manifold with edge is defined as the bijectivity of the components of a principal symbolic hierarchy σ = (σψ, σ∧), where the second component takes value in operators on the infinite model cone of the local wedges. In general understanding of edge problems there are two basic aspects: Quantisation of edge-degenerate operators in weighted Sobolev spaces, and verifying the elliptcity of the principal edge symbol σ∧ which includes the (in general not explicitly known) number of additional conditions on the edge of trace and potential type. We focus here on these queations and give explicit answers for a wide class of elliptic operators that are connected with the ellipticity of edge boundary value problems and reductions to the boundary. In particular, we study the edge quantisation and ellipticity for Dirichlet-Neumann operators with respect to interfaces of some codimension on a boundary. We show analogues of the Agranovich-Dynin formula for edge boundary value problems, and we establish relations of elliptic operators for different weights, via the spectral flow of the underlying conormal symbols.}, language = {en} } @unpublished{EgorovKondratievSchulze2004, author = {Egorov, Jurij V. and Kondratiev, V. A. and Schulze, Bert-Wolfgang}, title = {On the completeness of root functions of elliptic boundary problems in a domain with conical points on the boundary}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26773}, year = {2004}, abstract = {Contents: 1 Introduction 2 Definitions 3 Rays of minimal growth 4 Proof of Theorem 2. 5 The growth of the resolvent 6 Proof of Theorem 3. 7 The completeness of root functions 8 Some generalizations}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2004, author = {Nazaikinskii, Vladimir E. and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {On the homotopy classification of elliptic operators on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26769}, year = {2004}, abstract = {We obtain a stable homotopy classification of elliptic operators on manifolds with edges.}, language = {en} } @unpublished{KrainerSchulze2004, author = {Krainer, Thomas and Schulze, Bert-Wolfgang}, title = {The conormal symbolic structure of corner boundary value problems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26662}, year = {2004}, abstract = {Ellipticity of operators on manifolds with conical singularities or parabolicity on space-time cylinders are known to be linked to parameter-dependent operators (conormal symbols) on a corresponding base manifold. We introduce the conormal symbolic structure for the case of corner manifolds, where the base itself is a manifold with edges and boundary. The specific nature of parameter-dependence requires a systematic approach in terms of meromorphic functions with values in edge-boundary value problems. We develop here a corresponding calculus, and we construct inverses of elliptic elements.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2004, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 7: The index problem on manifolds with singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26700}, year = {2004}, abstract = {Contents: Chapter 7: The Index Problemon Manifolds with Singularities Preface 7.1. The Simplest Index Formulas 7.1.1. General properties of the index 7.1.2. The index of invariant operators on the cylinder 7.1.3. Relative index formulas 7.1.4. The index of general operators on the cylinder 7.1.5. The index of operators of the form 1 + G with a Green operator G 7.1.6. The index of operators of the form 1 + G on manifolds with edges 7.1.7. The index on bundles with smooth base and fiber having conical points 7.2. The Index Problem for Manifolds with Isolated Singularities 7.2.1. Statement of the index splitting problem 7.2.2. The obstruction to the index splitting 7.2.3. Computation of the obstruction in topological terms 7.2.4. Examples. Operators with symmetries 7.3. The Index Problem for Manifolds with Edges 7.3.1. The index excision property 7.3.2. The obstruction to the index splitting 7.4. Bibliographical Remarks}, language = {en} } @unpublished{HarutjunjanSchulze2004, author = {Harutjunjan, Gohar and Schulze, Bert-Wolfgang}, title = {Boundary problems with meromorphic symbols in cylindrical domains}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26735}, year = {2004}, abstract = {We show relative index formulas for boundary value problems in cylindrical domains and Sobolev spaces with different weigths at ±∞. The amplitude functions are meromorphic in the axial covariable and take values in the space of boundary value problems on the cross section of the cylinder.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 3: Eta invariant and the spectral flow}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26595}, year = {2003}, abstract = {Contents: Chapter 3: Eta Invariant and the Spectral Flow 3.1. Introduction 3.2. The Classical Spectral Flow 3.2.1. Definition and main properties 3.2.2. The spectral flow formula for periodic families 3.3. The Atiyah-Patodi-Singer Eta Invariant 3.3.1. Definition of the eta invariant 3.3.2. Variation under deformations of the operator 3.3.3. Homotopy invariance. Examples 3.4. The Eta Invariant of Families with Parameter (Melrose's Theory) 3.4.1. A trace on the algebra of parameter-dependent operators 3.4.2. Definition of the Melrose eta invariant 3.4.3. Relationship with the Atiyah-Patodi-Singer eta invariant 3.4.4. Locality of the derivative of the eta invariant. Examples 3.5. The Spectral Flow of Families of Parameter-Dependent Operators 3.5.1. Meromorphic operator functions. Multiplicities of singular points 3.5.2. Definition of the spectral flow 3.6. Higher Spectral Flows 3.6.1. Spectral sections 3.6.2. Spectral flow of homotopies of families of self-adjoint operators 3.6.3. Spectral flow of homotopies of families of parameter-dependent operators 3.7. Bibliographical Remarks}, language = {en} } @unpublished{DinesHarutjunjanSchulze2003, author = {Dines, Nicoleta and Harutjunjan, Gohar and Schulze, Bert-Wolfgang}, title = {The Zaremba problem in edge Sobolev spaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26615}, year = {2003}, abstract = {Mixed elliptic boundary value problems are characterised by conditions which have a jump along an interface of codimension 1 on the boundary. We study such problems in weighted edge Sobolev spaces and show the Fredholm property and the existence of parametrices under additional conditions of trace and potential type on the interface. Our methods from the calculus of boundary value problems on a manifold with edges will be illustrated by the Zaremba problem and other mixed problems for the Laplace operator.}, language = {en} } @unpublished{Schulze2003, author = {Schulze, Bert-Wolfgang}, title = {Crack theory with singularties at the boundary}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26600}, year = {2003}, abstract = {We investigate crack problems, where the crack boundary has conical singularities. Elliptic operators with two-sided elliptc boundary conditions on the plus and minus sides of the crack will be interpreted as elements of a corner algebra of boundary value problems. The corresponding operators will be completed by extra edge conditions on the crack boundary to Fredholm operators in corner Sobolev spaces with double weights, and there are parametrices within the calculus.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26587}, year = {2003}, abstract = {Contents: Chapter 4: Pseudodifferential Operators 4.1. Preliminary Remarks 4.1.1. Why are pseudodifferential operators needed? 4.1.2. What is a pseudodifferential operator? 4.1.3. What properties should the pseudodifferential calculus possess? 4.2. Classical Pseudodifferential Operators on Smooth Manifolds 4.2.1. Definition of pseudodifferential operators on a manifold 4.2.2. H{\"o}rmander's definition of pseudodifferential operators 4.2.3. Basic properties of pseudodifferential operators 4.3. Pseudodifferential Operators in Sections of Hilbert Bundles 4.3.1. Hilbert bundles 4.3.2. Operator-valued symbols. Specific features of the infinite-dimensional case 4.3.3. Symbols of compact fiber variation 4.3.4. Definition of pseudodifferential operators 4.3.5. The composition theorem 4.3.6. Ellipticity 4.3.7. The finiteness theorem 4.4. The Index Theorem 4.4.1. The Atiyah-Singer index theorem 4.4.2. The index theorem for pseudodifferential operators in sections of Hilbert bundles 4.4.3. Proof of the index theorem 4.5. Bibliographical Remarks}, language = {en} } @unpublished{Schulze2003, author = {Schulze, Bert-Wolfgang}, title = {Toeplitz operators, and ellipticity of boundary value problems with global projection conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26510}, year = {2003}, abstract = {Ellipticity of (pseudo-) differential operators A on a compact manifold X with boundary (or with edges) Y is connected with boundary (or edge) conditions of trace and potential type, formulated in terms of global projections on Y together with an additional symbolic structure. This gives rise to operator block matrices A with A in the upper left corner. We study an algebra of such operators, where ellipticity is equivalent to the Fredhom property in suitable scales of spaces: Sobolev spaces on X plus closed subspaces of Sobolev spaces on Y which are the range of corresponding pseudo-differential projections. Moreover, we express parametrices of elliptic elements within our algebra and discuss spectral boundary value problems for differential operators.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : V. Index formulas for elliptic problems on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26500}, year = {2003}, abstract = {For elliptic problems on manifolds with edges, we construct index formulas in form of a sum of homotopy invariant contributions of the strata (the interior of the manifold and the edge). Both terms are the indices of elliptic operators, one of which acts in spaces of sections of finite-dimensional vector bundles on a compact closed manifold and the other in spaces of sections of infinite-dimensional vector bundles over the edge.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov2003, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {On index theorem for symplectic orbifolds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26550}, year = {2003}, abstract = {We give an explicit construction of the trace on the algebra of quantum observables on a symplectic orbifold and propose an index formula.}, language = {en} }